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Studies With Spike Initiators: Linearization by Noise 
Allows Continuous Signal Modulation in Neural 

Networks 

Abslruct-Engineers and neuroscientists generally believe that noise 
is something to be avoided in information systems. In this paper we 
show that noise, in fact, can be an important element in the translation 
of neuronal generator potentials (summed inputs) to neuronal spike 
trains (outputs), creating or expanding a range of amplitudes over 
which the spike rate is proportional to the generator potential ampli- 
tude. Noise converts the basically nonlinear operation of a spike ini- 
tiator into a nearly linear modulation process. This linearization effect 
of noise is examined in a simple intuitive model of a static threshold 
and in a more realistic computer simulation of a spike initiator based 
on the Hodgkin-Huxley (HH) model. The results are qualitatively sim- 
ilar; in each case larger noise amplitude results in a larger range of 
nearly-linear modulation. 

The computer simulation of the HH model with noise shows linear 
and nonlinear features that we earlier had observed in spike data ob- 
tained from the VIIIth nerve of the bullfrog. This suggests that these 
features can be explained in terms of spike initiator properties, and it 
also suggests that the HH model may be useful for representing basic 
spike initiator properties in vertebrates. 

INTRODUCTION 
NVESTIGATIONS of multidimensional signal pro- I cessing (e.g., pattern classification) possibilities of ar- 

tificial neural networks seem to be divided into two cat- 
egories: 1) those in which neurons are treated as essen- 
tially binary threshold devices, and 2) those in which neu- 
rons are treated as analog processors of continuous-valued 
signals (e.g., see [ I ] ,  [2]). Real nervous systems evi- 
dently exhibit both categories of operation. In this paper, 
we develop a model of spike generation that can explain 
both categories of operation in terms of known biophysi- 
cal processes. Furthermore, we show that a single param- 
eter (the amplitude of the noise current at the spike initi- 
ator) can determine whether the operation of a spiking 
neuron falls in category 1) or category 2). 

Regarding category 2), it is generally accepted among 
neuroscientists that there is a large class of spiking neu- 
rons in which the interval between successive spikes is a 
random variable, and in which continuous analog input 
signals are translated into continuous modulation of the 
instantaneous mean spike rate. One easily can find many 
members of this class (in our laboratory we see them re- 
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peatedly in the vertebrate auditory and vestibular sys- 
tems). Members of this class could provide the basis for 
neural networks involved in massively parallel analog sig- 
nal processing. Unfortunately, although we know that 
such neurons occur widely, the physiology and biophysics 
communities presently do not have a satisfactory explana- 
tion of the operation of continuous spike-rate modulation 
in neurons. 

Although detailed knowledge now is available regard- 
ing the production of a single spike (e.g., [15]), modelers 
so far have been unable to use that knowledge to explain 
one of the most important features of repetitive spike pro- 
duction-namely the wide dynamic range (often more than 
60 dB) of spike-rate modulation in real neurons. Mean 
spike rates typically can be modulated over a range from 
nearly 0 spikes /s to a saturation rate (from less than 50 
spikes/s to more than 1000 spikes/s) determined by re- 
fractoriness and the consequent inability of axons to con- 
duct spikes at very high rates. 

The models developed up to now to describe or explain 
continuous spike-rate modulation can be divided into three 
general categories. One category comprises models which 
mainly are abstract stochastic point processes (e.g., Pois- 
son processes, random walks, birth-death processes, etc.) 
that produce statistics similar to those observed in spike 
trains from specific nerve cells. Although the simpler of 
these models have been useful as representatives of neu- 
rons in theoretical studies of neural coding or neural net- 
works, they have given little physical insight about the 
mechanism of spike train production. Furthermore, the 
lack of understanding of spike train firing mechanism has 
resulted in some stochastic models that seem to be un- 
necessarily complicated. 

