Appendix: Useful Concepts from
Circuit Theory

EpwiIN R. LEwis

1. Introduction

For understanding the physics of sound and the biophysics of acoustic sensors
in animals, the concepts of impedance and admittance, impedance matching,
transducer, transformer, passive and active, bidirectional coupling, and resonance
are widely used. They all arise from the circuit-theory metamodel, which has
been applied extensively in acoustics. As the name suggests, the circuit-theory
metamodel provides recipes for constructing models. The example applications
of the metamodel in this appendix involve a few elementary concepts from
classical physics: the adiabatic gas law, Newton’s laws of motion and of vis-
cosity, and the definitions of work and of Gibbs free energy. They also involve
a few elements of calculus and of the arithmetic of complex numbers. All of
these should be familiar to modern-biologists #nd clinicians. For further ex-
amples of the application of circuit concepts to acoustical theory and acoustical
design, see Baranek (1954), Olsen (1957), or Morse (1981).

1.1 The Recipe

Applied to an elementary physical process, such as sound conduction in a uni-
form medium, the appropriate recipe comprises the following steps:

‘1. Identify an entity (other than Gibbs free energy, see below) that is taken to
be conserved and to move from place to place during the process.

2. Imagine the space in which the process occurs as being divided into such
places (i.e., into places in which the conserved entity can accumulate).

3. Construct a map of the space (a circuit graph) by drawing a node (e.g., a

small dot) for each place.

Designate one place as the reference or ground place for the process.

Assign the label “0” to the node representing the ground place.

6. Assign a unique, nonzero real integer (i) to each of the other nodes in the
graph.

7. Define the potential difference between each place (i) and the ground place
(0) to be F,, the corresponding Gibbs potential for the conserved entity

v e

369



370 ER. Lewis

(change in Gibbs free energy of the system per unit of conserved entity
moved from place 0 to place i).

8. From basic physical principles (or by measurement), determine the relation-
ship between the amount, Q,, of conserved entity accumulated at place i and
the potential F,.

9. From basic physical principles (or by measurement), determine the relation-
ship between potential difference F,; between each pair of neighboring places
and the flow J; of conserved entity between those places.

The Gibbs free energy of a system is defined as the total work available from
the system less that portion of the work that must be done against the atmo-
sphere. For one-dimensional motion from point a to point b, the work (W,,)
done by the system is defined by the expression W,, = J¢-, fix)dx where fx) is
the force applied by the system to the object on which the work is being done.
The force is taken to be positive if it is applied in the direction in which the
values of x increase; otherwise it is taken to be negative. For tables of Gibbs
potentials for various conserved entities, see Lewis (1996).

1.2 Example: An Acoustic Circuit Model

As an example application of the recipe, consider the conduction of sound,
axially, through an air-filled cylindrical tube with rigid walls. In that case, one
might identify the conserved entity as the air molecules that move from place
to place along the tube. As air molecules accumulate at a given place, the
pressure at that place increases. Assuming that the air pressure outside the tube
is uniform and equal to atmospheric pressure, it is convenient to take that place
(the outside of the tube) to be the reference place. The SI unit for number of
air molecules is 1.0 mol. Therefore, the SI unit for the flow of air molecules
will be 1.0 mol/s; and the SI unit for the Gibbs potential will be 1.0 joule/mol.
If one takes p, to be the absolute pressure at place i along the inside of the tube
(SI unit 1.0 nt/m? = 1.0 Pa) and p, to be the absolute atmospheric pressure,
then the sound pressure (Ap,) at place i will be the difference between those two
pressures:

Ap; = p; — Po 1)
Acousticians usually assume that the processes involved in sound propagation

are adiabatic and that sound pressures are exceedingly small in comparison to
atmospheric pressure:

A_p_,- <<1.0 2)
Po
The Gibbs potential difference, Fy, between place i and the reference place is
given by:

F, = 3)
Co
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where ¢, is the resting concentration of air molecules (SI unit = 1.0 mol/m?).
Co == @

where n, is the resting number of air molecules at place i, and V, is the volume
of place i (assumed to be constant). The resting absolute pressure at place i is
taken to be p,.

Equation 3 for the Gibbs potential can be derived easily from the equation
for work. Invoking the adiabatic gas law, one can derive the relationship be-
tween the Gibbs potential at place i and the excess number of air molecules at
place i, An, where

An; = n, = ny &)

n; being the total number of air molecules at place i. For Ap/p, exceedingly
small, the adiabatic gas law can be stated as follows:
i Ani
R ©)
Po Ry
where 7y is 1.4, the ratio of specific heat of air at constant pressure to that at
constant volume. From this,

S
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An, M

In the circuit-theory metamodel, this is a capacitive relatib.nship. The general
constitutive relationship for a linear, shunt capacity at place 7 in any circuit is

Fo== ¢))

where the parameter C, often is called the capacitance or compliance. In this
case, Q,, the accumulation of conserved entity at place i, is taken to be to be
An,,
c =2 ©)
Po
Dividing the cylindrical tube axially into a large number of segments of equal
volume, V,, brings the first eight steps of the metamodel recipe to completion.
For the ninth step one might assume that the acoustic frequencies are sufficiently
high to preclude significant propagation of drag effects from the wall of the
cylinder into the mainstream of axial air flow. In other words, one might ignore
the effects of viscosity (see subsection 8.2). Absent viscosity, the axial flow of
air molecules would be limited only by inertia. Lumping the total mass of air
molecules at a single place, and invoking Newton’s second law of motion, one
has the following relationship for the flow, J;, of molecules from place i to its
neighboring place, j: '
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dJ, Alcl
2 00
dt Vo "’ (10)

where ¢ is time, p, is the resting density of the air (SI unit equal 1.0 kg/m?),
and A, is the luminal area of the cylindrical tube. In the circuit-theory meta-
model, this is an inertial relationship. The general constitutive relationship for
a linear, series inertia between place i and j in any circuit is

dJ.

Fij=IijF;1 (an

where the parameter I; often is called the inertia or inertance. In this case,

I = Vopo

i A 12

2. Derivation of an Acoustic Wave Equation from the
Circuit Model

Having thus completed the circuit model, one now can extract from it an equa-
tion describing sound conduction through the tube. This normally is accom-
plished by writing explicit expressions for the conservation of (conserved) entity
at node i and the conservation of emergy in the vicinity of node i, and then
incorporating the constitutive relations obtained in steps 8 and 9 of the meta-
model recipe. Let node i have two nelghbors node & on its left and node j on
its right. Conservation of air molecules requires that

do,
Jy—J; = — 1
V=g (13)
From Equation 8 one notes that
a0 dF,
=i o0 1
dr i 14
Therefore,
dF,
Juy— J; = C— 15
hi i i d t ( )
Conservation of energy requires that
F,=Fy,— Fy (16)
Therefore,
dJ.
Fo— Fy =11 17
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2.1 Translation to a Transmission-Line Model

In the manner of Lord Rayleigh, one can simplify further analysis by taking the
limit of each side of Equations 15 and 17 as one allows the number of places
represented in the model to become infinite and the extent of each place infin-
itesimal. Each place represented in the circuit model has length L, given by

Vo
L= (18)

Dividing C; and I, by L, one has the capacitance and inertance per unit length
of the uniform, air-filled tube:

e=b A
L, YPo
"__I.'_ Po
1= L™ ag 19

Now, let x be the distance along the tube and let the length of each place be
Ax. One can rewrite Equations 15 and 17 as follows:

A dF
—AJ=Jhi'—Jij=CAx—&;

. dJ
—AF=Fm—F}0=ﬁAx5 20)

. \
Dividing each side of each equation by Ax and taking the lin#it as Ax approaches
zero, one has .

d AJ Ad
— —J(x,r) = lim,, [——] = Cd—tF(x’t)

dx Ax
d AF +d
——F = li — =
x,0) = lim,, 4 [ Ax] I dtJ(x’t) 2n

These are the classic transmission-line equations, variations of which have
been used widely in neurobiology. Traditionally, they are written in a more
general form:

dF

__=._J

dx z

dJ

— = —yF 22
1 y (22)

where z is the series impedance per unit length of the transmission line, and y
is the shunt admittance per unit length; and F and J are linear transforms of F
and J. Although the notions of impedance and admittance are treated here in a
general sense, when they involve time derivatives (as they do here), circuit the-
orists normally apply them to one of two carefully restricted situations: (1)
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sinusoidal steady state (a pure tone has been applied for an indefinitely long
time); or (2) zero state (a temporal waveform is applied; at the instant before it
begins, all Fs and Js in the circuit model are equal to zero). For sinusoidal
steady state, circuit theorists traditionally use the phasor transform; for zero state
they traditionally use the Laplace transform. Yielding results interpretable di-
rectly in terms of frequency, the former is widely used in classical acoustics
texts.

2.2 Derivation of the Phasor Transform

The definition of the phasor transform is based on the presumption that expo-
nentiation of an imaginary number, such as ix (where i is the square root of
—1), obeys the same rules as exponentiation of a real number (such as x).
Specifically, it is presumed that e¢* can be evaluated by substituting ix for x in
the Maclaurin series for e*. In that case,

e* = cos x + isinx 23)
and
cos x = Re{e*} , (24)

where Re{z} is the real ‘part of the complex number, z:

.“ -~

z=a+ib

i=/-1

Re{z} = a 25
The phasor transform applies to sinusoidal steady state, with the radial frequency
of the sinusoid being w (SI unit = 1.0 rad/s).

o = 2nf (26)

where f is the conventional frequency (unit = 1.0 Hz). One can represent the
phasor transformation as follows:

H(w) = ®{H®)}
H(t) = &~ 'H(w) @7

where the function of frequency, H(w), is the phasor transform of the time
function H(#). The transform is defined by its inverse

H(H = 97'{H(w)} & Re[H(w)e™'] (28)
Combining this with Equations 23-25, one finds the following basic transform
pairs:
P{coswt} = 1
®-H{1} = cos wt

®D{A cos(wr + o)} = Ae™ = A cos o + iA sin o
®-1{Ae*) = &1 {A cos o + iA sin o} = A cos(wt + @) (29)
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Notice that
®~'{Ae“Be®} = AB cos(wt + o + B) 30)

Thus, multiplying the phasor transform of a sinusoidal function of time (of any
amplitude and phase) by the factor Ae* corresponds to two mathematical op-
erations on the function itself: (1) multiplying the amplitude of the function by
the factor A, and (2) adding o radians to the phase of the function. Taking the
first derivative of any sinusoidal function of time can be described in terms of
the same two operations: (1) the amplitude of the function is multiplied by w,
and (2) ©/2 radians (90 degrees) are added to the phase of the function. Thus,

¢{%} = weH(w) (31)
dt
Applying Equation 23, one has

ér =i

¢<9-H§) = iwH(w) (32)

2.3 Phasor Transform of the Transmission-Line Model

Based on Equation 32, one can write the transformed version of Equation 21 as
follows: ’

dx

d \ o
— F(x,0) = —iwlJ(x,w)
k) = —iolFd) (33)
dx .

Thus, for the transmission-line model (Eq. 22), under sinusoidal steady state at
radial frequency w, z and y would be written as follows:

z= imfA
y =iolC (34)

To simplify notation in transformed equations, w often is omitted in the argu-
ments of the dependent variables J and F. For z and y both independent of x,
as they are taken to be in this case, the spatial solutions to these equations
usually are written in one of two forms:

Form 1

Jo) =Fx) + F®x  I® = Jx) - L&
) = YoF(x) J(x) = YoF(x)
Fx) = ZJ{x) Fx) = ZJ.(x)

-1_ 2
2=t f:

F(x) = B{0)e~ F () = FO)e™ 35)
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Form 2

F(x) = F(0) cosh(ﬁ x) — Z,J(0) sinh(‘/z; Xx)
J(x) = J(0) cosh(/zy x) — Y F(O)sinh(/zy x)

= % (36)

2.4 Forward and Reverse Waves

Define the forward direction for the transmission line as the direction of increas-
ing values of x. In the first form, F(x) and J(x) are interpreted as being the
potential and flow components of a wave traveling in the forward direction; F,(x)
and J(x) are interpreted as the components of a wave traveling in the reverse
direction. At any instant, the product F(x)J(x) of the corresponding time func-
tions is the rate at which the forward wave carries Gibbs free energy (in the
forward direction) past location x, and the product F,(x)J(x) is the rate at which
the reverse wave carries Gibbs free energy past x (in the reverse direction).

2.4.1 Speed of Sound and Characteristic Impedance

For the simple transmigsion-line model under consideration here, z is purely
inertial and y is purely:capacitive. - The wave components in form 1 of the
solution become

Fx) = F(0)e iCox
F.(x) = E(0)e*"iCex 37

Both components are sinusoids, radial frequency . For the forward component,
the phase at distance x from the origin lags that at the origin by an amount that
is directly proportional to x. That is the behavior of a wave traveling at constant
speed in the direction of increasing x (the forward direction). For the reverse
component, the phase at distance x leads that at the origin by an amount pro-
portional to x. That is the behavior of a wave traveling at constant speed in the
direction of decreasing x (the reverse direction). For both components, the am-
plitude is independent of x. The speed, ¢, of the wave is the same in both cases.
The solution is valid for all frequencies, so one can generalize it to waves of
arbitrary shape that travel at constant speed without changing shape:

F; (x) = F; <O,t - %) F(xp) = F, (0,1 + %)

Ji () = Y F; (x,0) J. (x,f) = Y F, (x,0 (38
1 ¢ A

V.=—= [== (39)
A 1 Po¥Po
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== | (40)
Jic N oo

The parameter Z,, usually called the characteristic impedance, is a positive real
number in this case. For sinusoidal steady state this implies that at each place
(each value of x) along the acoustic path, F; and J; are perfectly in phase with
one another, as are F, and J. The relationship between Z, and the physical
parameters of the system and its SI unit both depend on the choice one made
at step 1 of the metamodel recipe. If one carries out the model construction
correctly, however, the wave speed will be independent of that choice.

