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Abstract

The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the
spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the
competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of
the spectro-temporal receptive field directly from a second-order Wiener kernel (produced by second-order reverse correlation
between spike responses and broad-band white-noise stimulus); and we expand the concept of the spectro-temporal receptive field
by applying the new method not only to the second-order kernel itself, but also to its excitatory and inhibitory subkernels. This
produces separate spectro-temporal images of the excitatory and inhibitory phenomena putatively underlying the competition.
Applied, in simulations, to models with known underlying excitatory and suppressive tuning and timing properties, the method
successfully extracted a faithful image of those properties for excitation and one for inhibition. Applied to three auditory axons
from the frog, it produced images consistent with previously published physiology.
: 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The second-order Wiener kernel was introduced to
the hearing research community by Eggermont et al.
(1983a,b,c) and Van Dijk et al. (1994, 1997a,b). It is a
two-dimensional extension of the ¢rst-order reverse-cor-
relation (REVCOR) function introduced to the commu-
nity by de Boer and his colleagues (de Boer and
Kuyper, 1968; de Boer and de Jongh, 1978) and used
extensively by others (e.g., MBller, 1986; Carney and
Yin, 1988; Evans, 1989). The existence of the second-
order Wiener kernel for an individual auditory a¡erent

axon depends on the presence of an even-order non-
linearity somewhere in the signal path between the
auditory input and the axon’s spike trigger. It is com-
puted by second-order reverse correlation between a
continuous, broad-band noise stimulus and the occur-
rence of spikes in the axon. It is a time-domain repre-
sentation of the particular features in the noise stimulus
that, on average, led to spikes in that particular axon.
An alternative representation of those features, in fre-
quency and time, is given by the spectro-temporal re-
ceptive ¢eld (Hermes et al., 1981), which is equivalent
to a single Fourier transform of the second-order Wie-
ner kernel (Eggermont, 1993; see also Victor and Shap-
ley, 1980). Within the spectro-temporal receptive ¢eld,
one can see regions of time and frequency in which the
noise power was above average prior to spikes, and
regions where it was below average. The former would
be associated with excitation or activation, the latter
with inhibition or suppression.
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The second-order Wiener kernel is computed as a
symmetric matrix with real values. It can be decom-
posed into a set of singular vectors (which for real
symmetric matrices are the same as the eigenvectors),
and from these one can construct an excitatory subker-
nel and an inhibitory or suppressive subkernel (Yama-
da, 1997; Lewis et al., 2002). These provide separate
time-domain representations of the particular features
in the noise stimulus that, on average, led to excitation
or activation, and those that, on average, led to sup-
pression or inhibition. In some cases, the tuning proper-
ties of excitation and suppression are embodied clearly
in the highest-ranking singular vectors of the two sub-
matrices (Yamada, 1997). In other cases, owing to the
noisiness of the data, tuning is not represented well by
any singular vector. The analytical method presented in
this paper was designed to circumvent that problem- to
generate spectral information about excitation and in-
hibition directly from the second-order Wiener kernel
itself and directly from its two subkernels. It is a var-
iation on the spectro-temporal receptive ¢eld- one that
involves averaging along the main diagonal of the ker-
nel. We test and calibrate the method by applying it to
a parametric model with well-de¢ned tuning. Then, for
illustrative purposes, we present results of its applica-
tion to three a¡erent axons from the auditory papillae
of a ranid frog species- Rana catesbeiana.

2. The second-order Wiener kernel and its translation to
spectro-temporal images

The data used to compute the second-order Wiener
kernel comprise sampled versions of continuous, non-
repeating broad-band white noise stimuli that have
been applied to the ear and sampled versions of the
corresponding intracellular potentials recorded from
primary a¡erent axons from the frog’s amphibian pa-
pilla (AP). For each data set, sampling is carried out at
a ¢xed rate, m samples per s. Thus, in each data set,
time (a) is depicted as a sequence of successive real
integers, each representing a ¢nite sampling interval
(duration 1/m). The sampled intracellular potentials
are translated into estimates of either the intervals dur-
ing which the spike peaks occurred or intervals during
which the spike potentials ¢rst exceeded a criterion
threshold value. The second-order Wiener kernel is an
nUn array of real numbers, h2(d1,d2), derived by sec-
ond-order cross correlation between the occurrences of
spike peaks or threshold crossings and the noise stim-
ulus (Lee and Schetzen, 1965; Marmarelis and Mar-
marelis, 1978; Schetzen, 1980). The general expression
for each element of the array is

h2ðd 1; d 2Þ ¼

K ½Exfsða sp3d 1 þ 1Þsða sp3d 2 þ 1Þg

3Exfsða3d 1 þ 1Þsða3d 2 þ 1Þg	; 19d 19n; 19d 29n ð1Þ

where s(a) is the sampled value of the noise during
interval a ; asp is an (estimated) interval during which
a spike peak or threshold-crossing occurred; Ex{} is the
expected value of the quantity enclosed in the braces.
The ¢rst term on the right side of Eq. 1 is taken over all
n-interval stimulus segments that immediately preceded
spikes. The second term is taken over all n-interval
stimulus segments, and thus can be recognized as the
discrete autocorrelation, Rs, of the noise stimulus at
large (e.g., see Papoulis, 1977; Van Stokkum et al.,
1986):

