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Abstract 

Modeling provides a bridge between the natural sciences (physics, chemistry, biology, and the like) and the 
axiomatic sciences (mathematics and statistics). Inductively-derived descriptive models map observations of physical 
processes into mathematical descriptions that can be treated as axioms (e.g., the various laws of physics). A synthetic 
mode1 combines descriptive models of several physical processes with a structural mode1 (representing the interactions 
of those processes) for the purpose of deducing or predicting the consequences of interactions. When applied together 
with elementary thermodynamic principles, circuit theory provides an excellent framework for synthetic modeling. 
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1. Introduction 

Being interested in signal processing carried out 
by the ear, in both hearing and vestibular senses, 
my student colleagues and I are constantly faced 
with physical systems that combine fluid mechan- 
ics, rigid-body mechanics, electrical process, diffu- 
sional processes, and chemical processes. For us, 
network thermodynamics (especially in the form 
of circuit theory) has proved to be a powerful tool 
for dealing with this mix of physical phenomena. 
Hoping that colleagues and students elsewhere 

Among the biophysics and bioengineering students at Berke- 
ley as well as the students in the joint UC Berkeley-UC San 
Francisco Graduate Group in Bioengineering, Hans Bremer- 
mann is renowned and loved for his patient, clear teaching 
style - through which he has brought the concepts of 
biomathematics to life. This paper is offered as a token of my 
admiration for that side Professor Bremennann’s career. 

will find the tool as useful as we have, especially 
now that recently available CAD packages 
provide computer implementation of the analyti- 
cal side of circuit theory, I offer this paper as a 
brief tutorial review of the subject. Most of it 
covers well-established material (some presented 
with a new perspective), including ideas published 
by three pioneers in network thermodynamics, 
Aharon Katchalsky, George Oster, and Alan 
Perelson, all of whom have been at Berkeley and 
have been colleagues and friends of Professor 
Bremermann. 

2. Physical realms 

Network theory is applicable to idealized physi- 
cal processes in which some sort of entity, which I 
shall call stuff, flows or moves in some way and 
has been identified as being conserved. Such pro- 
cesses make up the basic analytic models in many 
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of the traditional subject areas of biophysics and 
biomathematics. For each kind of conserved stuff, 
one can identify a distinct physical realm. Thus, 
one can identify a hydraulic realm, in which water 
flows from place to place and is conserved as it 
does so; a pneumatic realm, in which air flows 
from place to place and is conserved; a particle 
diffusion realm, in which a particular species of 
dissolved particles moves from place to place and 
is conserved, and so forth. 

The choice of the identity of the stuff presumed 
to be conserved and the measure of the amount of 
that stuff represented in a network model depend 
not only on the physical realm being modeled, but 
also on ease of model manipulation and on tradi- 
tion. Conservation of mass is common to models 
in several realms, yet that conservation tradition- 
ally is represented differently in the various 
realms. For example, for continuum mechanics of 
solids, for nearly incompressible fluids and for 
compressible fluids under negligible variation in 
density, there is a tradition of using volume as a 
measure of mass. For diffusion of particles, there 
is a tradition of using the number of particles 
(often counted in moles) as a measure of mass. In 
rigid-body mechanics, there is a tradition of tak- 
ing the shapes of rigid mass elements as being 
conserved, with translational and rotational dis- 
placements taken to be the measures. In the elec- 
tric realm, charge traditionally is taken to be the 
conserved stuff. In the thermal and optical realms, 
thermal or optical energy often are taken to be the 
conserved stuffs. When those realms are coupled 
to others through certain (reversible, passive) 
transducers, the thermal or optical energy is not 
conserved; entropy is, however, and there is a 
tradition of treating entropy as the conserved stuff 
that flows (Yourgrau et al., 1982). 

3. Advantages of network theory 

Network theory provides a unified set of ana- 
lytic and synthetic tools that can be applied to all 
of the realms. It is especially useful when the 
processes in those realms are highly interactive. 
The analytical side of network theory, now auto- 
mated with available computational packages 
such as SPICE (Quarles, 1989), allows one to 

deduce the dynamic behavior expected from a set 
of interacting physical processes whose parame- 
ters are known, or from a hypothetical set of 
interacting processes whose parameters are sus- 
pected. For example, one might use network anal- 
ysis to deduce the effectiveness of a particular 
cardiac catheter in transmitting pressure from the 
aortic arch to a transducer outside the body. On 
its synthetic side, network theory allows one to 
establish bounds on the dynamic behavior achiev- 
able with various sets of interacting processes 
(regardless of how the individual processes are 
connected to one another). In other words, when 
one is attempting to design a particular device or 
system with a given set of elements, network 
theory can be used to determine what is possible 
and what is not. This side of network theory is 
especially powerful for dealing with physical pro- 
cesses that are behaving linearly or nearly linearly, 
and not very powerful for dealing with strongly 
non-linear processes. If one has data regarding the 
dynamic behavior of an existing device or system, 
the synthetic side of network theory can be used 
to translate those data into bounds on the under- 
lying physical processes and their interactions. 

4. Definition of network model 

For the purposes of this paper, a network 
model is defined to be a collection of discrete 
(lumped) locales or states (e.g., chemical states) in 
which identified kinds of conserved stuff (fluid, 
charge, chemical reactants, particles, etc.) can ac- 
cumulate, and a set of lumped paths connecting 
neighboring states or locales. Two lumped states 
or locales are considered to be neighbors if the 
stuff in question can flow directly from one of 
them to the other without passing through a third. 
The lumped paths provide the routes over which 
that flow can occur. The stuff is considered to be 
conserved if it is neither created nor destroyed in 
any of the states or locales or in any of the paths. 
Furthermore, although the stuff is allowed to 
accumulate at the various lumped states or 
locales, it is not allowed to accumulate in the 
lumped paths. For example, if two large reservoirs 
for water were connected by a pipe, one might 
construct a model in which each reservoir is repre- 
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sented as a single lumped locale and the pipe is 
represented as a single lumped path. In that case, 
the implied assumption is that all accumulation of 
water takes place in the reservoirs (the accumula- 
tion of water in the pipe is ignored); and all flow 
of water takes place through the pipe (flow of 
water in the reservoirs is ignored). Often in real 
systems, the same physical locale will serve con- 
spicuously as both reservoir and flow path. A 
volume of matter, for example, could serve both 
as a reservoir for heat and as a path for heat flow 
to neighboring volumes. In that case, one might 
construct a model in which the volume in question 
is represented as a single lumped locale (for book- 
keeping storage of heat) and one or more lumped 
paths (for bookkeeping heat flow). In network 
models, the process of accumulation and the pro- 
cess of flow always are depicted separately - 
even though they are intermingled in the volume 
being modeled. 