The second category comprises models that include 
subsets of the physiological phenomena associated with 
spike initiation, but in which, for the sake of mathemati- 
cal tractability, the biophysical underpinnings of those 
phenomena are not represented explicitly. Such models 
include variations on the classical “one and two time con- 
stant models” [7], [6]. 

The third category comprises models that explicitly in- 
clude biophysical phenomena related to spike generation. 
The principal example is the Hodgkin-Huxley (HH) 
model. That model generally is accepted as a good model 
of single spike initiation in excitable cells and has led to 
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much physical insight about the generation of a single 
spike. Therefore, much work has been done to extend the 
HH model to account for repetitive firing activity. The 
results of these studies (e.g., 131, 141, and [SI) revealed a 
major problem; when the input is noise-free, constant cur- 
rent, the lowest nonzero repetitive spike rate is within 10 
dB of the maximum or saturation rate (the rate at which 
the local spike amplitudes begin to decline to the extent 
that the spikes will not propagate along an axon). For the 
HH model with parameters based on the squid axon at 
6.3"C, this lowest achievable nonzero rate is approxi- 
mately 50 spikes /s .  This contradicts considerable exper- 
imental data (e.g., those from many primary sensory neu- 
rons and those from many motor neurons) which show 
modulation ranges extending nearly to 0 spikes / s  and 
covering a dynamic range of 60 dB or more. Because of 
this problem, the HH model is considered unsuitable as a 
model of repetitive spike firing in which the spike rate is 
continuously modulated [i.e., unsuitable as a basis for op- 
eration of neural networks in category 2)] [4]. On the 
other hand, the fact that it predicts repetitive firing in 
which the spike rate is either zero or nearly saturated 
makes it an excellent model for the binary operation of 
neural networks in category 1). 

To explain the inadequacy of the Hodgkin-Huxley 
model with respect to category 2) operation of neural net- 
works, some researchers suggested that repetitive spike 
firing depends on nonlinear dynamical phenomena not in- 
cluded in the Hodgkin-Huxley model, perhaps over- 
looked in the squid-axon data 191, [ lo].  Investigators 
modified the HH model in various ways, attempting to 
achieve a much lower bottom frequency limit and thus 
achieve a larger modulation range ([4], see references in 
[ 1 11, [ 121). For example, by making considerable changes 
in the commonly accepted HH parameters and by adding 
a new transient potassium channel species to the model, 
Connor [ 111 was able to extend the spike-rate modulation 
down to about 2 spikes/s. However, up to now there is 
no modified version of the HH model that can solve the 
problem completely, i .e. ,  take the modulation range ar- 
bitrarily close to zero (as one typically sees in  real neu- 
rons); and there is no evidence that the changes made to 
the widely accepted HH model parameters and the tran- 
sient potassium channel species added to the HH model 
are generally present in  spike initiators. 

In these modeling studies, researchers generally con- 
sidered noise in the spike initiator to be something that 
causes errors in neural coding. Hence, noise has been 
considered to be a nuisance rather than an essential ingre- 

element in spike initiation, allowing the spike-rate mod- 
ulation range to be broad and to extend to 0 spikes/s. 
Within the broad modulation range created by the pres- 
ence of noise, there will be subranges over which the 
transformation from input current to spike rate is nearly 
linear. Consequently, noise can effectively convert the in- 
herently nonlinear operation of a spike initiator into a 
modulation process that is approximately linear. In the 
following report, this linearizing effect of noise is ex- 
plained first by a general intuitive model. Then the results 
of computer simulation of a spike-initiator model com- 
prising the HH model with noise added (an HHN model) 
are presented and compared with spike data obtained from 
axons in the VIIIth nerve of the bullfrog. The results of 
this comparison suggest that the general properties of re- 
petitive spike initiator can be well explained and modeled 
by the HHN model. 

The idea that noise linearizes nonlinearities in a sto- 
chastic way gives us insights for deriving simplified sto- 
chastic models of spike train generation. It also could pro- 
vide a simple realization of category 2) neural networks 
for massively parallel analog signal processing in real and 
synthetic nervous systems. 