3. Alternative Formulations of the Circuit Model

Instead of taking the number of air molecules as the conserved entity, one might
have taken their mass. Assuming that the density changes induced in the air by
the propagating sound wave are negligible (the analysis in section 2 was based
on the same assumption), acousticians often use fluid volume as the conserved
entity (as a surrogate for mass). Sometimes mass itself is used. All of these
choices lead to equivalent formulations and moving from one to another requires
only the application of appropriate multiplicative factors. The SI unit of im-
pedance for each choice of conserved entity is easily determined. If the selected
entity were apples, with an SI unit of 1.0 apple, then the SI unit of flow would
be 1.0 apple/s, and the SI unit of Gibbs potentlal would be 1.0 joule/apple. The
SI unit of impedance would be that of Gibbs potermal divided by flow—1.0
joule s per apple®. For the acousticians’ choice of volume, the SI unit of con-
served entity is 1.0 m3. The SI unit of impedance becomes 1.0 joule s per mé.
For the choice made at the beginning of section 1.2 (SI unit of conserved entity
= 1.0 mol), the SI unit of impedance is 1.0 joule s/mol2,

3.1 vConventional Acousticians’ Formulation

To obtain the acousticians’ J (SI unit 1.0 m?/s), one divides the J of section 2
(ST unit 1.0 mo¥/s) by ¢, (SI unit 1.0 mol/m?). To obtain the acousticians’ F (SI
unit 1.0 joule/m?), one multiplies the F of section 2 (SI unit 1.0 joule/mol) by
¢,- When these changes are made, the inertance and compliance per unit length
become.

Cy
1

II)
PS>

(41)

and the characteristic impedance, Z,, becomes
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VY¥PoPo
=12 42
Z, A 42)
Recognizing yp, as the adiabatic bulk modulus of an ideal gas at pressure p,,
one can translate Equations 40 and 42 into general expressions for compressional
(longitudinal) acoustic waves in fluids:

A~ o
C—EB
E
o= |2 “3)
p
Exp
Z, = A
Ap
s -v2 44
E, &~V (44)

where ¢ is the speed of sound in the fluid; Z, is the characteristic acoustic
impedance of the fluid; Ej is the fluid’s adiabatic bulk modulus; p is its density,
and A, is the cross-sectional area of the acoustic path (the luminal area of the
cylindrical tube in the System being modeled here). Once again, these expres-
sions were based on the presumption that changes in the fluid density, p, pro-
duced by the waves are exceedingly small.

3.2 Modeling Perspective

Following a path already well established by physicists, with the circuit-theory
metamodel as a guide, the development to this point has combined that pre-
sumption (exceedingly small changes in fluid density) with two conservation
principles (energy is conserved, matter is conserved) and with two of the em-
pirical linear laws of physics (the adiabatic form of the ideal gas law—translated
to a form of Hooke’s law, and Newton’s second law of motion) to reconstruct
a theory of sound propagation. With the theory constructed, mathematics was
used to determine where that combination of presumptions, principles, and em-
pirical laws would lead. What the analysis showed was that the local elastic
and inertial properties of fluids (gases and liquids) should combine to allow
spatially extensive sound propagation. It also showed that if that were the case,
then the speed of propagation should be related to the elastic and inertial par-
ameters (adiabatic bulk modulus and density) in the specific manner described
in Equation 43. In fact, the derived relationship (Eq. 43) predicts extremely
well the actual speeds of sound in fluids (gases and liquids). This should bolster
one’s faith not only in the specific theory, but also in the modeling process itself.
It follows the pattern established by Isaac Newton and practiced successfully by
celebrated physical scientists over and over again since his time. Newton com-
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bined a presumption about gravity with a conservation law (momentum is con-
served) and with his second law of motion to construct a theory of planetary
motion. He used mathematics to see where that theory would lead. Where it
led was directly to Kepler’s laws, which are empirical descriptions of the actual
motions of planets. Recently, writing about Newton’s Principia, where this
theory and its analysis first were published, a noted physicist said that the
astounding conclusion one would draw from the work is the fact that nature
obeys the laws of mathematics. I would put it differently. Physical nature ap-
pears to behave in an astoundingly consistent manner. In mathematics, mankind
has invented tools that allow concise and precise statements of apparently con-
sistent local behaviors (e.g., empirically derived laws), tools (such as the circuit-
theory metamodel) that allow those statements to be combined to construct
theories of spatially (in its general sense) more extensive behaviors, and tools
to derive from those theories their predictions. The fact that the predicted be-
haviors so often match, extremely well, observed behaviors, is attributable to
physical nature’s consistency.

Returning to the metamodel and to the first step in the recipe, one can see
that momentum (Newton’s choice) is a particularly interesting alternative to be
taken as the conserved entity. Newton’s second law equates the force two par-
ticles exert on one another to the flow of momentum between them, and (for
nonrelativistic systems) the Gibbs potential difference for that momentum flow
is the difference between the particles’ velocities. When one chooses fluid mass,
fluid volume, or number of fluid molecules as the,conserved entity, J is pro-
portional to velocity and F is proportional to forcé. With momentum as the
choice, F is proportional to velocity, J is proportional to forge. This is an
example of the celebrated duality that arises in the circuit-theory metamodel.

4. Generalization to Plane Waves

As long as the consequences of viscosity were negligible, the presence of the
rigid cylindrical walls posited in the previous subsections had only one effect
on the propagation of sound waves through the fluid inside the cylinder. It
forced that propagation to be axial. The transmission-line equations derived for
the fluid in the cylinder would apply perfectly well to propagation of a plane
wave through any cross-sectional area A;, normal to the direction of propagation,
in an unbounded fluid medium (e.g., air or water). The propagation speed de-
rived for the waves confined to the fluid in the cylinder is the same as it would
have been for unconfined plane waves in the same fluid. The expression for
characteristic impedance (Eq. 44) would apply to an interface, normal to the
direction of propagation, with cross-sectional area A,. Viewed locally, propa-
gating sound waves usually approximate plane waves, making Equation 44 and
its antecedents very general. In an unbounded fluid, however, the propagation
of sound waves is not confined to a single coordinate. A local volume in such
a fluid could have sound waves impinging upon it from all directions at once.
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The instantaneous local sound-pressure component of each of these waves is a
scalar, and the pressures from all of the waves together would sum to a single
value. The local volume flow component of each wave will now be a vector
(having an amplitude and a direction), and the flows from all of the waves would
sum vectorially, at any given instant (f), to a single amplitude and direction.
For a sound wave from a given direction, the local flow of Gibbs free energy
through a cross-sectional area A, would be given by the product of the local
flow vector (J(#)) for that wave and the corresponding local Gibbs potential (F(¢))
for that wave. Notice that the product itself now is a vector, with amplitude and
direction. The direction of the vector is the direction of energy flow. Notice
that it is the same as the direction of J(f) whenever F(¢) is positive. The cross-
sectional area, A,, would be taken in a plane normal to the direction of energy
flow.

4.1 Particle Velocity

Noting that J(#) for a uniform plane wave would be directly proportional to A,,
one can normalize it to form another variable—flow density (9(?)).

J@
9 =2
. - ® A,

o

(45)

When J is volume flow (the acousﬁcians’ choice, SI unit = 1.0 m%/s), ¥ is the
sound-induced component of the velocity of the fluid (SI unit = 1.0 m/s). In
that case, it traditionally is labeled the particle velocity. F, in that case (volume
taken to be the conserved entity), is the local sound pressure. Whatever the
choice of conserved entity, the instantaneous product F9 will be a vector whose
amplitude is the instantaneous flow of Gibbs free energy per unit area (SI unit
= 1.0 W/m?), and whose direction is the direction of that energy flow.

It is interesting to contemplate the vector sum of particle velocities of several
unrelated sound waves impinging on a small local volume from different direc-
tions in an extended fluid. The local sound pressure would vary in time much
as it might for a plane wave. The particle-velocity vector, on the other hand,
would vary not only in amplitude, but also in direction. Try to imagine the
computational task one would face trying to reconstruct the original sound waves
from the combination of that scalar function, F(¢), and that vector function, ¥(?).