A major advantage of network models is the 
fact that one can display them graphically, which, 
for many people is a great aid to intuition. The 
graphical representations that conventionally are 
used for network models include bond graphs, 
signal flow graphs, compartmental models and 
circuit models (Gardner and Barnes, 1942; Ma- 
son, 1956; Atkins, 1969; Desoer and Kuh, 1969; 
Karnop and Rosenberg, 1975; Chua et al., 1987; 
Thoma, 1990). In this paper I focus on circuit 
models. 

5. Nodes and branches 

A circuit model can be considered a graph 
comprising a set of nodes connected by a set of 
branches (Fig. 1). Among other things, nodes 
provide graphical devices for bookkeeping conser- 
vation of flowing stuff. Stuff is not allowed to 
accumulate at nodes, this leads to the following 
(node) rule: 

The sum of the flows into each node at all times 
is instantly equal to the sum of the flows out of 
that node. 

In general, one node (designated as the reference 
node) is not subject to this rule. This node repre- 
sents a reference or ground state (or locale), and 
in circuit models applied to most physical realms 
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Fig. I. A circuit graph, comprising nodes and branches. 

it is treated as an inexhaustible source or sink for 
the conserved stuff. Each of the other lumped 
states or locales in the model is assigned a unique 
node and is represented by a branch connected 
directly from that node to the reference node. A 
branch with one end connected to the reference 
node is defined to be in a shunt configuration. 
Each lumped path in the model is represented by 
a branch connected directly between the two 
nodes assigned to the neighboring lumped states 
considered to be linked by the path. A branch 
connected between two nodes other than the ref- 
erence node is defined to be in series configura- 
tion. Two branches are defined to be connected in 
series with one another if one end of each of them 
is connected to the same node, and no other 
branches are connected to that node. 

Circuit theory traditionally involves two sets of 
variables: a set {JIl} of flow variables (where J, is 
the model’s representation of the flow of con- 
served stuff through branch n) and a set {F,} of 
efforts or potentials (where F,, is the model’s 
representation of the tendency for stuff to flow 
spontaneously through branch n). The potential 
or effort for each branch is said to be conjugate to 
the flow for that branch, and vice versa (J, and F, 
are conjugates to one another); variables associ- 
ated with different branches (e.g., J, and F,) are 
non-conjugates to one another. If branch n con- 
nects nodes i and j, then J, and F, also could be 
labeled as J,(n) and Fo, respectively, where J,(n) is 
the model’s representation of the flow from node 
i to node j through branch n, and F, is the 
model’s representation of the tendency for con- 
served stuff to flow spontaneously from node i to 
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node j. Fu may be positive (representing tendency 
for stuff to flow spontaneously from i to j) or 
negative (representing tendency for stuff to flow 
in the opposite direction); and J,(n) may be posi- 
tive (representing stuff flowing from i to j) or 
negative (representing stuff flowing in the oppo- 
site direction). Defined in this way, F, and J&n) 
are said to have associated reference directions. In 
circuit models, Fq and Jo(n) are taken to be 
unique in the sense that at any instant Fv has the 
same sign and magnitude for all branches con- 
nected between nodes i and j, and at any instant 
J,(n) has the same sign and magnitude throughout 
branch n. 

The strict separation of flow (restricted to 
lumped paths) and accumulation (restricted to 
lumped states or locales) in network models is 
represented explicitly in circuit models by this 
uniqueness of J@(n). The lumping of a path in a 
network model implies that the flow into one end 
of the path is taken instantly to emerge as the flow 
out of the other end; none is left behind to 
accumulate within the path. When a modeler con- 
siders whether or not to represent a real structure, 
such as a pipe carrying water between two reser- 
voirs, as a lumped path, the decision ultimately 
must be based on the extent to which the structure 
exhibits a unique flow. For candidate paths that 
do not leak, the decision will depend on two 
things: (1) the rate at which steady state flow is 
established through the real candidate path, and 
(2) the meaning of ‘instantly’ in the situation at 
hand. Item (1) depends on the physics involved in 
the flow process and on what is connected to the 
two ends of the candidate lumped path. Item (2) 
depends on the temporal resolution that one de- 
mands in the deductions to be drawn from the 
network model, and that in turn depends on the 
purpose for which the model is constructed. Prob- 
lems arise because any real path that is a candi- 
date for treatment as a lumped path in a network 
model will be capable of accumulating a finite 
quantity of conserved stuff, leading to temporary 
deviations from the unique-flow property 
whenever the potential or effort across the path is 
changed. When steady state flow is not established 
in a real path in times that are short in compari- 
son with the temporal resolution desired in the 

deductions, then the standard remedy is to repre- 
sent that path as a cascade of lumped locales 
connected by lumped paths. For a real path 
through which flow is diffusion-like, temporal res- 
olution in the deductions usually increases as the 
square of the number of lumped locales in the 
model of the path. 

As it has been described so far in this brief 
review, the circuit model has two variables associ- 
ated with each branch, a flow J, through it and an 
effort or potential F,, across it. In that case flow is 
called the through variable and effort or potential 
the cross variable. Circuit models also may be 
constructed with effort or potential as the through 
variable and flow as the cross variable. A pair of 
circuit models that represent precisely the same 
physical relationships, thus leading to precisely 
the same dynamic equations, employing these two 
different bases are said to be duals of one another. 
In the translational and rotational realms of rigid- 
body mechanics, circuit models traditionally are 
based on potential (force or torque) being the 
through variable and flow (translational or rota- 
tional velocity) the cross variable. For other phys- 
ical realms, circuit models usually conform well to 
physical intuition when they are based on flow 
being the through variable, effort or potential the 
cross variable. If one envisions each rigid mass 
element as a path (with inertia) along which uni- 
form velocity (unique flow) is established in- 
stantly, then the same form of circuit model 
(rather than its dual) will conform to physical 
intuition in rigid body mechanics as well. 

6. Potentials and free energy 

There are at least two ways to define the vari- 
able, Fq The traditional approach has been to 
invoke the linear empirical laws of non-equi- 
librium thermodynamics (e.g., see Daniels and 
Alberty, 1955; Kittel, 1958; Fox and McDonald, 
1978; Yourgrau et al., 1982): Fourier’s law, which 
states that the heat flow along a thermal conduc- 
tion path is directly proportional to the tempera- 
ture difference between the two locales connected 
by the path; Fick’s law, which states that the 
diffusional flow of particles along a path is di- 
rectly proportional to the difference in particle 
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concentration at the two locales connected by the 
path; Poiseuille’s equation, which states that the 
(fully-developed, laminar) flow of a Newtonian 
fluid through a horizontal pipe is directly propor- 
tional to the pressure difference between the two 
locales connected by the pipe; Ohm’s law, which 
states that the charge flow along a path is directly 
proportional to the voltage difference between the 
two locales connected by the path; and so forth. 
The variables associated with the flows are tem- 
perature, concentration, pressure, voltage, and so 
forth. These are not always linear measures of 
potential, in the thermodynamic sense, and there- 
fore often are categorized as efforts (e.g., see 
Thoma, 1990). 

