
EE 225A Spring 2005 

First Midterm Exam: Solutions 
 

1. A function of a complex variable is analytic in a region if (check one): z

ü It is continuous at every point in the region. 

Ã  It is differentiable with respect to at every point in the region. z

ü It is differentiable with respect to the real-part of and the imaginary part 
of at every point in the region. 

z
z

ü All Cauchy sequences of points in the region converge to a point in the region. 
 

2. Let be of the form )(zH
)(
)()(

zA
zBzzH m ⋅=  where and are respectively a 

p-th order and a q-th order polynomial in . As you know, in general if you 
choose a different region of convergence (ROC), you get a different time 
function. Among the following choices, what types of time functions are 
available (through the choice of an appropriate ROC) for every rational , 
including every possible value of p, q, and m? (You may need to check more than 
one. If you can identify a transfer function for which that type of time function is 
not available for any choice of ROC, then you should not check that item.) 
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ü A strictly causal time function ( 0for  0 <= khk ). (Comment: a 
counterexample is zzH =)( ) 

Ã A loosely causal time function (there is an such that 0≥N Nkhk −<= for  0 ). 
(Comment: Choose an ROC 0>> Dz where is larger than the modulus 
of all poles. The only obstacle is poles at 

D
∞=z ; that is,  

corresponding to positive powers of . However, we can always write the 
transfer function in the form  such that . Then 
the ROC of can be chosen for a strictly causal time response, and  
becomes loosely causal.) 

∞=∞)(H
z

)()( 1 zHzzH L ⋅= ∞<∞)(1H
)(1 zH kh

ü A strictly anticausal time function ( 0for  0 >= khk ). 

Ã A loosely anticausal (there is an such that 0≥N Nkhk >= for  0 ). 

ü A two sided (neither loosely causal nor loosely anticausal). (Comment: if all 
the poles have the same modulus, then there is no annulus ROC.) 



ü A time function with finite support (simultaneously loosely causal and loosely 
anticausal). 

ü None of the above options is available for every . qpmzH  and ,, ),(
 

3. Which of the following statements is true? (You may need to check more than 
one.) 

ü A rational transfer function corresponding to a real-valued signal must have, 
for every zero, a pole at its complex-conjugate location, and for every pole, a 
zero at its complex-conjugate location. (Reflection through the unit circle is 
defined as the function ). */1 z

ü A rational transfer function that is real-valued on the unit circle must have, for 
every zero, a pole reflected through the unit circle, and for every pole, a zero 
reflected through the unit circle. 

Ã The numerator and denominator polynomials of a rational transfer function 
corresponding to a real-valued unit-sample response must have real-valued 
coefficients. 

Ã For a rational transfer function that is non-negative real-valued on the unit 
circle, any zeros on the unit circle must have even (multiple of two) 
multiplicity. 

ü None of the above statements is true. 
 

4. Which of the following statements is true? (You may need to check more than 
one.) 

ü A causal and stable non-minimum phase rational transfer function can be 
turned into a causal and stable minimum-phase rational transfer function by 
cascading a causal and stable allpass transfer function. (Comment: this would 
require the allpass filter to have a pole outside the unit circle.) 

Ã A causal and stable non-minimum phase rational transfer function can be 
turned into a causal and stable minimum-phase transfer function by cascading 
an anticausal and stable allpass transfer function. 

Ã Every non-minimum phase causal and stable rational transfer function can 
expressed as a cascade of a causal and stable minimum-phase transfer 
function and a causal and stable allpass transfer function. 

Ã Every causal and stable allpass rational transfer function is non-minimum 
phase. 



ü Every anticausal and stable allpass rational transfer function is minimum-
phase. (Comment: allpass filters must have pole-zero pairs reflected through 
the unit circle, so they are never minimum-phase—either a pole or a zero must 
be outside the unit circle.) 

 
5. Only rational transfer functions can be minimum-phase. This statement is (check 

one): 

ü True 

Ã False 
 

6. You want to form a minimum mean-square error estimate of a random 
variable X based on the observation of a random variableY . Which of the 
following are true statements? (Check all that apply, you may have to check more 
than one.) 

ü The optimum estimate is always linear, of the form Ya ⋅ . 

ü The optimum estimate is never linear. 

Ã Even where a linear estimate is not optimum, it can still be useful because it is 
simple and analytically tractable. 

ü To determine the optimum estimate, we must know the joint probability 
density of X and Y ,  (or equivalently the joint distribution function). 
(Comment: All we need know is

),( yxpXY

)|(| yYxp YX =  , from which  
cannot be inferred without additional information.) 