4.2 PFarticle Displacements

For an acoustical sine wave, the local particle velocity is a sinusoidal function
of time, as is the corresponding local particle displacement, 3(x,f). One can
compute the amplitude, D(x), of the latter directly from the amplitude, B(x), of
the former:
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V(x,r) = B(x)cos(w?)

8(x,p) = D(x)sin(wf) = [d(x,ndt = m
D) = 22 (46)
w

This, in turn, can be related to the local peak sound pressure, Ap(x), through the
characteristic impedance:

F(x,t) = Ap(x)cos(w?)
Jxt)  Fxp)  Fxp

0D = T Az Ep
_ Ap(x)
50 = e
ey = 2@
o/Egp
Eq
JEsp = po = ry 47)

In water, p is approximately 10° kg/m® and ¢ is approximately 1.5 X 10° m/s,
making p¢ approximatelly 1.5 X 106 kg/m?. Standard pressure of 1.0 atm is
defined to be 101,325 Pa. The velocity of sound in dry air at 1.0 atm and 20°C
is approximately 340 m/s. Therefore, for dry air at 1.0 atm and 20°C, Eg/¢
(which is 1.4py/¢) is approximately 400 kg/m?., For a given sound pressure,
this means that the peak local particle displacement in air will be almost 4000
times as great as it is in water.

For a 100-Hz tone with a peak sound pressure of 1.0 Pa (the upper end of
the usual sound intensity range), for example, the peak local particle displace-
ment in water would be approximately 10 nm. In air, it would be 40 um. For
1-kHz tones, those particle displacements would be 1 nm and 4 um, respectively,
and for 10 kHz they would be 0.1 nm and 0.4 um. At the nominal threshold
level for human hearing (0.00003 Pa) at 1.0 kHz, they would be 0.03 pm and
0.12 nm. If an evolving animal were able to couple a strain-sensitive device
(neural transducer) directly to a flexible structure (e.g., a cuticular sensillum, an
antenna, hair) projecting into the air, then a sense of hearing could evolve based
on direct coupling of particle-velocity to that structure. One would guess that
such a sense would be limited to low-frequency, high-intensity sounds. For a
strain-sensitive device (e.g., a bundle of stereovilli) projected into water, on the
other hand, an evolving sense of hearing based on direct coupling of particle
velocity to that device would be much more limited (4,000 times less effective
at every frequency, every intensity). For such a device, one might expect evo-
lution to have incorporated auxiliary structures to increase the displacement of
the strain-sensor well beyond the particle displacement of the acoustic wave in
the medium. For detection of airborne sound, such auxiliary structures also
would have to include a mechanism for transferring acoustic energy from the
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air to the strain sensor. In the language of the circuit-theory metamodel, the
latter would be a transducer, the former a transformer or an amplifier.

5. Passive Transducers

In the basic circuit model, one tracks the flow of a single entity from place to
place. By taking F to be the Gibbs potential for that entity, one is able to track
the flow of Gibbs free energy as well. The conserved entity will be confined
to a particular realm. Air molecules, for example, are confined to the volume
containing the air, which one might label the pneumatic realm. The Gibbs free
energy (acoustic energy) that they carry, on the other hand, can be transferred
in and out of that realm. In the circuit-theory metamodel, a device that transfers
energy from one physical realm to another is a transducer. A piston can be
modeled as such a device. It can translate sound pressure, F,, and flow of air
molecules, J,, in a pneumatic realm to a Gibbs potential, F,, and flow, J,, ap-
propriate to a translational rigid-body mechanical realm, and vice versa. In
doing so, it carries Gibbs free energy back and forth between those two realms.
For a rigid-body mechanical realm, there are two common choices for conserved
entity: (1) the shapes of the rigid elements, or (2) momentum. In rigid-body
mechanics, it is convehient to treat each of the orthogonal directions of trans-
lational and rotational motion as%a separate Tealm. For the piston, the motion
of interest is axial (translational motion perpefidicular to the face of the piston).
Following standard engineering practice, one would select axial displacement as
the conserved entity (as a surrogate for shape, displacement is conserved as it
passes through an element whose shape does not change). The SI unit of dis-
placement is 1.0 m. The flow, J,, becomes axial velocity (SI unit = 1.0 m/s);
and the Gibbs potential, F,, becomes force (SI unit = 1.0 joule/m). The direc-
tions assigned in Fig. A.1 are the conventional associated reference directions
for the circuit-theory construction known as a two-port element. When F, is
positive, it tends to push the piston to the right, the direction assigned to positive
values of J,. When F, is positive, it tends to push the piston to the left, the
direction assigned to positive values of J,.

Constitutive relationships for the piston can be expressed conveniently in the
following form:

F, = hyJ, + h,F,
J, = hyd, + hyF, (48)

where the parameters h,, and h,, are transfer relationships; A,, is an impedance
(ratio of a Gibbs potential to the corresponding flow); and h,, is an admittance
(ratio of a flow to the corresponding Gibbs potential). One estimates these
parameters individually (by measurement or by invoking simple physics) from
the following equations:
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FIGURE A.1. Depiction of a piston inside a cylinder. From the acoustic (fluid) realm, the
piston is subjected to a pressure difference, p, — p,; and translational motion of the
piston corresponds to volume flow, J,, of the fluid. From the rigid-body mechanical
realm, the piston is subjected to a force, f, and translational motion of the piston corre-
sponds to translational velocity, J,.

E
! Jl F2=0 * F2 h=0
J 1]
hy =2 - hy=v (49)
21 Jl F2=0 2 F2 =0

If, for now, one assumes that the piston is perfectly rigid, that its mass is neg-
ligible, and that it operates with no resistance, then A,, and 4,, can be taken to
be zero. That leaves one with the equations for an ideal transducer:

F, = h,;F, I, = hyJ, (50)

5.1 Reciprocity

Onsager (1931) demonstrated that, ideal or not, as long as it does not involve
spinning elements (e.g., a gyroscope or spinning charge), a linear, passive trans-
duction process such as this must be reciprocal. For the selected parameters
(applied to the associated reference directions of Fig. A.1), that means

hy = —hy, (61))

As a specific test of the Onsager reciprocity theorem, one can invoke the ac-
ousticians’ choice of conserved entity (volume) in the pneumatic realm, so that
F, is the sound pressure on the left side of the piston (F, = Ap, = p,— p,) and
J, is the volume flow on the left. From elementary physics one deduces that J,
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will be zero when F, (the net pressure pushing from the left) times the luminal
area, A, is equal to the force pushing from the right. Therefore,

(52)

1
Ao
When there is no force from the right (F, is zero), so that the piston could not
be deformed even if it were not perfectly rigid, then from elementary geometry

one knows that the (rightward) volume flow into the piston, J,, must equal the
luminal area, A,, times the rightward velocity of the piston. Therefore,

1, 1
hy =32 = -—— (53)
21 7, fmo A,
and h,, = —h,,, as the Onsager theorem says it must.