The alternative approach is derived from the 
thermodynamic definition of potential. If stuff 
tends to flow spontaneously and predictably from 
locale i to locale j, and if one could harness that 
flow appropriately, it could be made to do work. 
The reason for including ‘predictably’ in this 
statement is the principle that work cannot be 
obtained from the random motions associated 
with thermal energy under conditions of thermal 
equilibrium. Taking the thermodynamic approach 
to circuit theory, one defines Fy to be the maxi- 
mum possible work available to the observer 
when a unit quantity of stuff moves from state or 
locale i to state or locale j. Fq specifically excludes 
the pressure-volume work that must be done 
against the atmosphere in order for the stuff to 
move (that component of work is not available to 
the observer). 

With this exclusion, Fq by definition is the 
change in the Gibbs free energy (G) that takes 
place in the model when a unit quantity of stuff 
moves from state j to state i: 

F.=E_E 
’ SQj SQ, (1) 

where Qi and Qi are the total quantities of stuff 
stored in states i and j, respectively. Thus, a 
positive value of the potential Fq implies free 
energy increase when stuff is moved from state j 
to state i, and the availability of work to the 
observer when the stuff returns again to state j. In 
circuit models based on this definition of Fq, it is 
easy to evaluate the flow of free energy. For that 

reason, such circuits are especially useful for car- 
rying out analysis and design involving transduc- 
ers, through which free energy (but not conserved 
stuff) can flow from one physical realm to an- 
other. 

Following the tradition of nineteenth century 
thermodynamics, one can derive the forms of the 
potentials for the various physical realms by a 
series of thought experiments in which ideal trans- 
ducers harness the flow of conserved stuff in each 
realm and convert it to force-times-distance 
(f x d) work in the translational, rigid-body me- 
chanical realm. The Carnot engine is an example 
of such a transducer. In that case the conserved 
flow of entropy between two thermal reservoirs is 
harnessed to do f x d work. If the imagined trans- 
ducer produces the maximum mechanical work 
possible for the amount of conserved stuff trans- 
ferred between two states (e.g., the transduction 
process is imagined to be carried out so slowly 
that none of the potential for work is lost through 
friction), if the potential difference (F& between 
the two states or locales is imagined to remain 
constant throughout the transduction process, 
and if any component of the f x d work that must 
be done against the atmosphere is excluded, then 
the remaining f x d work divided by the total 
amount of conserved stuff transferred from state 
or locale i to state or locale j is defined to be Fv 

When the potential is a log function (see Table 
l), it represents potential to extract heat from the 
thermal realm and convert it to work (i.e., by 
virtue of an increase in entropy in the physical 
realm for which the potential is being derived). 
For the (ideal) pneumatic realm, the expression 
for Fv can be deduced by invoking the ideal gas 
law and employing an imaginary transducer (e.g., 
involving a piston) that uses pressure difference to 
generate f x d work as 1.0 kg of gas particles is 
transferred from a reservoir at pressure Pi to a 
reservoir at pressure Pi (e.g., see Fox and Mc- 
Donald, 1978). For the (ideal) diffusional realm, 
Fti can be deduced by invoking the Pfeffer-van? 
Hoff law and employing an imaginary transducer 
that uses osmotic pressure to generate f x d work 
as 1.0 kg of particles is transferred from a reser- 
voir at concentration c, to a reservoir at concen- 
tration cj 
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Table 1 
Examples of conjugate potentials and flows in various physical realms 

Physical realm Conserved stuff 

(SI unit) 

Flow 

(SI unit) 

Traditional effort 

(SI unit) 

Potential (F, - F<,) 
(joule/unit stuff) 

Chemical 

Continuum mechanical 

Electric 

Hydraulic 
(horizontal flow) 

Optical 
(black-body radiator) 

Particle diffusion 
(ideal) 

Particle diffusion 
(non-ideal) 

Pneumatic 
(ideal gas) 

Pneumatic 
(non-ideal gas) 

Rigid Body 
(translational motion 
along one horizontal 
axis) 

Rigid Body 
(rotational motion 
about one vertical axis) 

Thermal 

Thermal 

Number of particles 
mol 

Volume 
m3 

Charge 
C 

Volume 
m3 

Radiant energy 
J 

Number of particles 
mol 

Number of particles 
mol 

Mass 

kg 

Mass 

kg 

Shape 
m 

Shape 
rad 

Thermal energy 
J 

Entropy 

J/K 

Reaction rate Chemical potential (n) 
mol/s J/mol 

Volume flow Stress (o) 
ms/s N/m’ (J/m’) 

Charge flow Electric potential (V) 

A (C/s) V (J/C) 
Volume flow Pressure (p) 
m’js Pa (J/m3) 

Energy flux Temperature (T) 
W K 

Diffusion rate 
mol/s 

Diffusion rate 
mol/s 

Mass Bow 

kg/s 

Mass flow 

kg/s 

Velocity 

m/s 

Concentration (c) 
mol/m3 

Concentration (c) 
mol/ms 

Pressure (p) 
Pa 

Pressure (p) 
Pa 

Force (F) 

N (Jim) 

Rotational velocity Torque (T) 
rad/s Nm (Jjrad) 

Heat flow Temperature (7) 
W K 

Entropy flux Temperature (T) 

W/K K (J per J/K) 

Pr - PO 

0; - 00 

v, - K, 

Pz -PO 

hz, (r,/r,,) 
= (1/~,,W, - T,,) 

RT log, WC,,) 
= (RTIcJ (c, - co) 

(RT) h&J a,,) 
(a = activity) 

(1000 RTIM) log.&,/ P,,) 
= (1000 RTIMPJ (P, -PA 

(1000 RTIW log, (A/ A,) 
(f = fugacity) 

F, - F, 

r, - T, 

R = gas constant = 8.317 J/mol K; M = gram molecular weight of stuff. 

For a (conserved) flow of heat from a reservoir 
at temperature T, to one at Tj, imagine that the 
process is carried out in small temperature steps 
through a sequence of intervening reservoirs (each 
with a slightly lower temperature than the previ- 
ous one), with a separate Carnot engine doing the 
transduction at each step. Each Carnot engine 
actually converts a fraction of the flowing heat to 
work. In the process being imagined here, the 
flowing heat is taken to be conserved. This can be 

accomplished by replacing the heat converted to 
work at each step with heat from the thermal 
realm (i.e., each transduction step will begin with 
the same amount of heat being drawn from the 
hotter reservoir). Thus, the conserved, multistep 
transfer of heat from the hottest reservoir in the 
sequence (at Ti) to the coolest (at Tj) is taken to 
produce a second transfer of heat, all of which is 
converted to work. The logarithmic relationship 
between converted heat and T,/q arises when one 
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assumes that the temperature steps become infi- 
nitesimal and the number of steps infinite. 