),( yxpXY

ü To determine the optimum estimate, we need only know all the second order 
statistics of X and Y  (means, variances, covariance). 

 
7. In modeling a deterministic signal as the unit-sample response of a rational 

transfer function, the most common procedure is which of the following? (Check 
the one that applies.) 

Ã Solve a set of linear equations to determine the coefficients of the 
denominator polynomial, and then solve another set of linear equations to 
determine the coefficients of the numerator polynomial. 

ü Solve a set of linear equations to determine the roots of the denominator 
polynomial, and then solve another set of linear equations to determine the 
roots of the numerator polynomial. 



ü Solve a set of linear equations to determine the coefficients of the numerator 
polynomial, and then solve another set of linear equations to determine the 
coefficients of the denominator polynomial. 

ü Solve a set of linear equations to determine the roots of the numerator 
polynomial, and then solve another set of linear equations to determine the 
roots of the denominator polynomial. 

 
8. For a system of linear equations bAx =  where  is the unknown vector and is to 

be determined, which of the following statements are true? (Check all that apply,  
you may have to check more than one) 

x

 
(Comment: Here is a table that summarizes the possibilities:) 
 

Case Rank Unique 
solution 

No solution Multiple 
solutions 

Full bAx 1−=     Square 
 

rows = columns 
 

# variables = # equations 

Deficient  
 

(non-zero 
null space) 

 If  is not in 
column space 

b
If b  is in 
column space; 
add any vector 
in null space 

Full If  is in 
column space 

b If  is not in 
column space 

b  Overdetermined 
 

rows > columns 
 

# variables < # equations 

Deficient 
 

(non-zero 
null space) 

 If  is not in 
column space 

b
If b  is in 
column space; 
add any vector 
in null space 

Full   

An in the 
row space 
must match 
constraints; 
add any vector 
in null space 

x

Underdetermined 
 

rows < columns 
 

# variables > # equations 
 

(always non-zero null 
space) Deficient  

If no in the 
row space 
matches 
constraints 

x
If an in the 
row space 
matches 
constraints; 
add any vector 
in null space 

x

 

Ã If the number of unknown variables equals the number of linear equations, 
there are three possible cases: there is a unique solution, there is no solution, 
or there are multiple solutions. 



Ã If the number of unknown variables is larger than the number of linear 
equations, there are two possible cases: there is no solution, or there are 
multiple solutions. 

ü If the number of unknown variables is smaller than the number of linear 
equations, there are two possible cases: there is a unique solution, or there are 
multiple solutions. 

ü If the number of unknown variables is larger than the number of linear 
equations and the matrix  is full rank, there are two possible cases: there is 
no solution, or there are multiple solutions. 

A

ü If the number of unknown variables is smaller than the number of linear 
equations and the matrix  is full rank, there are two possible cases: there is 
a unique solution, or there are multiple solutions. 

A

 
9. Suppose a lattice filter is designed to be the optimum finite-order linear predictor 

of a wide-sense stationary random process. Check all the following statements 
that are true (you may need to check more than one). 

ü The reflection coefficients are all less than unity in modulus. 

Ã The reflection coefficients are all less than or equal to unity in modulus. 

ü A reflection coefficient that is larger than unity indicates that the 
autocorrelation function of the process is only positive semi-definite, not 
strictly positive definite. 

ü No reflection coefficient is ever zero. 

Ã When a reflection coefficient is zero, the mean-square prediction error does 
not decrease through that stage of the filter. 

Ã When a reflection coefficient is smaller in magnitude, that indicates that this 
stage of the filter is less effective in further reducing the mean-square 
prediction error than when this same reflection coefficient is larger in 
magnitude. 

 
10. Suppose a lattice filter is designed to be the optimum finite-order linear predictor 

of a wide-sense stationary random process. Check all the following statements 
that are true (you may need to check more than one). 

ü The forward prediction error  (order n at time k) is uncorrelated with 
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ü  is uncorrelated with  (the reverse or backward prediction 
error of order  at time 

)(kEn )( nkE R
n −

n nk − ). 

Ã  is uncorrelated with  )(1 nkE R
n −− )(kEn

Ã )2()2( 22 −=+− −− kEnkE n
R
n  

Ã  is uncorrelated with  )2(2 −− kEn )(4 nkE R
n −−

ü None of these is correct. 
 

11. Given a rational function ,  is allowed to travel counterclockwise around 
the circle 

)(zH z
1=z  and subsequently counterclockwise around the circle 2=z . It is 

observed that the trajectory of  traverses about the origin 3 times in the 
clockwise direction in the first case and 2 times in the counterclockwise direction 
in the second case. From the functional form of  we can see directly that it 
has no poles or zeros at the origin. Which of the following conclusions are 
consistent with these observations? (More than one may be consistent, check all 
that apply.) 