5.2 Bidirectionality and Its Implications:
Driving-Point Impedance

Reciprocity implies bidirectionality (Gibbs free energy can be transferred in both
directions across the transducer), which in turn implies that what happens in
either of the physical realms connected to a transducer will affect what happens
in the other physical realm This implication becomes explicit in the expressions
for driving-point 1mpedAnce or admittance. Imagine an acoustic source on the
left side of the piston, and mechanical impedance (e.g., a combination of masses,
springs, and dashpots) on the right,‘as in Fig. A.2. Here, the mechanical im-
pedance is designated simply Z,,. For the general linear situation, one would
have

F, = h,J, + bR,

F
I, = hJ, + hF, = ——Z—:, 54)

Acoustic
source

FIGURE A.2. Depiction of an acoustic source connected to a mechanical load (impedance
Z,,) through a piston. The resulting pneumatic impedance, Z,,(1), faced by the source
depends on both Z,, and the properties of the piston (see text).
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from which

___hyghy,
hy + 1/Z,,

where Z,,(1) is the (driving-point) impedance that the acoustic source faces as
it drives the transducer from the pneumatic realm. It should not be surprising
that Z, (1) depends strongly on what is connected to the transducer in the other
realm (i.e., on Z). For this passive transducer (which has no spinning ele-
ments), with h,;; and h,, both equal zero,

F
Zy1) = 7 = hy (55)
1

21 = 7 (56)
Note that with the current choices of conserved entities (volume in the pneumatic
realm, axial displacement in the rigid-body mechanical realm) the SI unit of
Z,(1) is 1.0 joule s per m® and that of Zy is 1.0 joule s per m%. The factor
1/A2 translates the rigid-body mechanical impedance, Z,,, into the pneumatic
impedance, de(l).

6. Terminal Impedances and Reflected Waves

Imagine the piston with its very short cylinder (luminal area A,) connected to
the end (x = L) of an air-filled tube (also Wwith luminal area A,). Z,(1) now
forms what is known as a ferminal impedance for the acoustic path through the
air in the tube. Applying form 1 of the transmission-line dquation (Eq. 35), one
has .

F, = F(L) + F(L) = Z,,(1)], Jo=JL) — 1)
F(L) = ZJ{L) E(L) = ZJ(L) (57

where F, and J, are the sound pressure and volume flow applied to the piston
by the air in the tube; Z, is the characteristic impedance of the acoustic path
through the air in the tube. From Equation 57 one can derive the reflection
coefficient F(L)/F{L) of the air-transducer interface:

5 = ng(l) _ Zo (58)

Fo Z,() + %,

If the goal is to maximize the transfer of Gibbs free energy from the pneumatic
realm (acoustic energy) to the rigid-body mechanical realm (mechanical energy),
then one wants to minimize the amplitude of the reflected wave, F,. It is clear
from Equation 58 that F, will be reduced to zero if Z,(1) = Z,. In other words,
there will be no reflection if the acoustic path is terminated with an impedance
equal to the characteristic impedance of the path. If that is not so, one often
can make it so by inserting an appropriate passive transformer on one side or
the other of the transducer (the piston).
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6.1 Transformers and Impedance Matching

The simplest passive transformers are constructed as a cascade of two passive
transducers connected back to back. Consider the system depicted in Figure
A.3. Here are two rigid-walled cylindrical tubes containing different fluids. Be-
tween the two fluids is a cascade of two pistons connected back to back in a
translational rigid-body mechanical realm. Being reversed, the second piston is
represented by a two-port model in which F, is force, J, is rightward transla-
tional (axial) velocity, F, is pressure, and J, is leftward volume flow. In that
case, if one assumes as before that the piston is perfectly rigid, that its mass is
negligible, and that it operates with no resistance,

h, =0 h, = A, h, = —A, hy =0 (59

Applying Equation 55 to this situation (Z,, becomes Z,,), one finds that the
mechanical driving-point impedance at the left side of the second piston is

de ®2) = A2y (60)

Applying the same equation to the first piston (the piston is not reversed, Z,
becomes Z,,(p2)), one finds that the driving-point impedance at the left side of
the complete transformer is

A 2
Z(p¥) = A—zz Zoy= T Zy, (61)
i 1 “

To avoid reflections of sound waves as they pass from fluid 1 to fluid 2 through
the transformer formed by the pistons, one requires

A2
Az Zy = Zy (62)

Substituting the expression for Z, from Equation 44, one can restate this re-
quirement in terms of the densities and adiabatic bulk moduli of the two fluids:

Ayp.Ey, = AJp,Es, (63)

Z4(p2) I:>

Zy

Z; Zg(p1) L__>

S

FIGURE A.3. Depiction of an acoustic transformer comprising back-to-back pistons rig-
idly connected in the rigid-body mechanical realm. The transformer couples an acoustic
medium with characteristic impedance Z;, to one with characteristic impedance Z,,.
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The symmetry of this relationship implies that when it is true, sound waves pass
through the transformer in either direction without reflection.

Equation 61 is a form of the classic transformer equation, T being the trans-
former ratio. By adjusting 7 (the ratio of piston areas), one could, in principle,
transform any real-valued impedance (Z;,) to match any other real-valued im-
pedance (e.g., Z,). A mechanical transformer in which 7 is less than 1.0 is said
to provide mechanical advantage. The passive device that does so comprises
either a single pair of back-to-back passive transducers (a simple machine), or
multiple pairs of such transducers (a compound machine). In addition to pistons
and their relatives (including flexible diaphragms), the repertoire of passive me-
chanical transducers includes the wheel (transfers free energy between transla-
tional and rotational realms), which is the basis of gear systems and pulley
systems, and the semilever—a rigid bar between a fulcrum and a point of ap-
plied force (also transfers free energy between translational and rotational
realms), which is the basis of lever systems. For gear or pulley systems, T is
the ratio of wheel (e.g., pulley or gear) radii; for lever systems it is the ratio of
semilever lengths.

7. Driving-Point Impedance of a Terminated Acoustic Path

In the previous subsection, the piston was modeled as a circuit element with
two distinct ports: port 1 facing the pneumatic realm, and port 2 facing the rigid-
body mechanical realm. The same sort of model can be useful as well in a
single realm. Suppose the length of a ﬂuld filled, rxgid -walled cylindrical tube
were L. If one were concerned only with the acoustic variables (Fs and Js) at
the ends of the tube, one could translate the transmission-line model (Eq. 36)
to a two-port model, one port representing one end of the tube, the other port
representing the other end. For that purpose, it is useful to use the two-port
impedance (z) parameters instead of the two-port hybrid (k) parameters:

Fi =z, + 2, F, = zyJ, + 2,,], (64)
where F, and J, in Equation 64 correspond to F(0) and J(0), respectively, in
Equation 36; F, and J, in Equation 64 correspond to F(x) and J(x) in Equation

36 when x is set equal to L. The corresponding z parameters are derived as
follows:

=B -FQ
S PR 1)) P
J, = J(L) = 0 = J(O)cosh(/zy L) — Y,F(0)sinh(,zy L)
cosh(‘/z_y L)
" “Sinh(Jzy L)
F, ‘
R % oo sinh(Z.B ) 65




388 E.R. Lewis

and, by symmetry, z,, = z,,, Z;; = Z;,- The equality of z,, and z,, (or, equiva-
lently, h,, = —h,,) also is stated in a general reciprocity theorem that applies
to all passive, linear circuit models in which rotation (sometimes called gyration)
is not represented. Proof of the theorem can be found in standard circuit-theory
texts. For the z parameter set, Equation 55 becomes

F 212
Zo)=F = - (66)

1 2, t Z,

where Z, is the (load) impedance connected to port 2. In this case, Z, is the
external impedance that the sound wave encounters as it reaches the far end of
the tube (where x = L). Combining Equations 65 and 66, one finds the general
expression for the driving-point impedance that an acoustic wave would face as
it enters the tube (at x = 0).