An axiom of circuit theory is additivity of effort 
or potential: F,, - F,, = Fub + FbC + . + J;gh 
+ Fhi, where this relationship holds for all possi- 
ble routes between nodes a and i. Experience tells 
us that this relationship holds for the variables 
(e.g., pressure, concentration, temperature and 
voltage) usually employed as measures of effort. If 
that is true, then it also will apply to potentials 
that are logarithmically related to the ratios of 
those efforts (as in Table 1). For potentials 
defined as they are in Table 1, this axiom trans- 
lates to a statement of uniqueness of free energy: 
The change in free energy when any amount of 
stuff is transferred from one lumped state or 
locale to another is taken to be independent of the 
route used in the transfer. 

There also is a temporal aspect to the unique- 
ness of free energy. The terms on the right hand 
side of Eq. 1, and therefore the potential, are 
well defined only if we impose the following 
rule: the free energy change associated with the 
transfer of stuff from one lumped state to an- 
other is independent of the time elapsed since 
the transfer took place (as long as the stuff re- 
mains in the new locale). In other words, when 
a unit of stuff is represented as being transferred 
from state or locale j to state or locale i, the 
free energy in the network model is assumed 
instantly to change to the (unique) value corre- 
sponding to the new distribution of stuff. When 
finite volumes (or hypervolumes) in state space 
or physical space are represented as lumped 
states or locales, then the validity of this axiom 
is based on the assumption that all of the stuff 
within each volume is distributed (e.g., spatially 
and energetically) in a steady state fashion at all 
times (i.e., whenever stuff flows in or out of the 
volume, the distribution of that stuff instantly 
relaxes to steady state). This assumption is a 
good one if relaxation takes place in times that 
are short in comparison with the temporal reso- 
lution desired in the deductions from the circuit 
model. The time required for relaxation to 
within an acceptable proximity of steady state 
normally decreases as the size of the volume or 
hypervolume decreases. As greater temporal res- 

olution is demanded in the modeling deductions, 
one usually must increase the number of lumped 
states or locales in the circuit model and let 
each one represent a smaller volume in physical 
space or a smaller volume or hypervolume in 
state space. 

The operations of many biological structures 
(such as neurons and muscle cells) as well as the 
operations of biophysical measuring devices 
(such as electrodes and electrophoresis equip- 
ment) are based on flows of charged particles 
(ions) in fluids. If the fluid itself is not moving, 
then the particle will move as a consequence of 
its random thermal motion (diffusion), as a con- 
sequence of electric fields acting on it, as a conse- 
quence of chemical reactions in which it is 
involved, and as a consequence of gravity. For 
particles (such as inorganic ions) with low mass, 
the effects of gravity usually are ignored. They 
become important, however, in some devices 
used to sort and sense large biological molecules. 
The effects of gravity also are important in hy- 
draulics when vertical flow in a gravity field is 
involved, and in many instances of rigid-body 
and continuum mechanics of solids in a gravity 
field. Therefore, the biophysicist and biomathe- 
matician often must deal with situations in which 
more than one physical phenomenon contributes 
to the total potential for some stuff, If the con- 
tributed components of potential are defined in 
such a way that they all refer to the same mea- 
sure of particle quantity (e.g., all given as free 
energy per kilogram of the particle species in 
question), then they can be summed: e.g., F&to- 
tal) = FJdifSusion) + FJelectric) + Fil(chemical) + 
FJgravity). With mass as the conserved stuff and 
1 kg as the unit measure of that stuff, a lin- 
earized version of this expression for a uniform 
gravitational field would be FJtotaf) = (lOOORT/ 
MC,) (Ci - c,) + ( lOOOzF/M)( y. - 5) + ( 1000/M) 
(u, - clj> + g(h, -h,), where c0 is the reference 
(ground) concentration level defined for the par- 
ticle species in question, z is the ionic valence of 
the particle, F is the Faraday constant, g is the 
equivalent acceleration of gravity, and h is verti- 
cal height. In hydraulics, with volume as the 
measure of stuff and the possibility of vertical 
flow, Fq(total) = P, - P, + pg(h, -hi> is the po- 
tential, where p is the density of the fluid. 
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7. Free energy flow 

When potential is defined as free energy per 
unit of conserved stuff, then the product of (con- 
jugate) potential and flow for a given branch in a 
circuit model is equal to the rate at which free 
energy is represented as flowing between that 
branch and the rest of the circuit. When associ- 
ated reference directions are used and the product 
is positive, the free energy flow is represented as 
being into the branch. Thus, free energy is de- 
picted as flowing from branch to branch, in which 
case energy conservation is represented by requir- 
ing that, at each instant, the sum of the flows of 
free energy into all (N) branches is zero: 

f FgJu(n) = 0 
n=l 

Although it represents the first law of thermody- 
namics when Fg is free energy per unit of con- 
served stuff, Eq. 2 is asserted by Tellegen’s 
theorem to be more general (Desoer and Kuh, 
1969). According to Tellegen’s theorem, Eq. 2 is 
true for any set of potential or effort values that 
conform to the additivity rule taken together with 
any set of flow values (for the same graph) that 
conform to the node rule. 

8. Constitutive relationships 

Whether or not the product FJ has the dimen- 
sions of power, each branch in a circuit model 
explicitly represents a specific relationship be- 
tween F and J. By convention, these relationships 
usually are separated into five categories: (1) re- 
sistive relationships, in which the present instanta- 
neous value of F,, is uniquely determined by the 
present instantaneous value of J,, and vice versa; 
(2) capacitive relationships, in which the present 
instantaneous value of dF,,‘,dt is uniquely deter- 
mined by that of J,, and vice versa; (3) inertial 
relationships, in which the present instantaneous 
value of dJ,,ldt is uniquely determined by that of 
F,,, and vice versa; (4) flow sources, each of which 
produces a flow, J,,, that is independent of F,; and 
(5) potential or effort sources, each of which 
produces a potential or effort, F,,, that is indepen- 
dent of J,,. 

If one assumes that the change in free energy is 
instantly and uniquely defined when a quantity, 
aQ, of conserved stuff is transferred from state j 
to state i, then SG/SQ, and 6G/6Qj in Eq. 1 are 
well defined, as will be the capacitive relationship 

%=(Z$?S)!!$ (3) 

where dQ/dt is the rate at which stuff is trans- 
ferred from state j to state i. Because Qi and Qj 
may change independently, their bookkeeping 
usually is separated in a circuit model: 

F, = F, - F, 

Thus, the reference state can be envisioned as an 
intermediate destination when stuff is transferred 
from state j to i. In a circuit model, dQi/dt is 
represented as flow of stuff into the shunt branch 
representing state i. In the case of the shunt 
branch representing a capacitive relationship such 
as either of those in Eq. 4, the modeler may 
envision the flow of conserved stuff to take place 
at one end of the branch only - the end not 
connected to the reference node. In effect, the 
shunt capacitive branch represents a reservoir. A 
flow of stuff in and out of one end conforms to 
one’s physical intuition about accumulation of 
stuff in reservoirs: when heat or fluid or particles 
flow in and out of one entrance to a reservoir 
there is no need for compensatory flow of the 
same stuff in or out of a second entrance. The 
potential or effort at the entrance to the reservoir, 
however, will be measured relative to a reference 
state (represented in the circuit model by the 
reference node). Connection of the one end of the 
capacitive shunt branch to the reference node 
serves as a graphical representation of that fact. 