Rsðd 1; d 2Þ ¼ Exfsðd 1Þsðd 2Þg ð2Þ

The autocorrelation in this case is short-term, being
taken over noise segments of duration n (sampling in-
tervals). The ¢rst term on the right side of Eq. 1 is the
short-term autocorrelation Rss computed over all of the
n-element noise segments that immediately preceded
spikes. Thus Eq. 1 can be interpreted as the di¡erence
between two short-term autocorrelations.

h2ðd 1; d 2Þ ¼ K ½Rssðd 1; d 2Þ3Rsðd 1; d 2Þ	 ð3Þ

The array h2 is symmetric about its main diagonal.
Its diagonals can be described as follows:

dðk; N Þ ¼ h2ðk; k þ MN MÞ ¼

K ½Rssðk; k þ N Þ3Rsðk; k þ N Þ	;

19k9n3MN M; 3nþ 19N9n31 ð4Þ

where d(k,0) is the kth element of the main diagonal,
d(k,1) is the kth element of the ¢rst superdiagonal,
d(k,31) is the kth element of the ¢rst subdiagonal,
and so forth. If the noise-generating process were sta-
tionary, which we presume it to be, then Rs(d1,d2)
would depend only on the di¡erence, d1^d2 :

RsðN Þ ¼ Exfsðd Þsðd þ N Þg ð5Þ

Thus, under the presumption of stationarity, the sec-
ond term on the right side of Eq. 4 can be replaced by
Rs(N).

dðk; N Þ ¼ K ½Rssðk; k þ N Þ3RsðN Þ	 ð6Þ

Because Rss is conditioned on the occurrence of a
spike at d1 = d2 = 1, one expects it not to equal Rs(N),
but to re£ect instead something special about the noise
stimulus producing that spike. In this case, it would be
something special about the stimulus segments centered
approximately k-1 sampling intervals prior to each
spike.
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For the patterns of parallel diagonal lines that appear
to be ubiquitous in our second-order Wiener kernels
from amphibian^papillar axons, d(k,N) clearly varies
slowly with k, rapidly with N. In the analysis that fol-
lows, we take advantage of this attribute by assuming
that the special stimulus features that led to each spike
are invariant over small ranges of time prior to the
spike. For stimulus segments centered T-1 intervals pri-
or to the spike, for example, those features would be
embodied in an idealized function d(T,N) that is ap-
proximated by the observed functions d(k,N) for all val-
ues of k in the range

T3M9k9T þM ð7Þ

where M is a positive integer de¢ning the region over
which d(k,N) is taken to be independent of k. Under
that assumption, we can rewrite Eq. 6 as follows:

RssðT ; N Þ3RsðN Þ ¼
dðT ; N Þ
K

; 32M9N92M ð8Þ

Fixing T and taking the one-dimensional discrete
Fourier transform (DFT) of each of the two autocorre-
lations translates it into a power spectrum (e.g., see
Papoulis, 1977; Bracewell, 1986):

SssðT ;g Þ ¼ DFTfRssðT ; N Þg; Ssðg Þ ¼ DFTfRsðN Þ	g ð9Þ

where DFT{} is the DFT of the function contained in
the braces. Taking advantage of the additivity property
of the Fourier transform, we can combine Eqs. 8 and 9
as follows:

SssðT ;g Þ3Ssðg Þ ¼ vSðT ;g Þ ¼

DFT
dðT ; N Þ
K

� �
; 32M9N92M ð10Þ

where vS(T,g) can be interpreted as the di¡erence be-
tween the short-term power spectrum of the noise seg-
ments (of length 2M+1) centered T-1 sampling intervals
prior to spikes and the power spectrum of the noise
stimulus in general. This power spectral di¡erence tells
us what is special about the noise T-1 intervals prior to
spike occurrences see (Eggermont et al., 1983a,b,c; Eg-
germont, 1993). Over a given range of values of T and
g, the power spectral di¡erence vS(T,g,) might be pos-
itive or negative. In other words, it might show that it is
an increase in the power of certain spectral components
of the noise segments that is correlated with the occur-
rences of the spikes, while it is a decrease in the power
of other components that is so correlated. The sum of
the power spectral di¡erence over all spectral compo-
nents is given by d(T,0)/K.

In order to apply Eq. 10 to our data, we must con-
struct speci¢c algorithms for translating the elements of
the computed second-order Wiener kernels into esti-

mates of the idealized functions d(T,N). The region of
h2 implied by inequality 7 is a 2M+1 by 2M+1 subma-
trix whose central element is h2(T,T). One approach
would be to equate each element in d(T,N) to a single
element of the appropriate diagonal of that submatrix
(e.g., for d(T,0) select an element of the main diagonal,
for d(T,1) select an element of the ¢rst superdiagonal,
and so forth). One way to do this would be to select the
elements at the intersections of the various diagonals
with two adjacent counterdiagonals, one of which in-
cludes the central element, h2(T,T), and the other of
which includes h2(T,T+1). The function d(T,N) formed
in this manner would have the following elements:

h2ðT þM;T3MÞ; :::; h2ðT þ 1;T31Þ; h2ðT þ 1;TÞ;

h2ðT ;TÞ; h2ðT ;T þ 1Þ; h2ðT31;T þ 1Þ; :::;

h2ðT3M;T þMÞ ¼ dðT ;32MÞ; :::; dðT ;32Þ;