PHYSIOLOGICAL METHODS 
The bullfrog preparation was the same as previously 

reported 1131. After the animal was anesthetized, a small 
hole was made in the roof of the mouth to expose the 
VIIIth cranial nerve on its way from the intact otic cap- 
sule (with intact circulation) to the brain. Each animal 
was mounted on a thick platform, the underside of which 
was connected to an electromagnetic vibrator. A vibration 
isolation system attenuated ambient seismic signals to an 
insignificant level compared to the applied seismic stim- 
ulation. Individual axons were penetrated with glass mi- 
croelectrodes filled with KCI solution. Electrical signals 
from the microelectrode were recorded on tape during the 
experiments. 

THE LINEARIZATION BY NOISE 
To understand the potential for linearization by noise, 

consider the system modeled in Fig. 1. 
U (  t )  is the input to the system; Y (  r )  is its output. N (  r )  

is noise, uncorrelated with U (  t ) .  X (  t )  is the sum of U (  t )  
and N (  t ) ,  and x is the instantaneous value of X (  t ) .  F ( x )  
is a static threshold function. The instantaneous value I 
of Z ( r )  is a random variable; and E [ z ]  is its expectation. 

dient in repetitive spike firing mechanisms. However, 
French and Stein [5]-[7] showed that in a variation on the 
two-time constant model, the addition of noise to a sinu- 
soidal input broke up strict phase-locking between the 

spike rate to follow the amplitude of the sinusoid 
smoothly. Unfortunately, the significance of this phenom- 
ena with respect to spike coding by real neurons evidently 

In this paper, we show that noise can in fact be a useful 

k ,  x L C, k = constant 

0, x < c  
F ( x )  = 

spikes and the input sinusoid and allowed the average Z ( t )  = F ( X ( t ) ) .  

Suppose N ( t )  = 0. Then 

k ,  U ( t )  2 C i 0, U ( t )  < c. 
has not been recognized. Y ( r )  = E [ F ( U ( r ) ) ]  = 
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N (t) 

U (t) ,1 x 't; 

F (t) I 

Fig. 1 .  Diagram of the simple threshold model 

In this case, output Y ( t )  is a step function of the ampli- 
tude of U ( t ) .  

Suppose N (  t )  is a stationary random process such that 
E [ N (  t ) ]  = 0 for any t ,  and N (  t )  is uniformly distributed 
in the interval [ - a ,  a ] .  Then 

( 0 ,  ~ ( t )  < c - a 

k/2 + ( k / 2 a ) ( U ( t )  - C ) ,  

C - a  < U ( t )  I C + a  
Y ( t )  = 

Now Y ( t )  is a linear (actually, affine) function of U ( t )  
when U ( t )  E [ C  - a ,  C + a ] .  The variance of N ( t )  is 

U; = a 2 / 3 .  

For a given variance, 

[C  - a ,  c + a ]  = [ C  - &aN, c + h a N ] .  

Note that uN is the rms deviation of the instantaneous am- 
plitude of N (  t )  from its mean, zero. Thus, oN is the rms 
amplitude of the noise. 

It is apparent that the noise N (  t )  statistically linearizes 
the previously nonlinear system. The range of this linear- 
ization increases with increasing noise amplitude ( uN ) 
[Fig. 2(a)]. 

Suppose N (  t )  is a stationary Gaussian random process 
with zero mean and standard deviation U .  Then 

s:'"' - 
Y ( t )  = (k /2)  + k 

. [ 1/27ro2p2[ 1 - x2/202 + . * 3 dx. 

When U ( t )  - C << U ,  

Thus, we have the same results as above: N ( t )  locally 
linearizes the step-wise (threshold) nonlinearity, and the 
range of linearization increases with increasing noise am- 
plitude [Fig. 2(b)]. 