In at least three physical realms - electric, 
hydraulic and pneumatic - there are structures 
that can be modeled as capacitive branches in 
series configuration. The parallel plate electrical 
capacitor derives its large capacity for charge 
storage (i.e., its ability to accumulate large 
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amounts of charge without large, concomitant 
changes in electric potential) by storing charge in 
the form of compact dipole pairs: every positive 
charge stored on one plate is accompanied by a 
nearby negative charge on the other plate. A 
terminal is connected to each plate; and when 
charge flows onto one plate, the same amount of 
charge is displaced from the other plate, leaving 
the appropriate countercharge behind. The overall 
capacitor is left with no net charge. Charge has 
effectively been transferred, however, from one 
plate to the other; and the electric potential differ- 
ence between the plates has been changed. To the 
extent that the displacement of charge occurs 
instantly, the parallel plate capacitor exhibits a 
unique flow and thus behaves in the same manner 
as a lumped path. Therefore, the (capacitive) 
branch representing the capacitor in a circuit 
model may be placed in series configuration. An 
elastic, deformable barrier, placed in the path of 
fluid flow is an analogous device. Fluid flowing 
into one side of the device deforms the elastic 
barrier, displacing the same amount of fluid from 
the other side and creating a change in the pres- 
sure difference from one side to the other. The 
cupula of the semicircular canal in a vertebrate 
inner ear is such a device, and it often is repre- 
sented as a series capacitive branch in circuit 
models of the canal. 

Some forms of flow, such as the flow of popula- 
tions of charged particles, the flow of liquids, and 
the motions of solids, exhibit conspicuous mo- 
mentum or apparent momentum; once the flow 
has started it tends to continue, and infinite po- 
tential would be required to halt the flow in- 
stantly. In circuit models, momentum of flow is 
represented in inertial branches. Capacitive 
branches and inertial branches normally account 
for stored free energy. Free energy stored in iner- 
tial elements is that associated with the motion of 
stuff - kinetic energy. That stored in capacitive 
branches is the free energy of accumulation of 
stuff - potential energy. 

The second law of thermodynamics assures us 
that whenever stuff flows from one state or locale 
to another, a finite amount of free energy is 
dissipated. In circuit models, dissipation of free 
energy usually is represented by flow through a 

resistive branch. A lumped path that exhibits both 
momentum and free energy dissipation conven- 
tionally is represented by a resistive branch con- 
nected in series with an inertial branch 
(representing one flow associated with two addi- 
tive components of potential). The node shared by 
the two branches is assigned a potential that is not 
associated with a state or locale. Instead, it is a 
computational convenience. 

A source variable (e.g., the potential associated 
with a potential source) may be independent of all 
other potentials and all flows in the circuit model, 
or it may depend on one or more potentials or 
flows other than its own conjugate flow or poten- 
tial. Independent sources commonly are used to 
represent application of external stimuli or signals 
to the system being modeled. Dependent sources 
(e.g., branch n, connecting nodes i and j, with 
Jq(n) being independent of Fq but dependent on 
Fah) often are used in circuit representations of 
transducers. Dependence on non-conjugate vari- 
ables can be extended to resistive branches, capac- 
itive branches and inertial branches. In resistive 
branch n (connecting nodes i and j), for example, 
J,(n) might be dependent not only on F,j, but also 
on Fuh or on other potentials (or flows). Resistive 
branches of this sort are especially convenient in 
SPICE circuit models for representing non-linear 
biophysical interactions at the cellular level (e.g., 
those involving enzyme kinetics and those involv- 
ing ion-channel gating). 

When it is assigned its constitutive relationship, 
each branch in a circuit model becomes an ele- 
ment of that model. In the circuit graph, each 
element of this kind has two terminals, and the 
elements are connected to one another at the 
nodes. When it represents dynamics in two or 
more physical realms, with exchanges of free en- 
ergy between the represented realms, the trans- 
ducers in the circuit model often are depicted as 
two-port elements (Fig. 2). Each port of a two- 
port element corresponds to a single branch in the 
circuit model, and the graphical construction of 
the element (as a box with two ports) depicts 
coupling between those two branches. Alterna- 
tively, a transducer may be depicted as an appro- 
priately connected set of two-terminal elements, in 
some of which the constitutive relationships in- 
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Fig. 2. A two-terminal element (top) and a two-port element 
(bottom). The + and - signs indicate the reference direction 
for F,,. When F+ is a positive number, stuff will tend to flow 
spontaneously from node i to node j. The arrow indicates the 
reference direction for Jy; when J,, is positive, stuff flows from 
node i to node j. When the direction of the arrow for a flow is 
from + to - for the conjugate potential or effort, the 
reference directions are said to be associated. 

elude dependence on non-conjugate potentials or 
flows. The latter configuration is well-suited to 
circuit modeling of transducers with SPICE, the 
former is useful for considering the properties of 
transducers as individual elements. 

9. Passive and active elements 

Usually a circuit model comprises a set of con- 
nected elements that represent local accumulation 
or dissipation of free energy that already has 
entered the circuit as a whole, plus one or more 
elements that represent processes by which free 
energy enters the circuit from elsewhere. The for- 
mer are said to be passive elements, the latter are 
active elements. The role played by a given ele- 
ment can be ascertained from its constitutive rela- 
tionships. For a passive two-terminal element 
(i.e., one that is capable only of accumulating or 
dissipating free energy) the constitutive relation- 
ship must be such that the inequality 

T 

Fij(t)J,(t) dt + E, 2 0 (5) 

will be true for all initial time zO, for all time 

z 2 ‘to, and for all possible functions J&t) or F&t), 
whichever is taken to be the input, E, being the 
free energy stored in the element at time t = Q 
(see Desoer and Kuh, 1969, p. 802). If this condi- 
tion is not met, the element is active. 

The corresponding inequality for a passive two- 
port element is 

s 

T 
Fq(t)J,(t) dt + 

s 
r F,,(t)J,,(t) dt + E, 2 0 (6) 

TU 10 
Thus, viewed separately as a two-terminal ele- 
ment, an individual port of a two-port need not 
meet Ineq. 5 in order for the two-port element, as 
a whole, to be passive. This leads to ambiguity 
with respect to models of transducers. To a mod- 
eler considering two physical realms connected by 
a transducer, the transducer would translate into 
a passive two-port if it simply passed free energy 
between the realms. To a modeler considering 
only one of those realms, the same transducer 
would translate into an active two-terminal ele- 
ment, bringing free energy into the circuit from 
outside. Thus, an electromagnetic transducer 
could be an active two-terminal motor to a me- 
chanical engineer, an active two-terminal genera- 
tor to an electrical engineer, or a passive two-port 
element to a transducer engineer. Thus, the defin- 
itions of passive and active are based on the 
boundaries assigned to the system being modeled. 