dðT ; 0Þ; dðT ; 1Þ; dðT ; 2Þ; :::; dðT ; 2MÞ ð11Þ

Any element (e.g., h2(T,T+N)) computed from the
data always will be a noisy estimate of the correspond-
ing ideal element (e.g., d(T,N)). To improve the estimate
of d(T,N), we could take the average values of the cor-
responding elements of several pairs of counterdiago-
nal. For example,

dðT ; 0Þ ¼ 1
3
½h2ðT31;T31Þ þ h2ðT ;TÞ þ h2ðT þ 1;T þ 1Þ	;

dðT ; 1Þ ¼ 1
3
½h2ðT31;TÞ þ h2ðT ;T þ 1Þþ

h2ðT þ 1;T þ 2Þ	 etc ð12Þ

For each value of N this averaging could be extended
to all of the elements in the Nth diagonal of the 2M+1
by 2M+1 submatrix :

dðT ; N Þ ¼ 1
2M þ 13MN M

XM3MN M

k¼3M

h2ðT þ k;T þ k þ MN MÞ ð13Þ

3. Materials and methods

The physiological data used in this paper were taken
from a¡erent auditory axons of the American bullfrog
(R. catesbeiana). The experimental methods used to ob-
tain the data appear in a previous paper (Yamada and
Lewis, 1999)1. The nUn second-order Wiener kernels
were computed from the data in the manner described
by Eq. 1. In the analysis used for this report, the func-

1 All animal experiments were performed in accordance with proto-
cols approved by the UC Berkeley Animal Care and Use Committee
(protocol # R081-1097).
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tion d(T,N) was computed in the manner of Eq. 13. This
was done for each value of T in the range

19T9n3M ð14Þ

For T6M, Eq. 13 was replaced by

dðT ; N Þ ¼ 1
2T313MN M

XT313MN M

k¼3Tþ1

h2ðT þ k;T þ k þ MN MÞ ð15Þ

For each value of T, the function d(T,N) was zero-
padded and translated to a circular coordinate prior to
discrete Fourier transformation:

dðT ; 0Þ; dðT ; 1Þ; dðT ; 2Þ; :::; dðT ; 2MÞ; 0; 0;

:::; 0; 0; dðT ;32MÞ; :::; dðT ;32Þ; dðT ;31Þ ¼

gð1Þ; gð2Þ; gð3Þ; :::; gð1024Þ; gðk þ 1024Þ ¼ gðkÞ ð16Þ

For each value of T, discrete Fourier transformation
was carried out on the function in Eq. 16. Because this
function is even, the elements of the transform,
KvS(T,g), all were positive or negative real numbers.
These were displayed in three-dimensional plots against
g (frequency) and T-1 (time prior to each spike occur-
rence).

4. Tests with parametric models

To demonstrate the method and calibrate the result-
ing power-spectral di¡erence functions, KvS(T,g),
against known ¢lter functions, we carried out simulated
second-order reverse correlation on the model of Fig. 1,
with various band-pass ¢lter functions, f1 and f2, vari-
ous low-pass ¢lter functions, f3, and various spike trig-
ger algorithms (a). Details of the results depended on
the relative shapes and spectral and temporal overlaps
of the ¢lter functions and on the nature of the trigger
function; but certain quantitative features were ob-
served consistently. We illustrate these features with
three examples- one with excitation only, one with in-
hibition against background noise, and one with both
excitation and inhibition plus the same background

noise. The model itself can be taken to be a primitive
representation of the auditory periphery (e.g., see ¢g. 8
in Eggermont et al., 1983c; ¢g. 1 in Van Dijk et al.,
1997a). Here, however, we use it merely as well-de¢ned
parametric model with which to calibrate a nonpara-
metric model (a second-order Wiener kernel) derived
from it by white-noise analysis.

Computations on the model are carried out in dis-
crete time. The continuous-time ¢lter functions are re-
placed by ¢nite-impulse^response approximations. They
are the same for all three examples, as are the simulated
noise-stimulus waveforms, Noise1 and Noise2 (discrete-
time approximations to broadband white-noise wave-
forms with Gaussian amplitude distribution). All three
examples employ the same trigger algorithm to trans-

Fig. 1. The parametric model. This is a variation on the LNL (line-
ar/nonlinear/linear) or sandwich model (sometimes called the general
model) employed widely in theoretical studies of nonlinear system
identi¢cation (e.g., Billings and Fakhouri, 1978; Hunter and Koren-
berg, 1986).

Fig. 2. The ¢lter functions used in models I III and III. The im-
pulse^response waveforms are displayed in the bottom panel; their
DFTs are shown in the upper two panels. The excitatory band-pass
¢lter, f1, is represented by the solid black line; it was constructed as
a 625-Hz gammatone. The suppressive ¢lter, f2, is represented by
the dashed black line; it was constructed as a 875-Hz gammatone.
The low-pass ¢lter, f3, is represented by the gray line.