Suppose this simple model represents spike-train gen- 
eration, with U (  t )  representing the neural input signal, 
Y ( t )  representing the mean rate of repetitive firing, and 
N ( t )  representing noise added to the input signal. When 

: Var = 0 
o : Var = 1 
A : Var = 4 

: Var = 0 
o : Var = 1 
A : Var = 4 

C U 0 0 C U 

(a) (b) 
Fig. 2 .  Relationships between the input U and the output Y of the simple 

threshold model. (a) The noise N (  f )  has a uniform amplitude distribution 
for all t .  (b) N ( t )  has a Gaussian distribution for all I .  Var = variance 
of N ( r ) .  

N ( t )  = 0, Z(r) is a deterministic constant. This means 
that the modeled output spike rate is either zero or is sat- 
urated at some nonzero level, depending on whether U (  r )  
is bigger or smaller than the threshold value C. Further- 
more, when its rate is saturated, the modeled spike train 
is periodic, with no randomness. These results are quali- 
tatively consistent with simulation studies of HH model 
(e.g., [4]; and our own in the next section of this paper). 
They also are consistent with recent observations by 
Chapman [ 141 on space-clamped squid axons (which 
demonstrated that the HH equations are a good model of 
the space-clamped squid axon for repetitive firing). 

When the noise N (  r )  is not equal to zero and the input 
U (  t )  lies within a particular interval of values, then Z( r )  
is a random variable with a mean value approximately 
proportional to U (  t ) .  Thus, the spike train would be ape- 
riodic (random) with a mean rate proportional to the in- 
put. This is consistent with observations from a wide va- 
riety of nerve cells operating normally (i.e., not under 
space clamp). From these analyses we can see that this 
simple model predicts concomitancy between nearly pe- 
riodic spike-train generation and all-or-nothing spike-rate 
modulation by applied dc stimuli (both of which are ob- 
served in the space-clamped squid giant axon). It also pre- 
dicts concomitancy between aperiodic spike-train gener- 
ation and broadly graded spike-rate modulation by applied 
dc stimuli (both of which are observed in a wide variety 
of neurons). In the graded modulation process, noise is 
an essential element, responsible for creating the graded 
modulation range. Both the overall extent of that range 
and the portion over which modulation is nearly linear are 
proportional to the amplitude of the noise. 

COMPUTER SIMULATION OF REPETITIVE FIRING BASED 
ON THE HHN MODEL 

To study the effect of noise on repetitive spike produc- 
tion in a more realistic model, we simulated a spike ini- 
tiator based on an HHN (HH model plus noise) model 
with various noise amplitudes and various kinds of inputs. 
The time of occurrence of each spike was recorded in a 
data file during the simulation. Then the data file was ana- 
lyzed in the same ways that real spike data from the frog 
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VIIIth nerve were analyzed in our laboratory. The HHN 
model can be written in the following form: 

d V J , I / d t  = ( l / c J ? Z ) [ z ( f )  + N ( f )  - gKn4('JJ1 - ' K )  

- ~ N d h ( ~ m  - V N o )  - gI(Vn1 - V I > ]  

where I ( t )  is the input current to the spike initiator (in- 
cluding inputs from all the various neuronal loci sur- 

-90 
f o  f o  

\ rounding i; plus any nonHodgkin-Huxley currents in the 
spike initiator itself); N (  t ) is white-noise current (from 
sources inside or outside of the spike initiator). The pa- 

Fig. 3 .  signal, sinusoidal steady-state relationship between input 
current and membrane potential from the HH model. 

rameters (for the squid axon at 6 . 3 " C )  and the state equa- 
tions for n ,  m ,  and h are given by Hodgkin-Huxley [ 1 5 ] .  
The solutions of the HHN model for various inputs and 
various noise levels were generated on an IBM PC AT 
computer by the following simple numerical integration 
algorithm: 

V(i + 1) = V(i) + ( A f / C , , J ) [ I ( i )  + Nd(i) - g K n 4 ( i )  

( V ( i )  - v K )  - g N r r r n 3 ( i ) h ( i )  

. ( V ( i )  - VNJ - &( V(i> - VI) ] .  

n ( i  ), rn ( i  ), and h ( i  ) are calculated in the same way. A t  
is usually in the range of 5-50 ps. When A t  is suitably 
chosen, the algorithm gives a stable consistent solution. 