10. Linear, time invariant circuits 

The discussion to this point has not been lim- 
ited with respect to the classes of constitutive 
relationships assigned to the circuit elements. 
With SPICE and other software packages for 
circuit modeling, circuit models with wide vari- 
eties of non-linear constitutive relationships can 
be analyzed easily, and there are graphical meth- 
ods that aid one’s intuition about the dynamic 
behaviors (such as limit cycles) of such circuits. 
On the other hand, considerable effort has been 
focussed on the special class of circuit models 
known as linear and time-invariant. Because such 
models are good representations of a wide variety 
of biophysical phenomena, and because formal 
studies of such models have left us a rich heritage 
of very useful concepts and tools for thinking 



E.R. Lewis 1 BioSystems 34 (1995) 47-63 51 

about them, I devote the rest of this review to 
them. 

A linear, time-invariant circuit model is one in 
which the constitutive relationship of each branch 
can be written as a time-invariant, linear func- 
tional of one or more potentials or flows in the 
circuit model. For branches representing relation- 
ships between conjugate variables only, time-in- 
variant linear functionals include the following: 

1 f 
F~=R~J~ Fi=<. _-cli r, s 

J..& Fii =I$$ (7) 

where R,, C, and I, are constant, real numbers, 
usually called resistance, capacitance and iner- 
tance, respectively. The relationships of Eq. 7 
represent passive processes only if the resistances, 
capacitances and inertances are not negative. The 
only independent sources that meet the (additivity 
and homogeneity) requirements for linearity are 
the trivial ones, F = 0 and J = 0. Non-trivial inde- 
pendent sources are non-linear circuit elements 
and thus are excluded from linear circuit models. 
The linear two-terminal constitutive relationships 
imply no direction of causality, neither F, nor J, 
is taken to be cause or effect or to be the depen- 
dent variable or the independent variable. 

11. Impedances and admittances 

In single-input, single-output analysis of a cir- 
cuit model, the goal often is to find a general 
relationship between a designated independent 
source variable and a designated response vari- 
able. In zero-state or sinusoidal steady-state anal- 
ysis of linear networks, that relationship can be 
stated in the form of an impedance, an admit- 
tance, or a dimensionless transfer ratio (e.g., see 
Desoer and Kuh, 1969). The concepts of 
impedance, admittance and transfer ratio arise 
from the use of Laplace transforms in zero-state 
analysis and from the use of phasor transforms 
(or single-sided Fourier transforms) in sinusoidal 
steady-state analysis. Suppose, for example, that 
the designated source variable is the flow, Jo(t), 
through an independent flow source connected 
between nodes i and j. If the designated response 
were the resulting potential between nodes i and j, 
one could describe the relationship as follows: 

F, = Z+J, (8) 

where Z+ is a driving-point impedance; J, is the 
Laplace or phasor transform of J,(t); and F, is 
the Laplace or phasor transform of F;,(t). If the 
designated source variable had been the potential, 
F,(t) of an independent potential source con- 
nected between nodes i and j; and the designated 
response had been the flow through that source 
(from node i to node j), the relationship might 
have been described as 

J, = Y,,F, (9) 

where Y,, is a driving-point admittance. Because 
they were obtained for the same pair of nodes, the 
driving-point impedance and driving-point admit- 
tance in this case are reciprocals of one another. 
Thus, a driving-point impedance or admittance 
bears no implication regarding causality - it 
relates potential to flow but does not imply that 
one is cause, one effect. Given as phasor trans- 
forms, the driving-point impedances for the three 
basic linear two-terminal elements are 

z, =R, z,i = &. Zo=idij i=&i (10) 
‘, 

Transfer relationships, on the other hand, al- 
ways imply a direction of causality. If the desig- 
nated source were F, and the designated response 
were F,,, the generalized relationship would be: 

Fm, = T,F,j (11) 

where T, is a dimensionless transfer ratio. If the 
situation had been reversed, with F,,,, as desig- 
nated source and F, as designated response, the 
transfer ratio would not be l/T, (it also would 
not, generally, be T,). The computation of T, was 
based on F, being cause, F,,,, being effect, and that 
is the only situation to which T, can be expected 
to apply. The same thing is true of transfer admit- 
tances and transfer impedances 

Jmn = Yr Fq Fmn = Zr Jii (12) 
In general, the reciprocals of Y, and Z, have no 
meaning. By convention, the variable designated 
as cause in transfer relationships appears immedi- 
ately to the right of the corresponding transfer 
ratio, admittance, or impedance. 
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In the process of formulating a rational basis 
for synthesis of analog filter circuits, electrical 
engineers and their colleagues from applied math- 
ematics amassed a thorough knowledge of the 
properties of circuits synthesized with passive, 
linear elements. This knowledge often is expressed 
in terms of limitations on driving-point and trans- 
fer impedances and transfer ratios. As digital sig- 
nal processing has replaced analog filter 
technology, this body of knowledge has been be- 
coming increasingly esoteric for engineers. It 
stands, however, as a potentially rich resource for 
biophysicists and biomathematicians - e.g., as 
part of an epistemology for non-equilibrium ther- 
modynamics. I refer the interested reader to the 
first three chapters of Guillemin ( 1957) and espe- 
cially to Table 1 on p. 66 of that book. 

12. Linear two-port elements 

In contrast to those for two-terminal elements, 
two-port and multiport constitutive relationships 
are based on explicitly stated directions of causal- 
ity (Linvill and Gibbons, 1961; Desoer and Kuh, 
1969). Each of the element’s branches has two 
variables (a potential and a flow), making four 
variables for the two-port and 2n variables for the 
n-port. For each set of constitutive relationships, 
half of the variables are selected as dependent 
variables, and half as independent variables. 
Thus, for the two-port there are six sets of consti- 
tutive relationships. If the constitutive relation- 
ships are linear, however, the modeler can derive 
all six sets from any one. To simplify the notation, 
each branch (port) is assigned a single, unique 
index, and each branch variable is assigned the 
single index of its branch. In Fig. 2, for example, 
let the branch between nodes i andj be port 1 and 
the branch between nodes m and n be port 2: 

F,. = F, F,,,, = F2 

Jii = J, J,,,, = J2 
(13) 

Two commonly used sets of linear constitutive 
relationships are 

[r;:l = [I:: r::] . [;j 

(14) 

Each parameter set is represented as a matrix 
that maps a vector comprising the two variables 
selected as independent into a vector comprising 
the two variables selected as dependent. Each 
parameter is an admittance, and impedance, or a 
transfer ratio. As such, it need not simply be a 
real constant. Thus, z,, is the driving-point 
impedance at port 1 when no flow is allowed to 
occur at port 2, and zIz is the transfer impedance 
relating the potential at port 1 to the flow into 
port 2 when no flow is allowed to occur at port 1. 
In spite of the explicit representation of causal 
direction, unlike the conventional black-box sys- 
tem element (in which input and output are com- 
pletely isolated and the transfer relationship is 
taken to be independent of context), the two-port 
model embodies context dependence. This is its 
great advantage; it allows the modeler to incorpo- 
rate context dependence (e.g., the impacts of 
source impedance and load impedance) in design 
and analysis. 