7 =7 Z, cosh(Jzy L) + Z, sinh(Jzy L)
® = 0 7, cosh(Jzy L) + Z, sinh(Jzy L)

Notice that if Z, equals Z,, so that there is no reflected wave, then Z,, also equals
Z,. What Equation 67 describes is the impact of the reflected wave on the
driving point impedance when Z; does not equal Z, For the fluid-filled tube,
with a steady tone’ (frequency w, = 2mf,) applied to the near end (x = 0), the
driving-point impedance becdr.nes =

(67)

A cos(21t§)" + iZ, sin(21t§)
Zy =7, T 3 (68)
Z, cos(ZnX) + iZ, sin(21t7—L)

where A is the wavelength of the tone in the fluid (e.g., in air or in water):

p=2 - (69)

fo W,

As the frequency of the tone increases and L/A shifts from 0 to 0.25, Z,, will
shift from Z, to Z%/Z,. For intermediate values of L/A, the values of Z,, will
be complex numbers, implying phase differences between F, and J,. The size
of the phase difference will depend strongly on the frequency of the tone.

7.1 The Significance of Phase Difference:
Passivity Constraint

To understand the significance of a phase difference between F, and J,, one can
consider the flow, P,(#), of energy into the tube at port 1, instant by instant:

P(1) = F\()J,(1) (70)
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From this, one computes the total energy, E,, entering the tube over each full
cycle of the sinusoidal waveform. Let

J(®) = A cos wt
Z,, = Ke®
F,() = KA cos (ot + B) 1)
In that case,
U
E, = f KA? cos(2nfy) cos(2nfyr + B)dt =

0

2f Kcos B= Af Re{Z,} (72)

E, is maximum when B = 0; it is positive when 0 < B < w2 or 0 > >
—m/2; it is zero when B = 7/2 or B = —m/2; and it is negative when /2 <
< mor —m/2 > B > —n. The combination of the tube and Z,, as posited here,
is passive; it cannot deliver more acoustic energy output than that which has
been put into it. Therefore,

E =0
Passivity constraint
2 - - 2 ( 3)
Which requires simply that
Re{Zd =0 (74)

If Z,, were purely inertial or purely capacitive, then Re{Z, } would be zero. In
that case, the energy delivered into the tube during one half cycle will be de-
livered back out again during the other half cycle.

7.2 The Evolving Ear’s Options for Maximizing
Free-Energy Transfer

If, under sinusoidal steady-state conditions, one wishes to transfer Gibbs free
energy from one acoustic path to another, and if the second path is finite in
length (terminated), and if one wishes to use a transformer to translate the
driving-point impedance of the second path to the characteristic impedance of
the first, so as to maximize free-energy transfer over a wide range of frequencies,
then Equations 68 and 72 establish the constraints that are imposed by the
physics of the situation. The driving-point impedance of the second path must
be a positive real number that is independent of frequency. Assuming Z, is such
a number, there seem to be two ways to make that happen: (1) terminate the
second path with an impedance equal to the characteristic impedance of that
path, or (2) make Z, real and make the second path so short that L/A remains
very small for all frequencies of interest. These would have béen the possibil-
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ities open to evolution as it sculpted the paths and transformers for conveying
acoustic energy into the ear.

8. Wall Effects
8.1 Effects of Wall Compliance

If the wall of the cylinder in the original scheme were compliant, if the diameter
of the cylinder were small in comparison to the wavelengths of the sound, and
if the pressure outside the wall remained fixed at p, (e.g., atmospheric pressure),
then the expression for capacitance per unit length (Eq. 43) would become

¢ = % + Cou (75)
B

In other words, the compliance per unit length of the wall would add to that of
the fluid. In the original formulation, the mass-related conserved entity (mass,
particle-population, or volume) was accumulated in local compression of the
fluid alone. Now it also is accumulated in local expansion of the cylinder wall.
Thus, for a given incremental change in pressure, more of the conserved entity
would be stored per unit length. This would make both the speed of the sound
and the characteristic impedance of the sound path smaller than they would be
in an extended volume of the fluid (see Eqs 39 and 40). In the mammalian
cochlea, the local characterlstic 1mpedance and speed of the sound wave evi-
dently are determined almost entlrely by the local compliance of the wall (the
basilar membrane in that case), the contributions of the endolymph and peri-
lymph compliance (i.e., the compliance of water) being negligible in comparison
to that of the wall. Recall that the wavelength of a tone equals the speed of
sound divided by the frequency of the tone. If the local speed of sound in the
cochlea were that of the inner-ear fluids (i.e., in the neighborhood of 1500 m/s),
then the wavelength of a 10-kHz tone, for example, would be in the neighbor-
hood of 15 cm—several times the length of the cochlea. In modern cochlear
models, the actual wavelength of a 10-kHz tone is a small fraction of the total
cochlear length, implying that

Cot >> = (76)

and that the bulk modulus of water contributes almost nothing to the character-
istic impedance or the speed of the wave. Among other things, this means that
the local particle displacements for waves propagating in the cochlear fluids will
be much greater than for similar waves propagating in unbounded aqueous media
(see subsection 4.2).

8.2 Effects of Viscosity

For a sinusoidal wave propagating axially in the forward direction through the
fluid in the cylinder, the local volume velocity vector, J(x,f), would reverse
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periodically (with the same period as the sine wave). The flow would be in the
forward direction for one half cycle (when the local sound pressure, F, was
positive), and in the opposite direction for the next half cycle (when the local
sound pressure was negative). In developing the transmission-line model (see
Eqgs. 10 and 17) one assumed that the frequencies of the sign waves were suf-
ficiently high to avoid the effects of viscosity. Under this assumption, the local
axial particle velocity, 9(x,f), is independent of distance from the wall of the
cylinder. Strictly speaking, this implies the existence of an infinite radial gra-
dient of velocity at the interface between the wall and the fluid. Fluid dynam-
icists generally assume that the particle velocity of the fluid immediately
adjacent to the wall must be zero (i.e., that the fluid sticks to the wall), which
would move the infinite gradient slightly into the fluid itself. Newton’s law of
viscosity states that shearing tension, 1,, (tangential force per unit area), between
fluid layers is directly proportional to the particle velocity gradient taken normal
to those layers. For the fluid in the cylinder, this translates to

dd
T, =N (77)
r is the where radial coordinate, with its origin taken to be the central axis of
the cylinder, and 1 is the viscosity of the fluid. What one has assumed, then,
are extremely large (near-infinite) shearing forces in the fluid layers immediately
adjacent to the wall. These would impose a drag on the more central layers,
slowing them down and thus reducing the shear gradient, d9/dr. In this manner,
the drag effects would move radially inward, toward the df:ntral axis of the
cylinder. If the duration of one half cycle of the propagating sine wave were
sufficiently short, the drag effects would not have time to spread far from the
wall. At the end of the half cycle, the particle velocity would reverse and the
spreading process would start over again, with shearing forces in the opposite
direction. Throughout the full period of the sine wave, the local axial particle
velocity would be nearly independent of r over most of the cross-sectional area
(A of the cylinder. In the development of Equations 10 to 12, it had been
assumed to be independent of r over the entire area.