N'/( i ) is a random number generated by a conventional 
computer algorithm. To see how the continuous random 
variable N ( t )  can be translated into a discrete random 
variable such as N,/(  i ), consider the following model: let 
N ( t )  be the (formal) time derivative of a Brownian mo- 
tion W ( t )  (e.g., [ 1 6 ] )  where 

E [ W ( r )  ~ ( s ) ]  = a2  min [ t ,  s ]  

N ( t )  = d W ( t ) / d t  G [ W ( t  + A t )  - W ( f ) ] / A f  

Let 

then E [ N , , ( i ) ]  = 0 

N < / ( i )  = [ W ( t  + A t )  - W ( t ) ] / A f  

~ [ ~ d i )  ~ , d j ) l  = 0 

E [ N , ( i )  N , , ( j ) ]  = a ' / A t  f o r i  = j  ( I )  

where a2  is the power spectral density of N (  t ) .  Addition- 
ally, since it was derived from a Brownian motion, the 
amplitude of N < / (  i ) should have a Gaussian distribution. 

In the actual simulation, we use a discrete random 
variable that is uniformly distributed (over the interval 
[ -CY, C Y ] ) ,  with the same mean (zero) and the same power 
spectrum as the ideal N,/(  i ) of the previous paragraph. To 
relate a to CY, we can use 

for i  # j  

E[Nd(i) ~ ~ ( j ) ]  = a 2 / 3  f o r i  = j  

combining this with ( I ) ,  we have 

a 2  = A t a 2 / 3 .  ( 2 )  
To estimate the relationship between the variance of the 
noise signal N (  f )  and the membrane-potential variance 
( 0 5 )  produced by the noise. we use a simplified HH model 

operating in the subthreshold range (note: to estimate the 
effects of the noise on spike-initiation, we use the com- 
plete HH model). Fig. 3 shows the approximate steady- 
state input-output relations of the simulated HH model 
when the input current I (  t )  is a sinusoid whose amplitude 
is small enough not to cause spike generation. From that 
figure we can see that for the small signals, the HH model 
(with parameters set at their values for the 6.3"C axon) 
can be approximated by a simple parallel RC model: 

V ( s ) l I ( s )  = kwn/(s  + W n )  

where 

wo = 502 rad/s (fo = 80 Hz) 

k = 0.8. 

This is not surprising because, as many other investiga- 
tors have already shown, when input is small the HH 
model reduces to a parallel combination of constant rest- 
ing membrane capacitance and constant resting membrane 
conductance. However, even in the subthreshold range, 
the HH model responds in a slightly nonlinear manner, so 
that the voltage response sinusoid is distorted. The ap- 
proximate relationship of Fig. 3 was obtained by hand 
fitting a true sinusoid to the voltage response. Interest- 
ingly, when this was done, the estimates of wo and k were 
robust (within a factor of 2) over the full range of ampli- 
tudes of I ,  from zero to just below threshold. If the trans- 
fer function V(s)/l(s) truely conformed to that of a par- 
allel RC circuit, then if I (  t )  [ or, alternatively, N (  t ) ]  were 
Gaussian white noise, V ( t )  would be an Ornstein-Uhl- 
enbeck process. The variance of V ( t )  in  that case would 
be given by 

7 7 7  a;, = a-k-wo.  

Combining (2) into this expression, we derive 

of. = A t k 2 w ~ a 2 / 3 .  

This equation was used to estimate the amplitude of N(, 
required to achieve a given noise level V,,, ( f )  in the HH 
simulation. 