HEARES 4763 21-11-03 Cyaan Magenta Geel Zwart

E.R. Lewis, P. van Dijk /Hearing Research 186 (2003) 30^46 33



late the output of the low-pass ¢lter, f3, into a train of
spikes. When the value of the output falls below 0.12,
the trigger is armed. During the ¢rst subsequent dis-
crete-time interval that the output exceeds 0.15, a spike
occurs and the trigger is disarmed. Thus a spike is trig-
gered nearly every time the output passes through the
threshold (0.15) with a positive slope. The ¢rst example,
Model I, contains only path A. The waveform Noise1 is
applied only to the input of the excitatory band-pass
¢lter, f1, the output of which is squared and then ap-
plied to the input of the low-pass ¢lter, f3. The second
example, Model II, contains paths B and C. The
squared output of the suppressive ¢lter, f2, is subtracted
from the simulated internal noise waveform (Noise2)
and the di¡erence is applied to the low-pass ¢lter, f3.
The waveforms Noise1 and Noise2 are statistically in-
dependent of one another. The third example, Model
III, contains all three paths; and the internal noise
waveform (Noise2) is the same as that used in Model
II. Because the same Noise1 waveform is used in all
three examples, models I and III exhibit identical wave-
forms at the output of the excitatory ¢lter, f1, and
models II and III exhibit identical waveforms at the
output of the suppressive ¢lter, f2. For each model,
the results presented here represent a simulated period
of 10 min, with a sampling rate of 10 000 Hz. Prior to
being summed, the squared outputs of f1 and f2 and the
waveform Noise 2 all are normalized to yield maximum
absolute values of 1.0. For Noise2, a ¢nite segment of
simulated Gaussian noise, this makes the root-mean-
square amplitude very small. Before being applied to
the threshold process, the output of the low-pass ¢lter
is normalized in the same way. The ¢lter functions f1, f2
and f3 are shown along with their DFTs in Fig. 2.

4.1. Excitation only

For Model I, Fig. 3 shows the second-order Wiener
kernel (top panel) along with its excitatory and inhibi-
tory subkernels. This 200U200-element Wiener kernel
was derived from reverse correlation taken over 26 769
spikes (average simulated spike rate equal to approxi-
mately 44.6 sp/s over a simulated period of 600 s). The
subkernels were derived by singular-value decomposi-
tion of the complete kernel (see Yamada, 1997; Lewis
et al., 2002). Excitatory tuning is represented by the
bold patch of parallel diagonal line segments centered
about 10 ms in the upper panel. The central diagonal
line segment comprising only positive values identi¢es
this patch as being, at least in part, excitatory (see Ya-
mada, 1997). The reproduction of the patch entirely
within the excitatory subkernel identi¢es it as being
entirely excitatory. The fainter patch, centered about
14 ms in the upper panel, exhibits a central diagonal
line segment comprising only negative values and there-

fore is fully or partly inhibitory. Its reproduction en-
tirely within the inhibitory subkernel identi¢es it as
being fully inhibitory. It is a consequence of the rearm-
ing requirement in the trigger algorithm. It disappeared
when a pure integrate-and-¢re trigger model was used2.
It returned whenever an absolute refractory period was
incorporated into the integrate-and-¢re model. It also
returned when the integrate-and-¢re model was re-
placed by a two-time-constant version (a Rashevsky^
Monnier^Hill model, see MacGregor and Lewis, 1977).
The latter includes accommodation- an adjustment of
threshold in response to the history of the input to the
spike trigger, and ¢res only on positive slopes. Taking
the origin to be the present instant of time (the present
sampling interval), one can interpret the top panel of
Fig. 3 as follows: The probability of a spike occurring
during the present instant is increased by any stimulus
component that occurred between approximately 7 and
12 ms ago and whose short-term autocorrelation
matched the temporal patterns of the counterdiagonals
through the excitatory patch. The probability of such a
spike is decreased by any stimulus component that oc-
curred between approximately 12 and 16 ms ago and
whose short-term autocorrelation matched the temporal
pattern of the counterdiagonals through the inhibitory
patch.

The graph of the power spectral di¡erence function,
vS(T,g), allows one to carry this interpretation into the
frequency domain. The top panel of Fig. 4 shows
vS(T,g) computed according to the algorithm described
by Eq. 13^16 for the Wiener kernel in the upper panel
of Fig. 3. The half-window, M, for the computation
was 30 intervals. The excitatory patch in the kernel
has been transformed into a region of positive power
spectral di¡erence (on average, those spectro-temporal
components were present in the noise, when spikes oc-
curred at time 0). The inhibitory patch has been trans-
formed into a region of negative power spectral di¡er-
ence (on average, those spectro-temporal components
were missing in the noise when spikes occurred at
time 0). This graph implies that the probability of a
spike occurring during the present instant (now) is in-
creased by any stimulus components that occurred be-
tween approximately 7 and 12 ms ago and had spectral
energy in the vicinity of 625 Hz. It also implies that if
those same spectral components were present between
approximately 12 and 16 ms ago they would reduce the
probability of a spike occurring now. One can interpret
this as follows: occurrence of excitatory spectral com-
ponents at the earlier time tends to put the output of f3

2 The output of f3 was integrated with respect to time. When the
integral reach a designated threshold value, a spike occurred, the
value of the integral was set to zero, and the integration process
continued.
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Fig. 3. Second-order Wiener kernel (h2) and its excitatory and inhibitory subkernels, derived for Model I (excitatory path only).
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above threshold, perhaps producing a spike. Whether
or not the spike occurs, the sluggish nature of f3 pre-
vents that output from falling rapidly enough to allow
the trigger to rearm in time for intervening excitation to
produce a spike now. Thus the residual reduction in
probability of spiking is consistent with the trigger al-
gorithm of Model I. It would be consistent as well with
the presence of absolute refractoriness or accommoda-
tion (or both), as our results with alternative trigger
models imply (see also the discussion corresponding
to ¢g. 9 in Eggermont, 1993). In fact, the rearming
requirement is analogous to refractoriness and is inher-
ent in the Hodgkin^Huxley model. The residual reduc-
tion in probability also should be consistent with the
presence of adaptation, which we did not include in any
of our simulations.

