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While making longitudinal observations on schistosome cercarial shedding, Pitchford and Visser found that there
is an annual fluctuation in the minimum time for cercarial development which is apparently related to temperature
(1). Schistosome control strategy could be designed to take advantage of this fluctuation if it were predictable.
Inspired by the successes of physiological time models ('heat-unit models') in predicting life-stage durations
of various agricultural pests (2,3), we have developed a model of this type for the schistosomes. This model fits the
data of Pitchford and Visser quite well. Coupled with recent temperature history and short term temperature
forecast it could be a useful tool for predicting the onset of cercarial shedding.

I. BASIC PHYSIOLOGICAL-TIME MODEL
Entomologists have for some time recognized the
effects of ambient temperature on rates of develop-
ment of insects in various life stages: several
mathematical models to describe the relationship
between temperature and development rate have
been proposed (3). Perhaps the simplest of these
models is based on the assumption that below a
certain (threshold) temperature, development does
not proceed at all and at higher temperatures the
rate of development is directly proportional to the
difference between actual ambient temperature
and threshold temperature. Integrating this differ-
ence over time, therefore, we would obtain the
model's prediction of the total progress of develop-
ment. There are two ways to envisage this integral:
(1) as an accumulation of heat, over time, or (2) as
an accumulation of development time, with each
time increment weighted appropriately with respect
to temperature. The first interpretation led to the
older label 'heat unit model' and the second to the
more recent label 'physiological time model'.
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Regardless of its label, the model has been quite
successful in predicting development of various
insect stages both under controlled laboratory
conditions (2) and more recently in the field (4).
In the light of this success, we decided to attempt
to apply this concept to the development of schis-
tosome cercariae.

Consider a cohort of miracidia that have invaded
snails: before the members of this cohort ultimately
emerge as cercariae, they must undergo a develop-
ment process. If all parameters of the larval
schistosomes' environment were constant, then one
might also expect the maturation time to be rela-
tively constant. Because of the homeostatic mechan-
isms of the snail host, most of the parameters of the
internal milieu are buffered from the external
environment and vary little, but the major exception
is temperature as the snail is poikilothermic. We
make the following assumptions:

1 that the observed variations in maturation time
of schistosome larvae in snail hosts are the
direct result of variations in ambient tempera-
ture patterns;

2 that maturation proceeds only when the am-
bient temperature exceeds a certain threshold,
and when the temperature falls below this
threshold the maturation process stops but
does not reverse;

3 that when the temperature exceeds threshold,
the maturation rate is directly proportional to
the difference between the actual ambient
temperature and the threshold;
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4 that maturation must reach a threshold level
for cercarial shedding to begin.

Thus we assume that the progress made towards
initiation of shedding is directly proportional to a
'physiological time' variable measured in units of
degree days. We denote the temperature threshold
as ft, the maturation threshold as j90, the time of
miracidia invasion of snail hosts as time 0. Let

T(t) = the temperature at time t,

1 if T(0 > ft,

0 otherwise

(1)

(2)

z{t) = total maturation accumulated from time 0 to
time t, (3)

xit) = amount of time between 0 and / during
which T > ft, (4)

t, — time of initiation of cercarial shedding. (5)

Then we have

(6)

and

2(0= J [T(r) -

= / X(r)T(r)dr - ft { X(r)dr
0 0

= { X(r)T(r)dr -
0

(7)

According to our assumptions, when z(t) reaches ft,,
the shedding starts. Therefore,

ft =

(8)

(9)

(10)

01)

-

Let

then

ft. =
or

yifs)

J X{r)T{r)dT -
0

= { X(r)T(r)dr,

* y(t.) - fo{u\

— ft "1" ft*V*)»

This, then, is our physiological-time model for
schistosome larval stages in snail hosts. It has two
parameters, ft, and ft. The first step in testing the
potential use of this model is to determine how well
it can be made to fit existing data by proper choice
of the values of these two parameters. If, from
available experimental data such as that of
Pitchford and Visser, we have the time from snail
penetration to initiation of shedding, the tempera-
ture history over that time, and an educated guess
of the value of ft, we can obtain y(t3) and x{ts).
Then we can treat equation (11) as a linear regression
model and obtain a least-square estimator, fi0, for
ft. However, in this process a least-square estima-
tor, /31? for ft accompanies $0 and this ft may not
be the same as our initial guess of ft. Then an
iterative method can be used to obtain estimates
of these threshold values for our model. Let

flj(0) be the initial guess of ft,
ft(i) and ft(i) be the least square estimators for
j30 and ft, respectively in the ith iteration,
1=1,2...,
n be the number of observations,
X) be the value of x of the yth observation,
j = l,2...,n,
ys be the value of y of the/th observation,
y=l,2,...,n,
x be the vector [x xt... xn]

