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For a set of linear equations bAx =  when A is square but singular, there are two cases: 

• Case I: There are no solutions (so we look for the best approximation). 
• Case II: There is a solution (in which case there are many solutions). 

 
Example: Consider the equations: 
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Case I: When ba = , there are many solutions, since ⎥
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 or ayx =+ . One 

possible solution—the one that falls in the column space spanned by ⎥
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-- is 
2
ayx == . 

A vector that lies in the null space of A is ⎥
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. Thus, the set of possible solutions can be 

characterized as ⎥
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. We might choose the solution that has 

minimum norm, which is easily shown to be 0=α  or 
2
ayx == . That is, the minimum 

norm solution is the one that falls in the column subspace spanned by ⎥
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. This is 

illustrated geometically below. 
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Case II: When ba ≠ , there is no solution. The best approximate solution (in the mean-
square sense) would minimize  
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This can be solved the conventional way (differentiation) to establish that the stationary 

point satisfies
2

bayx +
=+ . Thus, the LS approximation is not unique (it lies anywhere 

on a line falling midway between ayx =+ and byx =+ ). So, we might again choose to 
pick the minimum-norm solution—examining the geometry, this is clearly at yx = , or 

4
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== . This approaches the same solution as in Case I as ba → . This case is 

illustrated below. 
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An alternative approach is to use the projection theorem. The minimization is restated as 
minimizing 
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While the projection on the subspace spanned by ⎥
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 must be unique, this still does not 

uniquely specify x . The orthogonality principle states that 
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   or  
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Thus, this gives us the same answer as before—the projection theorem actually gives us 
many solutions—and we still have to minimize the norm to arrive at a unique answer. 