For a second-order Wiener kernel with a single ex-
citatory patch of parallel diagonal line segments, esti-
mates of the underlying ¢lter function (f1 in this case)

are given by the two highest-ranking singular vectors
that are tuned and have positive eigenvalues (Yamada,
1997; Lewis et al., 2002). These vectors always are 90‡
(Z/2 rad) out of phase with one another and thus form a
quadrature pair. In this case they are the ¢rst - and
second-ranking singular vectors (SV1 and SV2, respec-
tively). The third panel of Fig. 5 shows these vectors
plotted with f1. The upper two panels show the corre-
sponding DFTs. It can be seen that the shapes of the
tuned waveforms in SV1 and SV2 are very similar to
that of f1, but that they delayed slightly. The delay
re£ects the trigger algorithm coupled with the dynamics
of the low-pass ¢lter. Such delays were present in all of
our simulations. Where the amplitude components of
the DFTs of SV1 and SV2 were above the noise £oor,
they match very well that of f1. Over the frequency
range in which that occurs (bottom panel of Fig. 5),
the di¡erences, P{SV1}-P{f1} and P{SV2}-P{f1}, be-
tween the phase components of the DFTs of SV1 and

Fig. 4. Power spectral di¡erence functions (spectro-temporal receptive ¢elds) computed for the three con¢gurations of the model in Fig. 1. Top
panel: Model I (excitation). Middle panel: Model II (inhibition). Bottom panel: Model III (excitation and inhibition).
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SV2 and that of the DFT of f1 exhibit negative slopes
of approximately 0.0013 cycle per Hz, implying a time
delay of approximately 1.3 ms between the correspond-
ing tuned waveforms. Over the same frequency range
P{SV1}-P{SV2} is within 1% of Z/2 rad (the vertical
distance between the lines in the bottom panel of

Fig. 5) re£ecting the quadrature relationship between
SV1 and SV2.

For a second-order Wiener kernel with a single in-
hibitory patch of parallel diagonal line segments, esti-
mates of the underlying ¢lter function are given by the
two highest-ranking singular vectors that are tuned and
have negative eigenvalues (Yamada, 1997; Lewis et al.,

Fig. 5. Top three panels: ¢rst-ranking singular vector (SV1, solid
black line) and second-ranked singular vector (SV2, dashed black
line) of the Wiener kernel (h2) in Fig. 3, along with the band-pass
¢lter function f1 (gray line). The second panel shows the phase func-
tions, P{SV1}, P{SV2} and P{f1}. Bottom panel: P{SV1}-P{f1}
(black line) and P{SV2}-P{f1} (dashed black line).

Fig. 6. Top three panels: third-ranking singular vector (SV3, solid
black line) and fourth-ranked singular vector (SV4, dashed black
line) of the Wiener kernel (h2) in Fig. 3, along with the band-pass
¢lter function f1 (gray line). The second panel shows the phase func-
tions, P{SV3}, P{SV4} and P{f1}. Bottom panel: P{SV3}-P{f1}
(black line) and P{SV4}-P{f1} (dashed black line).
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2002). The bottom panel of Fig. 6 shows these vectors
(SV3 and SV4 in this case) plotted with f1. Again, the
shapes of the tuned waveforms in these singular vectors
are very similar to that of f1, and, above their noise

£oors, the amplitude components of their DFTs match
very well that of f1. The waveforms in SV3 and SV4,
however, are shifted by approximately 4 ms relative to
that of f1. This is consistent with the shift of the inhib-
itory patch relative to the excitatory patch in the orig-
inal Wiener kernel. Where the amplitude tuning curves
of SV3 and SV4 are above their noise £oors, the slopes
of the phase di¡erences, P{SV3}^P{f1} and P{SV4}^

Fig. 7. Second-order Wiener kernel (h2) and its excitatory and inhib-
itory subkernels, derived for Model II (inhibition).

Fig. 8. Top three panels: SV1 (solid black line) and SV2 (dashed
black line) of the Wiener kernel (h2) in Fig. 7, along with f2 (gray
line). Bottom panel: P{SV1}-P{f2} (black line) and P{SV2}-P{f2}
(dashed black line).
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P{f1}, imply a similar delay (bottom panel, Fig. 6).
Over that same frequency range, the phase di¡erence
P{SV3}^P{SV4} (vertical distance between the lines in
the bottom panel of Fig. 6) is within 1% of 5Z/2 rad.
With noisy waveforms such as these, the unwrapping of
DFT phase data below the well-tuned region (below 0.3
kHz in this case) produces arbitrary o¡sets of 2nZ rad
(where n is an integer). The remainder di¡erence, Z/2
rad, re£ects the quadrature relationship between SV3
and SV4.