T,
and y be the vector \y± yt ... yn]

T.
Note that x and y have to be calculated with a ft
value given. Also let

Xj(i) be the value of Xj used in the ith iteration,
j = l,2,...,n,
i = 1,2

yj(i) be the value of yj used in the ith iteration,
1 2

i = 1,2
(0be[xxfl)

be i = 1,2,...
Therefore, we start with an initial guess of ft(0) and
obtain x(l), y(l) to be used in the first iteration
for obtaining ft, (1) and ft(l). ft(l) is then used to
obtain x{2), y(2) which are later to be used in the
second iteration to get /?0(2) and ft(2), and so on.
If this process converges for the data we use, it is
stopped when certain preset conditions are met.
Different rules can be applied. In the following
two examples we stop the iteration when

&(0 - Lii-D < (1/100) &JJH1),
ft(0 - kihD < (1/100) ft(/-7)

Notice that if the initial guess of ft (i.e., ft(0)) and

 at U
niversity of C

alifornia, B
erkeley on D

ecem
ber 20, 2010

ije.oxfordjournals.org
D

ow
nloaded from

 

http://ije.oxfordjournals.org/


PREDICTION OF SCHISTOSOME CERCARIAL SHEDDINO

the first least square estimator of ft (i.e.,;
are no greater than the minimum observed tempera-
ture, then no further iteration is needed.

II. APPLICATION OF THE MODEL TO SCHISTOSOMA

MANSONI
In this section, our model is applied to a set of data
on the minimum cercarial incubation period of
Schistosoma mansoni in snails of the species
Biomphalaria pfeifferi (1). Batches of 30 new snails
were exposed every two weeks to S. mansoni
miracidia and the first cercarial sheddings recorded.
We adopt the data for 24 snail cohorts for which
corresponding weekly water temperature records
are available. The temperature data reproduced in
Figure 1 are taken from Figure 2 of reference (1).

We have n = 24. Assume that ft is any value
below 14-00°C, which is the lowest temperature
during the entire observation period. Then for
each cohort, the X(t) = 1 throughout the period
from time 0 to time ts. The calculated x (1) and y(l)
are listed in Table I. Based on x(l) and y(l), the
least square estimators poO) an£^ PiO) i*1 equation
(11) are

to =460-27, (13)

&(1) = 14-09.

= 1409 - 14-00
= 09
< (1/100) ft(0),

we do not need to do any further iteration.

163'

(14)

(15)

FIG. 1

Weekly water temperature at 10 am in the area where
shedding data were taken (reproduced from Fig. ̂ 2 of

reference 1) | ^
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FIG. 2
Observed (upper lines) and predicted (lower lines) minimum incubation periods for S. mansoni. Numbers on left give dates

of infection for each pair of lines
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TABLE I

The values of JC(1), y{\) for calibrating our model in the case
ofS. mansoni

J y/(D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

35
31
32
38
58
73
98

109
124
113
75
82
89
61
63
60
54
43
39
39
35
36
45
53

991-25
879-25
84700
965-75

1440-25
1442-50
1802-25
1960-25
2242-50
2063-25
1402-75
1655-50
1763-75
1307-50
136000
1319-25
1279 00
1127-75
1063-25
1215-25
939-75
916-25
889-25

1091-50

We conclude that we can calculate X(t) using
& = 14-09. If T(t) is given, the beginning of
cercarial shedding t, can be calculated by solving

460-27 =• / ' X(j)T(r)dr - 1407x(f,). (16)
o

The observed minimum incubation periods and
the predicted ones based on ($& /3X as given in
equations (13) and (14) are shown in Table II and
Figure 2. The average observed minimum incuba-
tion period is 62 days and the root mean square
error of prediction is 10 days.

i n . APPLICATION OF THE MODEL TO
SCmSTOSOMA HAEMATOBIUM
The application of our model to the minimum
cercarial incubation period data of Schistosoma
haematobium (1) is illustrated in this section.