Fig. 4 shows simulation results from the HHN model 
when I (  t )  is a dc current of various amplitudes and N d (  i ) 
is uniformly distributed discrete white noise of various 
amplitudes. The results in this figure clearly show that 
noise effectively linearizes the nonlinear behavior of the 
HH model and extends the bottom limit of the spike fre- 
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Fig. 4 .  The input-output relationships from the HHN model. Var = var- 
iance of membrane potential noise. Each data point in the figure repre- 
sents ten seconds of neuron sampling time in the simulation. 

quency modulation range to zero. The relationships in Fig. 
4 are consistent with spike data reported in the literature 
from many different axons (e.g., frog vestibular afferents 
[ 171, rat hippocampal pyramidal cells [ 181). 

When investigators apply sinusoidal stimuli to neural 
structures, the steady-state response spike trains often are 
analyzed by means of cycle histograms (which show spike 
occurrence as a function of phase of the stimulus sinu- 
soid). Fig. 5 shows cycle histograms obtained from a frog 
representative saccular afferent axon responding to sinu- 
soidal motion of various amplitudes. In the absence of 
applied stimulus, this axon exhibited spontaneous spike 
generation-about which both positive and negative mod- 
ulation could occur. For comparison, Fig. 6 shows cycle 
histograms obtained from the HHN model with I (  t )  a si- 
nusoidal current of various amplitudes. A background 
spike rate, about which modulation could occur, was gen- 
erated in the simulation by N',( i ) added to I (  r).  

For sinusoidal stimuli at low amplitudes and frequen- 
cies, the response modulation in the cycle histogram is 
very close to being sinusoidal. Fig. 5 shows the distortion 
that arises as the stimulus amplitude is increased. This 
same pattern is seen consistently in inner-ear afferent ax- 
ons at low stimulus frequencies. The nonlinear distortion 
consistently is related directly to the percentage of mod- 
ulation of the spike rate (relative to the spontaneous rate), 
and is essentially independent of the absolute amplitude 
of the stimulus and the actual value of spontaneous spike 
rate. Over the same relative response (percent modula- 
tion) range, at low frequencies, the same distortion pat- 
tern is robustly reproduced in the HHN model. Further- 
more, the distortion pattern is robust with respect to the 
combination of noise and dc current used to establish the 
spontaneous spike rate-as long as the noise amplitude is 
not too small and the dc current is not too big. 

Two distortion features [apparent in Fig. 5(c)] that are 
seen consistently at these stimulus frequencies and re- 
sponse amplitudes (in terms of percent modulation) are 
the following: 1) the positive slopes of the modulation 

0 100 0 100 

0 100 100 0 

PERCENT OF CYCLE PERCENT OF CYCLE 

Fig. 5 .  Cycle histograms for steady-state, spike-train responses of a frog 
saccular axon to sinusoidal acceleration stimuli. Stimulation frequency 
( f ) = 50  Hz. (a) Sample time ( s t )  = 40 s; peak stimulation accelera- 
tion ( p a )  = 1.2 X lO-'g. (b) st = 30 s;  pa = 2 X 10-5g. (c) st = 20 
s; pa = 1.2 x IO-". (d) st = 10 s; pa = 5 X 10-'g. 

0 100 0 100 
50 I j 100 , 7 
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Fig. 6. Cycle histograms for steady-state spike-train responses of the HHN 
model to sinusoidal currents. Variance of membrane potential noise = 

3.175' mV': stimulation frequency ,f = SO Hz. (a) Sample time (st) = 
45  s: peak stimulation strength (ps) = 0.15 uA/cm'. (b)  st = 45  s: ps 
= 0.31 uA/cm'. (c) st = 30 s: ps = 1.25 uA/cm'. (d) st = 13 s; ps 
= 10uA/cm' .  

waveform are steeper than the negative slopes (making 
the front edge of the positive half-cycle steeper than the 
back edge); 2) the width of the negative half-cycle is larger 
than that of the positive half-cycle. These two character- 
istics occur robustly in the HHN model, over the same 
range of response amplitudes, as shown in Fig. 6(c). 