4.2. Inhibition against background noise

For Model II, Fig. 7 shows the second-order Wiener
kernel (top panel) along with its excitatory and inhibi-
tory subkernels. This 200U200-element Wiener kernel
was derived from reverse correlation taken over 30 394
spikes (average simulated spike rate equal to approxi-
mately 50.7 sp/s over a simulated period of 600 s). The
single patch of parallel diagonal line segments repre-
sents inhibitory tuning. It is reproduced in the inhibi-
tory subkernel (which is reconstructed from all of the
singular vectors with negative eigenvalues). In the
power spectral di¡erence function (middle panel of
Fig. 4), again computed with M= 30, the inhibitory
patch has been transformed into a region of negative
power spectral di¡erence. One can interpret this power
spectral di¡erence function as follows: the probability
of occurrence of a spike during the present instant is
decreased by any stimulus components that occurred
between 7 and 14 ms before and had spectral energy
in the vicinity of 875 Hz. Once again, we can estimate
the underlying (suppressive) ¢lter function, f2 in this
case, by computing the two highest-ranking tuned sin-
gular vectors with negative eigenvalues (SV1 and SV2 in
this case). The comparison of these waveforms with f2
(Fig. 8) is representative of our simulations with inhi-
bition only. Above the noise £oors of the singular vec-
tors, the amplitude spectra matched well. The tuned
parts of the waveforms themselves matched well, but
those of the singular vectors were delayed slightly
with respect to that of f2. The same delay was re£ected
in the phase di¡erences P{SV1}^P{f2} and P{SV2}^
P{f2}. Where the DFTs of SV1 and SV2 were well
above the noise £oor. the di¡erence between P{SV1}
and P{SV2} was within 1% of 4Z^Z/2. This again re-
£ects the 2nZ ambiguity in phase and the quadrature
relationship between SV1 and SV2.

4.3. Excitation and inhibition against background noise

For Model III, Fig. 9 shows the second-order Wiener
kernel (top panel) along with its excitatory and inhibi-
tory subkernels. This 200U200-element Wiener kernel
was derived from reverse correlation taken over 46 292

spikes (average simulated spike rate equal to approxi-
mately 77.2 sp/s over a simulated period of 600 s). Once
again, we ¢nd variously delayed estimates of the band-
pass ¢lter functions f1 and f2 among the highest-rank-

Fig. 9. Second-order Wiener kernel (h2) and its excitatory and inhib-
itory subkernels, derived for Model III (excitation and inhibition).
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ing, tuned singular vectors (Figs. 10, 11 and 12). The
clean separation of the suppressive ¢lter function from
the delayed inhibitory e¡ects of the excitatory ¢lter
function (owing to the trigger algorithm) in Figs. 11
and 12 is not representative of all of our simulations.
The e¡ects of the suppressive ¢lter and the delayed in-

hibitory e¡ects of the excitatory ¢lter often are merged
into single singular vectors; but they nonetheless are
represented clearly in the power spectral-di¡erence
functions. The bottom panel of Fig. 4 shows the power
spectral-di¡erence function computed according to the
algorithm described by Eqs. 13^16 for the Wiener ker-

Fig. 10. Top three panels: SV1 (solid black line), SV2 (dashed black
line) of the Wiener kernel (h2) in Fig. 9, along with the band-pass
¢lter function f1 (gray line). Bottom panel: P{SV1}-P{f1} (black
line) and P{SV2}-P{f1} (dashed black line). From 0.4 to 0.8 kHz,
the vertical distance between the two lines in the bottom panel is
within 1% of 2Z+Z/2 rad. The slopes of those lines imply a delay of
approximately 1.0 to 1.5 ms.

Fig. 11. Top three panels: SV3 (solid black line), SV4 (dashed black
line) of the Wiener kernel (h2) in Fig. 9, along with the band-pass
¢lter function f2 (gray line). Bottom panel: P{SV3}-P{f2} (black
line) and P{SV4}-P{f2} (dashed black line). From 0.7 to 1.0 kHz,
the vertical distance between the two lines in the bottom panel is
within 1% of Z/2 rad. The slopes of those lines imply a delay of ap-
proximately 1.5 ms.
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nel in the upper panel of Fig. 9 (M= 30). Consistent
with all of our simulations, with various threshold al-
gorithms and ¢lter functions variously spaced in the
frequency domain, the e¡ects of the excitatory ¢lter
are clearly separated from those of the suppressive ¢l-
ter.

4.4. Separation of the spectro-temporal receptive ¢elds
for excitation and inhibition/suppression

In the power spectral di¡erence functions of Fig. 4,
positive values correspond to spectro-temporal compo-
nents associated with excitation; negative values corre-
spond to spectro-temporal components associated with
inhibition or suppression. In the lower panel of Fig. 13,
the negative values in the bottom panel of Fig. 4 are
compressed to zero, leaving a plot of the positive values
only, i.e., a plot of the excitatory spectro-temporal re-
ceptive ¢eld for Model III. An alternative procedure is
the application of the algorithm described by Eqs. 13^
16 directly to the corresponding excitatory subkernel
(middle panel of Fig. 9). The result is shown in the
upper panel of Fig. 13. In the bottom panel of Fig.
14, the positive values in the bottom panel of Fig. 4
are compressed to zero, leaving a plot of the inhibi-
tory/suppressive receptive ¢eld for Model III. The result
of applying the algorithm described by Eqs. 13^16 di-
rectly to the corresponding inhibitory subkernel (bot-
tom panel of Fig. 9) is shown in the upper panel of
Fig. 14. Because no element in the bottom panel of
Fig. 4 can be both positive and negative at the same
time, the excitatory and inhibitory/suppressive receptive
¢elds depicted in the bottom panels of Figs. 13 and 14,
respectively, do not overlap. Those in the upper panels
of Figs. 13 and 14, on the other hand, overlap conspic-
uously at their margins. Given the ¢delity with which
the dominant eigenvectors (highest-ranking singular
vectors) of the excitatory and inhibitory subkernels rep-
resent the original ¢lter functions in this simulation, one
might conclude reasonably that the subkernels represent
the system dynamics well. It follows that the overlap-
ping regions in the upper panels of Figs. 13 and 14
represent spectro-temporal areas of competition be-
tween excitation and inhibition/suppression. The lower
panels re£ect the outcomes of the competition.

