Linear equations: Case of singular square matrix

David G Messerschmitt Version 1.1, March 2, 2005

For a set of linear equations Ax = b when A is square but singular, there are two cases:

- Case I: There are no solutions (so we look for the best approximation).
- Case II: There is a solution (in which case there are many solutions).

Example: Consider the equations:

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = x \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (x + y) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Case I: When a = b, there are many solutions, since $\begin{bmatrix} a \\ a \end{bmatrix} = (x + y) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ or x + y = a. One possible solution—the one that falls in the column space spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ -- is $x = y = \frac{a}{2}$. A vector that lies in the null space of **A** is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Thus, the set of possible solutions can be characterized as $\begin{bmatrix} a/2 \\ a/2 \end{bmatrix} + \alpha \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} a/2 + \alpha \\ a/2 - \alpha \end{bmatrix}$. We might choose the solution that has minimum norm, which is easily shown to be $\alpha = 0$ or $x = y = \frac{a}{2}$. That is, the minimum norm solution is the one that falls in the column subspace spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. This is illustrated geometically below.

Case II: When $a \neq b$, there is no solution. The best approximate solution (in the mean-square sense) would minimize

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2 = \|\begin{bmatrix} a - x - y \\ b - x - y \end{bmatrix}\|^2 = (a - x - y)^2 + (b - x - y)^2.$$

This can be solved the conventional way (differentiation) to establish that the stationary point satisfies $x + y = \frac{a+b}{2}$. Thus, the LS approximation is not unique (it lies anywhere on a line falling midway between x + y = a and x + y = b). So, we might again choose to pick the minimum-norm solution—examining the geometry, this is clearly at x = y, or $x = y = \frac{a+b}{4}$. This approaches the same solution as in Case I as $a \rightarrow b$. This case is illustrated below.

An alternative approach is to use the projection theorem. The minimization is restated as minimizing

$$\begin{bmatrix} a \\ b \end{bmatrix} - (x+y) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Big\|^2.$$

While the projection on the subspace spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ must be unique, this still does not

uniquely specify \mathbf{x} . The orthogonality principle states that

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \left\{ \begin{bmatrix} a \\ b \end{bmatrix} - (x+y) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} = 0 \quad \text{or} \quad x+y = \frac{a+b}{2}$$

Thus, this gives us the same answer as before—the projection theorem actually gives us many solutions—and we still have to minimize the norm to arrive at a unique answer.