Whereas the distortion pattern in the cycle histogram 
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0 500 0 400 

SPIKE INTERVAL (ms) SPIKE INTERVAL (rns) 

Fig. 7 .  Spike interval histograms from the HHN model. (a) Variance of 
membrane potential noise (var) = 4. I '  mV'; sample time (st) = 60 s;  
hyperpolarizing current = -4 .5 uA/cm'. (b)  Var = 4.76' mV'; st = 

10 s (no hyperpolarizing current) 

30 150 I n  

0 540 0 400 

SPIKE INTERVAL ( m S )  SPIKE INTERVAL (ms) 

Fig. 8. Spike interval histograms for spontaneous firing in two frog VIIlth- 
nerve axons. (a) From a frog utricular axon: sample time = 50 s. (b) 
From a frog saccular axon: sample time = 36 s. 

from the HHN model was robustly independent of the 
combination of dc current and noise used to generate the 
spontaneous spike rate, that combination does affect the 
interval histogram of the spontaneous spikes. Fig. 7 shows 
spike-interval histograms obtained from the HHN model 
with different combinations of dc current and noise am- 
plitudes. For comparison, similar spontaneous spike-in- 
terval histograms from frog saccular and utricular axons 
are shown in Fig. 8. 

Fig. 7 shows that the mean spike rate increases and the 
spike interval variance decreases in  the HHN model as 
the dc input signal strength increases. This relationship 
between spike rate and spike interval variance is a basic 
property of Poisson and Poisson-like processes, and is 
commonly reported as a feature of repetitive firing in nerve 
cells. Thus, modulation by dc input signal seems to be 
closely related to lambda-modulation in Poisson pro- 
cesses (see 1241). 

Occasionally, spike interval histograms show multiple 
modes, reflecting periodicities either in internal signals 
(as in neuronal pacemaker signals) or in externally-ap- 
plied stimulus signals. Fig. 9(a) shows an interval histo- 
gram from the HHN model when Z ( t )  comprised a dc 
component plus a sinusoidal component. This histogram 
is similar to those observed from a number of axons (e.g. ,  
frog saccular axons [20], turtle basilar papilla afferents 
[ 191, and cat lateral geniculate neurons 1211). An example 
from a seismic-sensitive axon of the bullfrog sacculus is 
shown in Fig. 9(b). The shape of the histogram from the 

2 0 0 ,  1 , , 

loo o] 

0 100 100 0 

S P I K E  INTERVAL (rns) SPIKE INTERVAL (ms) 

Fig. 9. Multimodal spike interval histograms from the frog Vlllth nerve 
and the HHN model, each stimulated with 100 Hz inputs. (a) Data from 
the HHN model: variance of membrane potential noise = 3.175' mV'; 
sample time ( s t )  = 30  s; peak amplitude of sinusoidal input current 2 
uA/cm'. (b) Data from a frog saccular axon: st = 5 .3  s.  

HHN model depended on the combination of noise, dc 
current, and sinusoidal current amplitudes. 

From all of these simulation results, one can see that 
many common characteristics of repetitive spike firing can 
be reproduced well by the HHN model with suitable com- 
binations of noise, dc current input, and, where applica- 
ble, sinusoidal current input. 