4.5. Summary of simulation results

In both the upper and lower panels of Fig. 13, the
principal excitatory receptive ¢eld is centered approxi-
mately at 625 Hz and 10 ms. The corresponding exci-
tatory ¢lter function (Fig. 2) was a 625-Hz gammatone
with its envelope centered at approximately 9 ms. Thus,
just as we saw in Fig. 10, the second-order Wiener
kernel re£ects a slightly delayed version of the excita-
tory ¢lter function. In the lower panel of Fig. 13, the
temporal spread of the excitatory receptive ¢eld in the
vicinity of 625 Hz is approximately 6 ms. In the upper
panel it is approximately 7 ms, which matches well the
spread of the excitatory ¢lter function in Fig. 2.

In both the upper and lower panels of Fig. 14, the
principal inhibitory/suppressive receptive ¢eld is cen-

Fig. 12. Top three panels: SV5 (solid black line), SV6 (dashed black
line) of the Wiener kernel (h2) in Fig. 9, along with the band-pass
¢lter function f1 (gray line). Bottom panel: P{SV5}-P{f1} (black
line) and P{SV6}-P{f1} (dashed black line). From 500 to 700 Hz,
the vertical distance between the two lines in the bottom panel is
2Z^Z/2 rad. The slopes of those lines imply a delay of approxi-
mately 5 ms.
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tered approximately at 875 Hz and 10.5 ms. The corre-
sponding inhibitory ¢lter function (Fig. 2) is an 875-Hz
gammatone with its envelope centered at approximately
9 ms. Thus, just as we saw in Fig. 11, the second-order
Wiener kernel re£ects a slightly delayed version of the
inhibitory ¢lter function. In the lower panel of Fig. 14,
the temporal spread of the inhibitory receptive ¢eld in
the vicinity of 875 Hz is approximately 5 ms. In the
upper panel it is approximately 7 ms, which matches
well the spread of the inhibitory ¢lter function in Fig. 2.

In all four panels of Figs. 13 and 14, one sees e¡ects
of stimulus history prior to the times of the principal
receptive ¢elds. In Fig. 14, there is an inhibitory/sup-
pressive historic e¡ect centered at 625 Hz, just as there
was in the upper panel of Fig. 4 (for Model I). In Fig.
13, there is an excitatory historic e¡ect centered at 875
Hz. This was not present in Model II. Both historic
e¡ects vanished when a pure integrate-and-¢re trigger
model was used. Both returned when an absolute re-
fractory period was added to the integrate-and-¢re
model, or when that model was replaced with the
two-time-constant model (incorporating accommoda-
tion). In the simulation represented here, both historic
e¡ects re£ect the requirement that the trigger be armed
before it can ¢re.

5. Examples from the frog auditory papillae

The biology of the frog auditory papillae is reviewed
extensively in Lewis and Narins (1999). The frog AP is
a tonotopically organized sensor with best excitatory
frequencies (BEFs) beginning at approximately 100
Hz and ranging three to four octaves upward from
there. In the American bullfrog (R. catesbeiana), a¡er-
ent amphibian^papillar axons with BEFs up to approx-
imately 600 Hz exhibit suppression. Responses of those
axons to tones at BEF are reduced by the presence of a
second tone at a higher frequency (Frishkopf and Gold-
stein, 1963; Feng et al., 1975; Capranica, 1976). The
most e¡ective frequency (best suppressive frequency)
for the second tone was found to be between 300 and
800 Hz higher than BEF. In adult animals, the frog
basilar papilla (BP) is tuned to a narrow range of fre-
quencies ^ all units exhibiting nearly the same BEF
(Ronken, 1990). In R. catesbeiana that BEF lies be-
tween 1200 and 1400 Hz (Frishkopf et al., 1968; Feng
et al., 1975; Capranica, 1976). Suppression has not
been found in frog basilar^papillar units.

Figs. 15^17 show power spectral di¡erence functions
(spectro-temporal receptive ¢elds) computed for two
AP units (Figs. 15,16) and one BP unit (Fig. 17) from

Fig. 13. For Model III, comparison of excitatory spectro-temporal receptive ¢elds derived directly from the entire second-order Wiener kernel
(lower panel) and from the excitatory subkernel (upper panel). Upper panel: power spectral di¡erence function derived by application of the al-
gorithm described by Eqs. 13^16 (M= 30) to the excitatory subkernel (middle panel of Fig. 9). Lower panel: power spectral di¡erence function
derived by application of the algorithm (M= 30) to the entire kernel (top panel of Fig. 9). The power spectral di¡erence function in the lower
panel was truncated at zero to show positive values only. For each panel, the entire power spectral di¡erence function was normalized to yield
a maximum absolute value of 1.0.
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Fig. 14. For Model III, comparison of inhibitory spectro-temporal receptive ¢elds derived directly from the entire second-order Wiener kernel
(lower panel) and from the inhibitory subkernel (upper panel). Upper panel: power spectral di¡erence function derived by application of the al-
gorithm described by Eqs. 13^16 (M= 30) to the inhibitory subkernel (bottom panel of Fig. 9). Lower panel: power spectral di¡erence function
derived by application of the algorithm (M= 30) to the entire kernel (top panel of Fig. 9). The power spectral di¡erence function in the lower
panel was truncated at zero to show negative values only. Normalization as in Fig. 13.