The water temperature data are the same as
shown in Figure 1. In the period for which we have
temperature data, 22 cohorts of 30 new snails
B. physopsis were exposed every two weeks to
S. haematobium miracidia and their minimum
cercarial incubation periods have been recorded
(1). Now n = 22. As in the preceding section, we
try a first guess

TABLE H

Observed and Predicted Minimum Cercarial Incubation
Periods for S. mansoni in B. pfeifferi

Date of Miracidia
Entry

1961: 2/23
2/27
3/9
3/23
4/7
4/21
5/4
6/1
6/15
6/29
7/13
7/27
8/10
8/24

9/21
10/19
11/16
11/30
12/14

1962: 1/25
2/7
3/8
3/22

&(0) = 14-00,

Date of Initiation
observed

3/30
3/30
4/10
5/1
6/5
7/3 .
8/10
9/18
10/17
10/20
9/26

10/17
11/7
10/24
11/9
11/20
12/12
12/29
1/8/62
1/22/62
3/1
3/15
4/22
5/14

of Shedding
predicted

3/27
3/31
4/13
5/4
6/2
7/15
8/21
9/20
9/27
10/2
10/6
10/11
10/16
10/25
11/6
11/11
12/7
12/25
1/2/62
1/7/62

•3/2
3/19
4/29
6/3

(17)

and start our iteration. The values for x(i), y(i), =•
1,2,3,4.5, are listed in Table ED. The obtained

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

&(1) =420-30,
4 ( 1 ) = 15-73,
)3O(2) = 463-78,
&(2)= 14-89,
to = 436-00,
4 ( 3 ) = 15-42,
/L(4) = 448-34,
A(4) = 15-19,
^ =442-57,

= 15-30.

Note that for this set of data, the iteration method
does converge to give us

to-to = -23to
and

(4) = -n .
< (1/100^(4).

(28)

(29)
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TABLE III

The values ofx(i), yif), I "• 1J£A£, for calibrating our mode! in the ease ofS. haematoWum

165

j
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

xKD
174
158
145
126
118
141
140
81
70
68
61
61
57
49
46
42
49
47
48
49
60
63

yKD
341600
3046-50
2727-00
2175-25
2153-75
2513-50
2533-00
1623-75
150300
1510-25
1425-25
1457-50
146900
1277-25
1224-75
1270-75
1280-75
116900
116900
96900

1208-25
1266-75

xj(2)
162
146
133
114
106
129
128
81
70
68
61
61
57
49
46
42
49
47
48
49
60
63

yj(2)
3151-00
2781-75
246200
1910-25
1888-75
2248-50
226800
1623-75
1503-00
1510-25
1425-25
1457-50
146900
1277-25
1224-75
1270-75
1280-75
116900
116900
96900

1208-25
1266-75

Xi(3)
169
153
140
121
113
136
135
81
70
68
61
61
57
49
46
42
49
47
48
49
60
63

W(3)
330800
2938-50
261900
2067-25
2045-75
2405-50
2425-00
1623-75
150300
1510-25
1425-25
1457-50
1469-00
1277-25
1224-75
1270-75
1280-75
116900
116900
96900

1208-25
1266-75

*K4)
166
150
137
118
110
133
132
81
70
68
61
61
57
49
46
42
49
47
48
49
60
63

yj(4)
3235-00
2871-50
2552-00
2000-25
1978-75
2338-50
2358-00
1623-75
150300
1510-25
1425-25
1457-50
1469-00
1277-25
1224-75
1270-75
1280-75
116900
116900
96900

1208-25
1266-75

xj(5)
167-50
151-50
138-50
119-50
115-50
134-50
133-50
81-00
7000
6800
61 00
61-00
5700
49-00
4600
4200
49-00
4700
4800
4900
6000
63-00

yX5)
3268-50
2905-00
2585-50
2033-75
2012-25
2372-00
2391-50
1623-75
1503-00
1510-25
1425-25
1457-50
1469-00
1277-25
1224-75
1270-75
1280-75
1169-00
116900
96900

1208-25
1266-75

According to our stopping rule, we take

and

= 15-30,

= 442-57.