DISCUSSION 
Chapman [14] shows that the characteristics of the re- 

petitive response induced in squid giant axons by the ap- 
plication of sustained (dc) depolarizing currents under 
space clamp conditions are consistent with the character- 
istics of repetitive firing simulations based on the HH 
model. Both squid experimental data and the HH model 
computer simulation data (e.g. ,  Fig. 4 in the previous sec- 
tion; 141, [SI) show that the relationships between depo- 
larizing membrane current and the rate of repetitive firing 
can be divided into three regions. Region I is wholly be- 
low threshold. Here there is no repetitive spike firing at 
all. Region I1 comprises two subregions: one is an abrupt 
transition between zero spike rate and a near-saturation 
spike rate, the other is a subregion over which the nearly- 
saturated spike rate can increase slightly (in direct pro- 
portion to further increases in dc current) without affect- 
ing the spike amplitude much. Region Ill is beyond region 
11. There the amplitude of the spike decreases markedly 
(to less than 25 percent of its normal height) with further 
increases of the dc current; and the spike firing rate first 
increases and then decreases to zero as the dc depolarizing 
current is increased. This third region of the frequency- 
current relationship in fact represents an overdriven con- 
dition of the spike initiator where the generated spikes 
will not conduct along a nonspace-clamped axon 141. In 
our HH simulation, for example, when the spike rate is 
higher than 120 spikes per s, the spike amplitude is less 
than two thirds of the amplitude of spikes at lower rates. 
In frog and gerbil VIIIth-nerve axons, even when they are 
driven at extremely high rates by strong stimuli, we do 
not see this sort of spike amplitude shift. Region I11 there- 
fore evidently is out of the normal biophysical operating 
range of real axons. Thus, for the space-clamped squid 
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axon where normal neuronal noise is absent, operating 
regions I and I1 could be considered to represent two bi- 
nary states, suitable for category 1) operation of neural 
networks. 

In Fig. 4, the spike rate versus current relationship 
tends to a shallow-sloped straight line as the mean spike 
rate ranges approximately between 50-100 spike per s (a 
dynamic range of 6 dB). This corresponds to region I1 of 
the previous paragraph. This region has been cited re- 
peatedly in the literature as accounting for continuous 
spike-rate modulation in nerve cells. However, spike 
trains in real axons (e.g., those in the frog VIIIth nerve) 
commonly show dynamic ranges much wider than the 6 
dB available here, with spike rates ranging down to or 
very close to zero. A 6 dB operating range hardly seems 
an adequate basis for category 2) operation of neural net- 
works. 

The noise current generator in the HHN model is a 
lumped element. We intend it to represent many different 
noise sources lumped together [ 2 2 ] .  Since most of these 
noise sources result in  membrane potential fluctuations, 
one would expect the statistical characteristics of the spike 
train to be strongly related to the membrane potential 
noise. This conclusion was reached long ago by Calvin 
[ 2 3 ]  on the basis of observations of repetitive firing in cat 
motorneurons. Furthermore, the noise amplitudes (ap- 
proximately 2-8 mV peak-to-peak) he observed are within 
the range of noise amplitudes that were effective in our 
HHN simulations (e.g., the 0.8-4 mV range shown in 
Fig. 4). With the addition of noise in this amplitude range, 
the Hodgkin-Huxley spike initiator is transformed from a 
binary element, suitable for category 1) neural network 
operation, to a continuous analog element, suitable for 
category 2) neural network operations. 

For noise amplitudes below this range, the operation of 
the HHN spike initiator is intermediate, switching ran- 
domly in a binary manner between “on” periods and 
“off” periods. During “off” periods there are no spikes; 
during each “on” period there is a random number of 
spikes, with nearly constant intervals. Thus, the HHN 
model with low noise amplitudes provides a good expla- 
nation of random bursting activity often seen in neurons 
[91. 

CONCLUSIONS 
We have shown that the Hodgkin-Huxley model, with 

noise added to it, provides an excellent general model for 
spike-train generation in the nervous system. With just 
two parameters, the noise amplitude and the amplitude of 
a dc bias current (depolarizing or hyperpolarizing), this 
model can reproduce most of the qualitative features of 
the spike trains with which we are familiar. In addition, 
it can reproduce very well spike-rate modulation by si- 
nusoidal stimuli, including the frequency and amplitude 
dependent distortion patterns observed in cycle histo- 
grams. 

We know that noise-generating mechanisms are present 

in real neurons. We conclude that the noise associated 
with spike-initiator loci is an essential ingredient in spike- 
train production, allowing the nervous system to operate 
large neural networks in analog fashion. 
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