Linear equations: Case of singular square matrix

David G Messerschmitt
Version 1.1, March 2, 2005
For a set of linear equations $\mathbf{A x}=\mathbf{b}$ when \mathbf{A} is square but singular, there are two cases:

- Case I: There are no solutions (so we look for the best approximation).
- Case II: There is a solution (in which case there are many solutions).

Example: Consider the equations:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]=x \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=(x+y) \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Case I: When $a=b$, there are many solutions, since $\left[\begin{array}{l}a \\ a\end{array}\right]=(x+y) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$ or $x+y=a$. One possible solution-the one that falls in the column space spanned by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$-- is $x=y=\frac{a}{2}$. A vector that lies in the null space of \mathbf{A} is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Thus, the set of possible solutions can be characterized as $\left[\begin{array}{l}a / 2 \\ a / 2\end{array}\right]+\alpha \cdot\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}a / 2+\alpha \\ a / 2-\alpha\end{array}\right]$. We might choose the solution that has minimum norm, which is easily shown to be $\alpha=0$ or $x=y=\frac{a}{2}$. That is, the minimum norm solution is the one that falls in the column subspace spanned by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. This is illustrated geometically below.

Case I

Case II: When $a \neq b$, there is no solution. The best approximate solution (in the meansquare sense) would minimize

$$
\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2}=\left\|\left[\begin{array}{l}
a-x-y \\
b-x-y
\end{array}\right]\right\|^{2}=(a-x-y)^{2}+(b-x-y)^{2} .
$$

This can be solved the conventional way (differentiation) to establish that the stationary point satisfies $x+y=\frac{a+b}{2}$. Thus, the LS approximation is not unique (it lies anywhere on a line falling midway between $x+y=a$ and $x+y=b$). So, we might again choose to pick the minimum-norm solution-examining the geometry, this is clearly at $x=y$, or $x=y=\frac{a+b}{4}$. This approaches the same solution as in Case I as $a \rightarrow b$. This case is illustrated below.

Case II

An alternative approach is to use the projection theorem. The minimization is restated as minimizing

$$
\left\|\left[\begin{array}{l}
a \\
b
\end{array}\right]-(x+y) \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|^{2}
$$

While the projection on the subspace spanned by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ must be unique, this still does not uniquely specify \mathbf{x}. The orthogonality principle states that

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right]-(x+y) \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=0 \quad \text { or } \quad x+y=\frac{a+b}{2} .
$$

Thus, this gives us the same answer as before-the projection theorem actually gives us many solutions-and we still have to minimize the norm to arrive at a unique answer.