If the period of the propagating sine wave were sufficiently long, on the other
hand, the drag effects would have time to reach the central axis of the cylinder
and approach very close to a steady-state condition known as fully developed
flow. Because its effects take time to propagate to the central axis, however,
the viscous drag on the wall does not become fully effective until the fluid has
moved a sufficient distance from the entrance of the cylindrical tube. For small-
amplitude acoustic waves, that distance is comparable to or less than the di-
ameter of the tube (e.g., see Talbot 1996). When the flow through the cylinder
is fully developed, the particle velocity is a parabolic function of r (the radial
velocity profile has the shape of a parabola centered on the central axis of the
cylinder). The relationship between F (pressure) and J (axial volume flow) in
that case will be given by Poiseuille’s equation for flow in a cylinder,
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dF

Fr
_ &m
R = 747 (78)

This is a resistive relationship. Thus, for low-frequency waves, the series im-
pedance, z, in Equation 22 will be resistive rather than inertial. For high-
frequency waves it will be inertial, with inertance per unit length given by
Equation 41 (see also Eq. 34).

= —ZIJ

&5

7 = i21tf'§-9 19)
0 .

where f is the frequency of the sine wave. For fixed total volume flow, as the
drag effects spread toward the center of the tube, the volume velocity there
increases (making up for the reduction in volume velocity near the walls). This
increases the effective inertance of the fluid slightly. For frequencies in the

. 4
neighborhood of f, (see Eq. 80) acousticians use [ = 37p
0

8.2.1 A Cutoff Frequency for"‘Acoustic nges in Tubes or Ducts
When

.

_
Aop

the magnitudes of the inertial and resistive components of impedance per unit
length will be approximately equal. For long tubes, therefore, the assumption
that viscous effects can be ignored will be applicable if f>>f.. If fis comparable
to or less than f,, the effects of viscosity will be severe, and the energy of sound
waves in the tube will be dissipated (converted to heat) very quickly. For pure
water at 20°C (Table A.1),

f=r (80)

TaBLE A.l. Properties of pure water.

Temperature (°C) Density (kg/m?) Viscosity (kg/m s)
398 1000.0 0.1567
10 999.7 0.1307
15 999.1 0.1139
20 998.2 0.1002
25 997.0 0.0890
30 995.7 0.0798

35 994.1 0.0719
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- 0.0004
A,

f (81)
where the cross-sectional area (A,) of the tube is given in square meters, and f,
is given in Hz. For a periotic duct whose cross-sectional area is n square mil-
limeters, for example, the cutoff frequency would be approximately 400/n Hz.
With Equation 81 in hand, it is interesting to contemplate the cross-sectional
areas of various ducts and canals in both the auditory and the vestibular sides
of the vertebrate inner ear, as well as the canals associated with lateral-line
structures and those in the bases of the antennules of crustaceans (e.g., see Lewis
1984; Lewis and Narins 1998).

9. Resonance

9.1 Helmholtz Resonators

When a lumped inertance is connected in series with a lumped capacitance, the
resulting impedance is the sum of the impedances of the two elements:

1 1 — wC
Z = jo] + — = ————— 82
s(0) = iw ioC inC (82)

Similarly, when a lumped inertance is conngcted in parallel with a lumped ca-
pacitance, the resuiting admittance is the sum of the admittances of the two

elements: N ",
(]

1 1 — w?IC .
= i 4 —_— = ——
o) = i€+ 25 il

~

(83)

Z, and Y, approach 0 as @ approaches l//IT?. This means that their reciprocals,
Y, and Z, approach infinity under the same circumstances. This critical value
of w is the resonant frequency, ®,,

i
W = =
Jic
A commonly cited acoustic example is a volume of air enclosed in a rigid-
walled container, connected to the rest of the acoustic circuit through a short,
small-diameter, rigid-walled air-filled tube. This forms a series IC circuit, with
the values of I and C given by Equations 9 and 12, respectively:

VoiPo Coftoz LyVor Po
o= [l el (85)
Adcl YP, Ao YPo

where the subscript 01 refers to the tube, and the subscript 02 refers to the
enclosed volume of air. For short tubes, acousticians sometimes apply a cor-
rection to account for the momentum carried beyond the end of the tube, re-

(84)
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placing the tube length, L,,, with L,, + 1.7R,,, where R,, is the tube radius.
This configuration, known as a Helmoholtz resonance, is used in sound produc-
tion by animals (Ewing 1989) and some musical instruments (whistle, ocarina,
body of violin; see Olson 1967).

Imagine that, beginning at some initial time (+ = 0) a constant-amplitude,
sinusoidal sound pressure waveform at frequency w, were applied (from a source
of some sort) at the mouth of the tube (the end of the tube opposite the enclosed
volume). The corresponding volume flow through the tube, into the enclosed
volume, would approximate a ramp-modulated sine wave (e.g., tsinwf). Cycle
by cycle, the amplitude of the sinusoidal volume flow of air through the tube
would grow. Correspondingly, the amplitude of the sinusoidal pressure varia-
tions in the enclosed volume would grow. Those pressure variations would be
precisely 180 degrees out of phase with the pressure variations at the source (at
the other end of the tube). Thus the two pressure variations would reinforce
one another in the creation of a net pressure difference from one end of the tube
to the other. It is that net pressure difference that drives the flow through the
tube. The growing flow through the tube and pressure in the enclosure represent
a growing amount of acoustic energy stored in the resonant system. In the
idealized example presented here, with no mechanism for dissipation of acoustic
energy, it would continue to accumulate forever; sinusoidal steady state would
never occur. In a real situation, at least two things will happen to the acoustic
energy: (1) some fraction of it wlll be converted to heat by viscous resistance
in the system, and (2) some fraction will be radiated from the mouth of the tube
and the walls of the enclosure. When the total amount of acoustic energy gained
from the source during each cycle is balanced precisely by the acoustic energy
lost during each cycle, then sinusoidal steady state will have been achieved.

9.2 Standing-Wave Resonators

In the Helmholtz resonator, one presumes that the wavelength of sound at the
resonant frequency is very long in comparison to the dimensions of the enclosed
volume and the tube. When that is not so, another form of resonance-—a
standing-wave resonance—can occur. Consider, for example, a rigid-walled
tube filled with air. The acoustical driving-point impedance of the air in the
tube, viewed from one end of the tube, is given by Equation 68. If the other
end of the tube were sealed, making Z, exceedingly large, then the driving-point
impedance would be approximated very well by the following expression:

cos (211:%)

de Zy———
: sin 2nk (86)
' x
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which is zero for all values of wavelength (A for which the tube length (L) di-
vided by wavelength is an odd multiple of one quarter (e.g., L/A = 1/4, 3/4, 5/4
...). The inertial effects on the flow of air in the tube extend slightly beyond
the open end of the tube. Acousticians correct for this by adding (for each open
end) 0.82R to L in these expressions, where R is the tube radius (Rayleigh 1926;
see Olson 1957). At each one of the corresponding frequencies (see Eq. 69), the
acoustic path through the air in the pipe exhibits a resonance. As in the Helm-
holtz resonator, imagine that, beginning at some initial time (t = 0) a constant-
amplitude, sinusoidal sound pressure waveform at one of the resonant
frequencies were applied at the mouth of the tube (the open end of the tube).
The time course of the amplitude of the corresponding sinusoidal flow would be
essentially the same as that of the Helmholtz resonator, growing linearly with
time in the idealized tube. Within the tube would be a standing wave whose am-
plitude also increases linearly with time. Sinusoidal steady-state conditions
would never be achieved. In a real tube, the energy of the standing wave would
continue to grow until the energy lost to viscous resistance and acoustic radiation
during each cycle of the sound waveform was precisely equal to the energy pro-
vided during each cycle by the sound pressure source driving the tube. Sinusoi-
dal steady state would be achieved when that energy balance was achieved.
Standing-wave resonances occur in a wide range of mechanical systems, in-
cluding flexible strings under tension, rigid bars, stretched membranes, and rigid
circular plates (e.g., see Olson 1957). The resonances in strings and bars are
easily identified by appropriate application of the-transmission-line model.