(30)

(31)

Thus, if T(t) is given, t, for S. haematobium can
be calculated by solving

442 • 57 = J' X{r)T(r)dr - 15 • 30 xfo). (32)
o

The observed minimum incubation periods and
the predicted ones with /?0, & as given in equations
(31) and (30) are shown in Table IV and Figure 3.
The average observed minimum incubation period
is 90 days and the root mean square error of
prediction is 24 days. Eighty-one per cent of the
total square error is that of the first cohort.

Comparing equations (32) and (16), we notice
that for S. haematobium the temperature threshold
is slightly higher and the maturation threshold
slightly lower than for S. mansoni.

IV. DISCUSSION
At first glance, Figures 2 and 3 indicate a reasonably
good overall fit of our adaptation of the physio-

logical-time model to cercarial development. The
standard objective measure, root mean square

TABLE IV

Observed and Predicted Minimum Cercarial Incubation
Periods for S. haematobium in B. physopsis

Date of Miraddia
Entry

1961: 4/7
4/21
5/4
5/18
5/23
6/1
6/15
8/18
9/7
9/21
10/5
10/19
11/2
11/16
11/30
12/14

1962: 1/25
2/7
2/13
2/22
3/8
3/22

Date of Initiation
observed

9/28
9/26
9/26
9/21
9/18
10/20
11/2
11/7
11/16
11/28
12/5
12/19
12/29
1/4/62
1/15/62
\ 125162
3/15
3/26
4/2
4/12
5/7
5/24

of Shedding
predicted

6/20
8/30
9/17
9/26
10/1
10/8
10/15
11/4
11/19
11/21
12/3
12/11
12/17
12/27
1/3/62
1/7/62
3/4
3/23
3/31
4/13
5/7
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4 / 7

4/21
5/4

5/18 :
5/23

6/1 ~
6/15

8/18
9 /7

9/21
10/5 =

10/19

FIG. 3
Observed (upper tines) and pre-
dicted (loweT lines) minimum
incubation periods for S. haema-
tobium. Numbers on left give dates
of infection for each pair of lines

11/2
11/16

11/30
12/14

1/25

2/7 r r
2/13 =
2/22

3/8 =
3/22 =

(rms) error, confirms this subjective conclusion.
In the case of S. mansoni, the rms error is 16 per
cent of the mean observed value, while in the case
of S. haematobium the rms error is 27 per cent of
the mean observed value. By its very nature, rms
error places disproportionate emphasis on large
errors. For example, if the single entry correspond-
ing to 4/7 in Figure 3 is removed, the rms error for
S. haematobium is reduced from 27 per cent of the
mean to 10 per cent of the mean. Examining the large
error entries for both S. haematobium and S. mansoni,
one finds that with the exception of that one 4/7
entry, the errors follow an interesting pattern:
the model tends to overestimate minimum incu-
bation time when incubation begins in a period
of warm ambient temperatures, followed by a
period of cold ambient temperatures; and it tends
to underestimate minimum incubation time when
incubation begins in a period of cold ambient
temperatures, followed by a period of warm ambient
temperatures. This may indicate that temperature
is more important during early phases of develop-
ment than during later phases. However, if we
tried to include such effects in our model, the
already large error in the 4/7 entry of Figure 3
would be further increased. It is interesting that
the data for the 4/7 entry were taken by Pitchford
and Visser for a single shedding snail, whereas the
data for most entries were taken for at least ten

shedding snails. Therefore, it is possible that the
4/7 entry data is anomalous.

v. CONCLUSION
Bearing the objective of control in mind, instead of
modelling the entire transmission dynamics of
schistosomiasis (see [5] to [10]) which would require
a large-scale effort in field work to determine the
parameters, we chose to model a single phase of
the life cycle, where good data were already avail-
able. The simple model presented here is not
intended to interpret the mechanisms underlying
sporocyst development, but merely to predict the
beginning of cercarial shedding by snails exposed to
schistosome miracidia. Coupled with knowledge
of the approximate size of a snail population, such
predictions could be useful in the timing of control
measures (for example one might wish to apply
molluscicides just prior to a predicted large emer-
gence of cercariae).
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