)(zH

)(zH

ü H  is minimum phase )(z

Ã In the annulus 21 ≤< z  ,  has 7 zeros and 2 poles. )(zH

Ã In the disk 1≤z ,  has 3 zeros )(zH

ü In the disk 2≤z ,  has 2 poles (Comment: Since it must have at least 3 
poles inside the unit circle, it must have at least 3 poles in this disk.) 

)(zH

ü In the region 2≥z ,  has no poles or zeros )(zH

ü None of the above is consistent with the observations 
 

12. Which of the following statements apply to an autoregressive wide-sense 
stationary random process? (Check all that apply, more than one may apply.) 

ü It is also strictly stationary. 

Ã It's power spectrum is rational, and every pole is accompanied by another pole 
reflected through the unit circle. (Comment: Statement is not complete, since 
it doesn’t mention the fact that there can be no zeros. Nevertheless it is true as 
far as it goes.) 

Ã Its power spectrum is rational, and it has no zeros. 



Ã The minimum mean-square error backward or reverse predictor of order ∞  is 
actually a finite-order predictor. (Comment: True of a forward predictor, so 
must also be true of a reverse predictor.) 

ü It must be a Gaussian process. 

Ã Its autocorrelation function must obey a difference or recurrence relationship. 

ü None of the above is correct. 
 



1. A possibly complex-valued random process )()()( kjYkXkU +=  is zero-mean 
and wide-sense stationary, and is known to have autocorrelation function 

{ }mmrU ⋅−= αexp)(  
for some real-valued constant 0>α . 

 
a. What are the strongest general assertions you can make about the joint 

statistics of  and ? To get full credit, your assertions must be 
exhaustive, and you should state all you can infer about both the 
autocorrelation and power spectrum aspects of their joint statistics. 

)(kX )(kY

 
b. Is the random process { }kjkUkV ωexp)()( ⋅= , for some real-valued 

constant πωπ ≤<− , wide-sense stationary? Justify your answer. 
 
c. What are the coefficients of the minimum-mean-square-error∞ -order 

linear predictor of based on its past? )(kU
 
d. Consider the minimum-mean-square-error linear estimate of based 

on  for some given . Find the coefficients of 
this estimate. 

)(kU
0  ),( ≥−− mmNkU 1≥N

 
 

Solution 
 

a. Strictly speaking, we can't assume that  and  are jointly WSS, but have to 
show it. In fact, we showed in a homework earlier that the autocorrelation function of a 
complex-valued process does not fully specify the joint statistics of the real and 
imaginary parts. In fact, that  is WSS does not guarantee that  and  are 
jointly WSS. 

)(kX )(kY

)(kU )(kX )(kY

 
In practice, I gave full credit if you assumed they were WSS and went from there. (They 
can be, and are likely to be, it is just that they don't have to be.) Making that assumption, 
by direct calculation, 

 
))()(()()()( mrmrjmrmrmr XYXYYXU −−⋅++= . 

 
Thus we get 

m
YX emrmr α−=+ )()(  or )()()( zPzPzP UYX =+  

)()( mrmr XYXY −=  or  )()( 1−= zPzP XYXY

 

⋅ Both the real and imaginary parts are zero-mean, like . )(kU

⋅ The process may or may not be real-valued. )(kU



⋅ The cross-correlation function must be even, and thus the cross-power 
spectrum on the unit circle must be symmetric about 0=ω , 

. )()( ωω j
XY

j
XY ePeP −=

 
b. By direct calculation of the autocorrelation function, 

 
mj

U
mkjkj emremkUekUEmkVkVE ωωω ⋅=⋅−⋅⋅=−⋅ −− )(])()([)]()([ )(**  

 
This not being a function of k,  is WSS. )(kV

 
c. The power spectrum will have a single pair of poles, and likely does not have any 
zeros, so it is autoregressive of order 1=p . Thus we expect that the optimum predictor 
will be a first-order predictor. From the results of d. for 1=N , the single coefficient is 

 and the prediction error filter is α−−= ea )1(1

 
1

1 1)()( −−
∞ −== zezAzA α . 

 
Method 1: Realizing that the optimum predictor must be first order, find the coefficient 
and prove that it is optimal using the orthogonality principle, as we did in d. below. 

 
Method 2: Find the power spectrum 
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and then observe that the filter  is a whitening filter and thus 
must be an optimum ∞ -order prediction error filter. 