For example, when a two-terminal load 
impedance Z,, is connected across port 2, the 
driving-point impedance at port 1 is easily found 
to be 

z,, =z,, -212221 =h,, - h&2, 
222 + ZL A22 + l/Z, 

(15) 

When phasor notation is employed (for sinusoidal 
steady-state conditions), passivity requires that 
the real part of any impedance not be negative. 
For Z, with non-negative real part, Z,, also must 
have a non-negative real part. Therefore, condi- 
tions that must be met by a two-port element in 
order for it to be passive include 

(16) 

(17) 

For modeling with SPICE or other purposes, 
translation of a linear, time invariant two-port 
element into an equivalent circuit comprising two- 
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Fs= h,,F, Js= - h,,J, 

Fig. 3. Alternative representations of a two-port element, 
based on the h parameters. 

terminal elements (Fig. 3) can be accomplished 
easily by application of the Thevenin-Norton 
theorem (e.g., see Chua et al., 1987, p. 251). 

13. Linear transducers 

People design and use transducers for three 
purposes: (1) to convert free energy from one 
physical realm into a generally usable form in 
another physical realm, (2) to convert free energy 
into purposeful action, and (3) to convert free 
energy into a form in which the information it 
contains can be processed easily. Transducers 
used for purpose (1) sometimes are called genera- 
tors, those used for purpose (2) are actuators and 
those used for purpose (3) are sensors. Occasion- 
ally, actuators and sensors are idealized as being 
able to transfer free energy between two physical 
realms, but not being able (by themselves) to store 
or dissipate free energy. In terms of the z and h 
parameters, the constitutive relationships of the 
two-port models for linear versions of such ideal 
transducers are 

[::]=[i:, 3’1. [;;I 
[:j=[:, h;2]. [cj (18) 

According to the Onsager reciprocity theorem for 
passive linear transducers involving microscopic 
reversibility (Onsager, 193 1 a, b), 

z,~ = z2, h,, = -h,, (19) 

Combining this with the conditions for passivity 
based on driving-point impedance, one has the 
following constraints on the transfer impedance 
(z,~) and transfer ratio (h,,) of the ideal linear, 
passive, reciprocal transducer of Eq. 18: 

Re{z,,‘} I 0 Re{h,,2} 2 0 (20) 

Real transducers that are modeled well as pas- 
sive, reciprocal two-ports include pistons and di- 
aphragms (between hydraulic or pneumatic 
realms and translational rigid-body mechanical 
realm), pulleys, semilevers and rack-and-pinion 
gears (between rotational rigid-body mechanical 
realm and translational rigid-body mechanical 
realm), and Seebeck-Peltier devices (between 
electric and thermal realms). A two-port model of 
an ideal (e.g., massless, frictionless) version of 
such a device can take the following form: 

h,, =0 h,2=hr 

h,, = - h, h,, = 0 
(21) 

Wire coils (transducers between electric and mag- 
netic realms) and electromagnetic velocity trans- 
ducers (between electric and mechanical realms) 
are passive but antireciprocal (e.g., see Merhaut, 
1981). In fact, for any transducer based on flow- 
dependent potential sources (i.e., real transfer 
impedances) and in which the self impedances (zi, 
and z22) can be made arbitrarily small (which is 
true, for example, of geophones, electromagnetic 
loudspeakers, electromagnetic motor/generators, 
and other electromagnetic velocity transducers), 
Eqs. 15 and 17 imply that reciprocity is inconsis- 
tent with passivity. Based on the fact that they 
involve rotational motion (e.g., of moving charge 
in a magnetic field), Onsager (1931a, b) excluded 
such devices from his reciprocity theorem. A two- 
port model of ideal versions of these antirecipro- 
cal transducers takes the following form: 

Z -0 II - ZI2 = r, 
(22) 

Z 21 = -r, 222 - -0 
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Both two-port models (Eqs. 21 and 22) translate 
passive resistors connected across port 2 into pos- 
itive real driving-point impedances at port 1 (see 
Eq. 15). Flow through port 1 thus is dissipative; 
free energy is represented as being lost from 
the circuit connected to that port. With these ideal 
models, however, all of that free energy is repre- 
sented as being transferred to the resistor con- 
nected across port 2. The two-terminal resistor 
itself can be considered to be a transducer, but one 
for which free energy is not tracked after it enters 
the device. With the reciprocal two-port model of 
Eq. 21, a capacitor across port 2 translates to a 
capacitive driving point impedance at port 1, and 
an inertial impedance across port 2 translates to an 
inertial driving-point impedance at port 1. The 
antireciprocal two-port of Eq. 22 does the oppo- 
site; it translates a capacitor across port 2 to an 
inertial driving-point impedance at port 1, and vice 
versa. The passive, antireciprocal two-port element 
represented by Eq. 22 is known as a gyrator 
(another device with antireciprocal properties is a 
gyroscope serving as a transducer between orthog- 
onal translational rigid-body mechanical realms). 
Thus, a passive device (capacitor) that accumulates 
potential energy is converted, by a gyrator, into a 
passive device that appears to possess inertia and 
to accumulate kinetic energy. 

Although the electric and magnetic realms may 
be inextricably linked, if one treats them as being 
separate then the electrical inductor can be taken 
to arise from a capacitor in the magnetic realm 
coupled by an antireciprocal transducer (gyrator) 
to the electric realm. A common inductor com- 
prises a wire coil wound around a core with high 
magnetic permeability. Letting F, be electric poten- 
tial (J/C), F2 be magnetomotive force (MMF, 
measured in J/Wb), J, be charge flow (C/s), J, 
magnetic flow (rate of reorientation of magnetic 
dipoles, measured in Wb/s), and invoking Fara- 
day’s law for zIz and Ampere’s law for z2,, one 
obtains the following two-port model for an ideal 
wire coil: z,, = 0, z,* = -N, z2, = N, z22 = 0. The 
core serves as a magnetic capacitor, accumulating 
alignment (measured as Wb) of its (fixed number 
of) magnetic dipoles, leading to increase of poten- 
tial energy (and MMF). The value of the magnetic 
capacitance (C,, in Wb per unit MMF) is the 