}

)
L]

10. Active Transducers and Amplifiers

A circuit model can be used to represent the flow of free energy from physical
realm to physical realm and from place to place within any given physical realm.
For a model of the auditory periphery, one form of free energy that would be
of interest would be that which begins as the free energy being carried by an
acoustical input signal (e.g., a tone), representing a stimulus applied to the ex-
ternal ear or its piscine equivalent. Any element of the model that merely stores
that energy, dissipates that energy, or transfers that energy from one place to
another or from one physical realm to another is, by definition, passive. Circuit
models also may include elements in which free energy that originated in the
input signal is used to gate the flow of free energy into the model from another
source (e.g., a battery of some kind). These often are represented as two-port
elements. The free energy that originated in the input signal enters port 1. The
gated energy from the battery flows out of port 2. If ports 1 and 2 are repre-
sented in the model as being in the same physical realm (e.g., both in the
pneumatic realm), then the element is an (active) amplifier. If the two ports are
depicted as being in different physical realms, then the element is an active
transducer.
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10.1 Passivity Implies Bidirectionality

The active nature of the two-port element is reflected in its parameters. Among
other things, a passive, linear process must be reciprocal or antireciprocal. Lack
of reciprocity or antireciprocity in a linear two-port element implies that the
element is active. As a corollary of the Onsager reciprocity theorem, for ex-
ample, one can state the following: if a transduction process (1) is not based on
spinning elements (e.g., a spinning top or rotating charge), (2) operates linearly
(e.g., over a small range about the origin), and (3) is not bidirectional, then it
must be active. Linear, passive transduction processes based on spinning ele-
ments are antireciprocal (k,, = h,,, z,;, = —2z,,) (see Lewis 1996). To be passive,
not only must a linear transduction process be bidirectional, it must be either
reciprocal or antireciprocal (equally effective in both directions).

10.2 Gated Channels Are Active

On the other hand, gated channels are abundant in nervous systems. In circuit
models, the elements representing gated channels would be active. The me-
chanical input to a stereovillar bundle in an inner-ear auditory sensor carries
free energy that originated with the acoustical input to the external ear. This
input modulates- the opening and closing of the strain-gated channels, through
which flows electric currest driven by~the endolymphatic voltage. The source
of the free energy carried by the resulting electrical signal (hair cell receptor
potential) is the endolymph battery, not the acoustical input to the ear. Acous-
tically derived energy modulates the flow of electrical energy from a battery—a
quintessential active transduction process. In some instances the hair cell re-
ceptor potential, in turn, is applied to a transducer that produces force and mo-
tion in the stereovillar bundle (see Manley and Clack, Chapter 1, section 5.1).
It is not clear, yet, whether this process is passive, involving merely the transfer
of free energy from the receptor potential to the mechanical motion of the bun-
dle, or active, involving the gating of energy from some other source, such as
an adenosine triphosphate (ATP) battery, to the motion of the bundle.

10.3 Positive Feedback Can Undamp a Resonance for
Sharper Tuning

Whether or not the reverse transduction process (from receptor potential to ste-
reovillar motion) is active, the forward transduction process (from stereovillar
motion to receptor potential) definitely is. Thus there is a loop in which there
is the possibility of power gain. It has been proposed that such gain could
compensate, in part, for the power loss that must be imposed by the viscosity
of the water surrounding the stereovillar bundle (see Manley and Clack, Chapter
1, section 5). Assuming that tuning of the hair cell is accomplished by me-
chanical resonance associated with the stereovillar bundle, for example, one can
depict the essential ingredients of this proposition with the circuit model of
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Figure A.4. Here the mechanical side is depicted on the left, the electrical side
on the right. F, is the force applied to the apex of the bundle by the acoustic
input signal; Z, is the mechanical impedance of the bundle. The upper two-port
element represents an idealized active forward transducer [zero driving-point
impedance into port 1 (left), zero driving-point admittance into port 2 (right),
zero coupling from port 2 to port 1]. The lower two-port element represents an
idealized active reverse transducer {zero driving-point admittance into port 2
(right), zero driving-point impedance into port 1 (left), zero coupling from port
1 to port 2]. The hair cell electrical properties are represented by an admittance,
Y., which relates the receptor potential, F_, to the receptor current, J,. The
translational motion (velocity J,) of the apex of the stereovillar bundle is applied
through the mechanical sides of both the forward and reverse transducers. For
that reason, the corresponding ports are represented as being in series. This in
turn means that the force (F,,) developed by the reverse transducer is depicted
as being subtracted from the input force:

F, - F
J\, — fb
A
T = —k(iw)],
_ L _ —w)l,
YT,
Fy = ko, = ekl
R = 20, + Fo = {7 - S0RA0), @

If it were a simple resonance, the impedance of the bundle (to very small trans-
lational motion of its apex) could be written as follows:

1
Z, = iol, + — + R, (88)
inC,

In

En=g —» ‘ I N
» har=ka(i) o

Zy —»> h;;=0 Ym Fu

+ <

Fin 1S ‘ r _.__j -

hy =0
Fp hiz= -kn(i@)
-'b h21=0

h12=0

FIGURE A.4. Circuit model depicting forward and reverse transduction in a hair cell.
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where [, is the inertance of the bundle, C, is its elastic compliance, and R, is
the resistance of the bundle (owing at least in part to the viscosity of water).
With the transducers in place, the relationship between bundle motion (velocity)
and input force becomes

F F
Jy = = > - (89
VT RGwklw) T kel
Y, *iwC, ® Y.

The net resistance, which damps the resonance, is equal to

- Re{k'“kb} (90)
Y,

To be effective for undamping the resonance, the quantity Re{k—‘ﬂﬁ} should be

greater than zero and less than R,. If it is greater than R,, the resonance will
oscillate spontaneously. If it remains in the proper range, the pair of active
transducers will operate as a stable amplifier (Manley and Clack, Chapter 1,
section 5). The effect of this on tuning is depicted in Figure A.5, which shows
the phase and amplitude tuning curves of a damped resonance. The bottom
panel in Figure A.5 shows the temporal response (e.g., velocity) of the resonance
as its residual energy decays after the 1nput has ceased. Notice that as the
resonance becomes less damped its tumng peak becomes sharper but it requires
more time to rid itself of residual energy. The latter reflects both the advantage
and the disadvantage of resonance tuning: It allows the response to an ongoing
input signal to accumulate over time. In a quiet world, where the threshold of
hearing is limited by the internal noise of the ear, this should enhance the ability
of the hearer to detect the presence of the signal. At the same time, it would
reduce the temporal resolution with which the hearer could follow amplitude
changes in the signal, once the signal has been detected.
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FIGURE A.5. Tuning of a 100-Hz resonance with a high degree of damping (solid black
line) and a reduced degree of damping (thick gray line). The bottom panel shows the
time course of decay for residual excitation in the resonance.
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