Fig. 15. Excitatory and inhibitory spectro-temporal receptive ¢elds for bullfrog AP unit 042895 #7 (see Figs. 5^9 in Lewis et al., 2002). A: Ex-
citatory power spectral di¡erence function derived from entire second-order Wiener kernel. B: Inhibitory/suppressive power spectral di¡erence
function derived from entire second-order Wiener kernel. C: Excitatory power spectral di¡erence function derived from the excitatory subker-
nel. D: Inhibitory/suppressive power spectral di¡erence function derived from the inhibitory subkernel. In each case, M= 40 (selected to span
tuned pattern in kernel). Normalization as in Fig. 13.
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R. catesbeiana. For the same two AP units, the second-
order Wiener kernels, along with their excitatory and
inhibitory subkernels and highest-ranking singular vec-
tors, were presented in Lewis et al., 2002. The functions
displayed in the upper panels of all three ¢gures were
derived by application of the algorithm described by
Eq. 13^16 directly to the entire kernel (in the same

manner as those of the lower panels in Figs. 13 and
14). The functions displayed in lower panels were de-
rived by application of the algorithm to the excitatory
and inhibitory subkernels. The tuning and timing of
excitation and inhibition/suppression represented in
Figs. 15 and 16 are thoroughly consistent with those
implied by the subkernels and highest-ranking singular

Fig. 16. Excitatory and inhibitory spectro-temporal receptive ¢elds for bullfrog AP unit 041596 #2 (see Figs. 10^14 in Lewis et al., 2002). A:
Excitatory power spectral di¡erence function derived from entire second-order Wiener kernel. B: Inhibitory/suppressive power spectral di¡er-
ence function derived from entire second-order Wiener kernel. C: Excitatory power spectral di¡erence function derived from the excitatory sub-
kernel. D: Inhibitory/suppressive power spectral di¡erence function derived from the inhibitory subkernel. In each case, M= 30 (selected to
span tuned pattern in kernel). Normalization as in Fig. 13.

Fig. 17. Excitatory and inhibitory spectro-temporal receptive ¢elds for bullfrog BP unit 050594 #1. A: Excitatory power spectral di¡erence
function derived from entire second-order Wiener kernel. B: Inhibitory/suppressive power spectral di¡erence function derived from entire sec-
ond-order Wiener kernel. C: Excitatory power spectral di¡erence function derived from the excitatory subkernel. D: Inhibitory/suppressive
power spectral di¡erence function derived from the inhibitory subkernel. In each case, M= 20 (selected to span tuned pattern in kernel). Nor-
malization as in Fig. 13.
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vectors presented in the earlier paper (Lewis et al.,
2002). The tuning and timing represented in Fig. 17 is
thoroughly consistent with that of the highest-ranking
singular vectors of the underlying Wiener kernel and
subkernels (see Yamada and Lewis, 1999, for kernels
and singular vectors from similar units).

All three units exhibit inhibitory/suppressive history
e¡ects (identi¢ed as such by exhibiting the same tuning
as the excitation but occurring earlier in the spectro-
temporal receptive ¢eld). This likely arises not only
from the properties of the spike trigger in the initial
segment of the a¡erent axon, but also from adaptation,
which has been observed in both AP units and BP units
from R. catesbeiana (Megela and Capranica, 1981; Me-
gela, 1984). As expected from their BEFs (approxi-
mately 300 Hz and 500 Hz), both AP units exhibit
suppression. The best suppressive frequencies were ap-
proximately 800 Hz and 1250 Hz. The latter is 250 Hz
higher than the highest BEF (1000 Hz) of the R. cat-
esbeiana AP. Interestingly, some spontaneous otoacous-
tic emissions also occur in frogs at frequencies outside
the BEF ranges of the AP and BP (Van Dijk et al.,
1989, 1996). We would point out that for these three
units the width of the principal excitatory receptive ¢eld
(along the frequency axis) increases with BEF; the
height of that receptive ¢eld (along the time axis) de-
creases with increasing BEF. This result is representa-
tive of our results from this frog species and from R.
esculenta. It is complicated, however, by the fact that
both width and height are dependent on the stimulus
level (the root-mean-square amplitude of the stimulus
noise) and on animal temperature. Using spectro-tem-
poral receptive ¢elds derived with the algorithm de-
scribed by Eq. 13^16, we shall explore these dependen-
cies in a subsequent paper.

6. Conclusions

The spectro-temporal receptive ¢eld (power spectrum
di¡erence function) provides a clear, uni¢ed picture of
the tuning and timing of excitation and inhibition/sup-
pression in auditory a¡erent axons. For most hearing
researchers, that picture probably is more easily inter-
pretable than the purely temporal image provided by
the second-order Wiener kernel, its subkernels and sin-
gular vectors. Derived directly from the entire second-
order Wiener kernel, the spectro-temporal receptive
¢eld re£ects the net results of competition between ex-
citation and inhibition/suppression. Derived separately
from the excitatory and inhibitory subkernels, the ex-
citatory and inhibitory/suppressive receptive ¢elds re-
£ect, separately, the phenomena participating in that
competition.
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