reciprocal of the magnetic reluctance. Thus a ca- 
pacitor and a gyrator provide emulation of inertial 
impedance (ioN2C,) and momentum (N2C,,,J,) in 
the electric realm. For physical realms in which 
inertia is negligible or non-existent (e.g., chemical, 
thermal, diffusional), which includes most of the 
physical realms associated with cellular biophysics, 
the ability to emulate inertia and kinetic energy 
would open the door to a range of dynamic 
behavior (e.g., resonance) not available with lin- 
ear, passive systems employing potential energy 
alone - just as the inductor did for electrical 
circuit designers (see Table 1, Guillemin ( 1957)). 
The range of dynamic behavior of linear systems 
without inertia also can be extended by inclusion 
of active elements. This may be the basis, for 
example, of electrical resonances (believed by some 
to be involved in tuning) in various sensory cells 
(Crawford and Fettiplace, 1981; Zakon, 1986). On 
the other hand, the possibility of reciprocal trans- 
duction between mechanical structures outside the 
cell (e.g., via motile cilia, see Weiss, 1982) and the 
cell’s electric realm opens the door to the possibil- 
ity of translation of mechanical inertia to electrical 
inductance and incorporation of that inductance 
into an electric resonance. 

A reciprocal or antireciprocal transducer oper- 
ates equally well in both directions, passing free 
energy from the realm connected to port 1 to the 
realm connected to port 2 and vice versa. Typi- 
cally, with an active transducer, the flow or poten- 
tial at one port controls a flow of energy (from an 
independent source) at the other port. Such a 
transducer is expected to be neither reciprocal nor 
antireciprocal and therefore not to operate 
equally well in both directions (in fact it often 
does not operate at all in the reverse direction). 
Gated ion channels are biological examples of 
active, non-reciprocal transducers. Such devices 
evidently are involved, for example, in the cellular 
electrical resonances mentioned in the previous 
paragraph (Hudspeth and Lewis, 1988). 

14. Linear transformers and simple machines 

When one is designing systems involving trans- 
ducers, a consideration that often arises, especially 
with actuators, is how to maximize the power 
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Fig. 4. A circuit representation of a transformer (rigidly-coupled, back-to-back passive transducers) connecting an independent 
potential source FS (with its intrinsic impedance, 2,) to a load (with its intrinsic impedance, 2,). The rigid back-to-back coupling 
is represented by the constraint, J AZ = -lB2, imposed by the circuit graph. 

transferred through the device. This is accom- 
plished by impedance matching, which in turn often 
is accomplished through use of another kind of 
device, often called a transformer. Transformers 
too can be modeled as two-port elements, but with 
both ports connected to the same physical realm. In 
many cases, transformers can be synthesized from 
two passive transducers connected back-to-back, 
tightly coupled in the intervening realm, a situation 
that can be modeled easily with two two-port 
elements connected in cascade (Fig. 4). For the ideal 
transducers described by Eqs. 21 and 22 the consti- 
tutive relationships for this cascade, when it is 
reduced to a single, equivalent two-port element, 
are represented by the following h parameters: 

h,, =0 h12=k h,, =0 h12=f:: 
12 

(23) 
h,, = + A,,=0 h,, = -5 h,,=O 

f2 r12 

In rigid-body mechanical realms, transformers of 
this type often fall into the class of devices know as 
simple machines (e.g., hydraulic press or jack, block 
and tackle, lever). For piston, pulley and semilever, 
the parameter h (or its reciprocal, depending on 
which realm is depicted at port 1) is area, radius, 
and distance from end to fulcrum, respectively; and 
the ratio h,/h, in a simple machine constructed as a 
cascaded pair of such devices is the mechanical 
advantage. More generally, it can be labelled the 
transformer ratio. Eq. 15 can be used to obtain the 
impedance transformation through the cascaded 
pair: 

z,, = g 2, 
2 

The hydraulic jack or press is synthesized with two 
pistons rigidly coupled in the hydraulic realm - 
leading to a transformer in the translational me- 
chanical realm. Two pistons rigidly couple in the 
translational mechanical realm, on the other hand, 
produce a transformer in the hydraulic realm. The 
middle ears of some lower vertebrates possess such 
devices, evidently transforming the (hydraulic/ 
rigid-body mechanical) impedance of the inner ear 
to match the acoustic impedance of air (see Fig. 5). 
In the middle ears of mammals, a chain of 
semilevers (the ossicular chain) intervenes between 
the two pistons (the tympanum and the stapedial 
footplate). Given the large repertoire of passive 
transducers that are available (only a few of which 
have been mentioned in this paper), it is interesting 
to imagine other sorts of transformers that one 
might synthesize (e.g., an electrical transformer 
from back-to-back thermopiles). 

15. Epilogue 

I hope that this brief visit has convinced the 
reader that circuit theory provides a potentially 
useful framework in which to generalize and ma- 
nipulate some of the elementary principles of clas- 
sical physics, and that it will entice those not 
already familiar with the analytical and synthetic 
tools of circuit theory to read further on the 
subject. 
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i u 1: Middle ear 

Inner ear 

Fig. 5. A more realistic circuit model of a transformer. The transformer is represented by two versions of the lower model in Fig. 
2, connected back to back but through an intervening structure (represented by the impedances z,, and zc2 and the admittance y,) 
that is not perfectly rigid. The constitutive relationships for the dependent sources are F,, = h,FAZ, .I,, = h,JA,, F,, = h,F,,, and 
J,,2 = h,J,,. If this circuit represented the middle ear of a frog (comprising two pistons connected by a nearly-rigid rod), for example, 
then impedance Z, could represent the acoustic impedance of the air, z, could represent the combined elastic, inertial and resistive 
impedances of the external (left-hand) piston (the tympanum) when it is allowed to move freely, admittance y, the compressibility 
of that piston when it is held rigidly in place, admittance y, the compliance of the rod connecting the two pistons, impedances z,, 
and zcz the inertial impedance of that rod, admittance yz the compressibility of the internal piston (at the oval window of the inner 
ear) when it is held rigidly in place, impedance z2 the combined elastic, inertial and resistive impedances of that piston when it is 
allowed to move freely (unimpeded by the rod or the inner ear), and impedance Z, the driving-point impedance of the inner ear 
as seen from the oval window. In an ideal transformer, z,, zz, y,, yz, y,, z,, and zc2 will be negligibly small. For consistency in the 
model, however, the two dependent flow sources should be shunted by a finite admittance, a finite impedance should be connected 
in series with the independent potential source F, and the dependent potential source &,, and dependent source Fs2 should have 
finite impedance connected across it. As a,, z2, y,, yz, y<, z,., and z,~ become negligible, the driving-point impedance at port 1 
(FA,/JA,) will approach (h,/h,)2Z,. The acoustic energy flow into the middle ear will be maximum when that driving-point 
impedance equals the complex conjugate of Z,. 
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