1
1 1)()( −−

∞ −== zezAzA α

 
d. Given the speculation of c. for 1=N , it seems likely that a first order predictor (based 
on only the most recent sample) will do. 

 
Method 1: Invoke the orthogonality principle to see if we might be that lucky. Let β  be 
the coefficient of a first order predictor based on the most recent sample, so that 

 

0)]())()([( * =−−⋅− NkUNkUkUE β  or N
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Now we can check to see if this happens to be the optimum ∞ -order predictor by 
checking if the orthogonality principle is satisfied, 

 
0)()()]())()([( * =⋅−+=−−−⋅− − mremNrmNkUNkUkUE U

N
U

αβ  for . 0≥m
 



We lucked out! The first-order predictor is optimum. 
 

Method 2: Without making any bold guesses as to the solution, find the appropriate set of 
normal equations and solve them. From the orthogonality principle, 
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This can be rewritten as 

 
0  ),()()( ≥⊗=− mmrmamre UU

Nα  
 

By inspection, a solution to these equations is . The projection theorem 
tells us this solution must be unique. 

)()( mema N δα−=

 
2. Given stable and causal unit-sample responses  and , suppose the least-

squares (LS) FIR least-squares inverse filter 
)(kg )(kd

10  ),( −≤≤ NkkhN  is chosen to 
minimize 
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Let  be the z-transform of , then by Parseval’s relation, )(zE )(ke
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In a particular application, you want more control over the accuracy of the LS 
inverse filter as a function of frequency (with greater accuracy in some frequency 
bands than others) so you define a positive real-valued weighting function 

 and reformulate the criterion for design of the inverse filter as 
minimizing 

0)( >ωjeW

 

ω
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ε ωπ

π
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2
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a. Find a set of linear equations which, when solved, would minimize N Wε . 

These equations may be expressed in terms of discrete-time convolutions 
and sums, but must not contain any un-evaluated integrals. 

 



b. State conditions under which the equations you obtained have a unique 
solution. 

 
Solution 

 
a. Several methods will work here, and some are more difficult to carry out. 

 

Method 1: Since  it admits the spectral factorization 0)( >ωjeW ⎟
⎠
⎞

⎜
⎝
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where is monic, stable and causal, and minimum-phase. Then the criterion can be 
restated as minimizing 
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Define , and then )()()(' zEzSzE =

 
))()(()())()(()()()(' kskgkhkskdkskeke N ⊗⊗−⊗=⊗= . 

 
Thus, the previous solution can be repeated, with replaced 
by and replaced by

)(kd
)()()( kskdku ⊗= )(kg )()()( kskgkv ⊗= . Defining 
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The set of linear equations to be solved for the original problem is 
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With the new formulation of the problem all we have to do is replace the two correlation 
functions, 
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Method 2: Several students used )(zW  in place of Method 1's . This may work, 

but you have to realize that 

)(zS

)(zW  is not an analytic function and that the time sequence 
will not be causal (it is a Hermitian time sequence). The whole idea with spectral 



factorization is to choose a phase response corresponding to magnitude response )(zW  
that gives you a causal time sequence, greatly simplifying the remainder of the analysis. 
 
Method 3: Several students worked with  directly rather than factoring it. This will 
work if you recognize that 

)(zW
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and also recognize that  (the time weighting function is not causal). 
Working this out you get an infinite-dimensional Hermitian form. You can then 
minimize, but it is messier than Method 1 (which reverts to a previous solution). 

)()( * kwkw −=

 
Method 4: Several students worked with the integral directly, differentiating it. This will 
work if done with care, but has the same limitation as Method 3. 
 
b. Method 1: In the original problem the solution is unique iff the -th order 
autocorrelation matrix is positive definite, which is true iff the vectors 

N

0 ),( ≥−↔ kmkgG m  are linearly independent for 10 −≤≤ Nm . Since mG  is a 
stationary signal, these vectors are linearly dependent iff an m-th order predictor yields 
zero error for . We know that this happens if the power spectrum consists of a 
finite set of impulses; that is, the autocorrelation function 

nm ≤

mkk GG −  consists of a 

superposition of a finite set of complex exponentials. 
 
Since the power spectrum of  is the power spectrum of   multiplied by )(kv )(kg

)(1)( *
* zW

z
SzS =⎟

⎠
⎞

⎜
⎝
⎛ , if we choose a well-behaved (e.g. positive and continuous) 

weighting function it will not affect the form of the power spectrum (consisting of a 
superposition of impulses or not), and thus will not affect the uniqueness of the solution 
one way or another. 
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