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Abstract

Information about the tuning and timing of excitation, adaptation and suppression in an auditory primary afferent axon can be
obtained from the second-order Wiener kernel. Through the process of singular-value decomposition, this information can be
extracted from the kernel and displayed graphically in separate two-dimensional images for excitation and inhibition1. For low- to
mid-frequency units, the images typically include checkerboard patterns. For all units they may include patterns of parallel
diagonal lines. The former represent non-linearities in the phase-locked (ac) response of the unit; the latter reflect non-linear
envelope-following (dc) responses. Examples of detailed interpretation are presented for three amphibian-papillar units from the
American bullfrog. The second-order Wiener kernel itself is derived from second-order reverse correlation between spikes and a
continuous, non-repeating, broad-band white-noise stimulus. 1 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For a primary auditory a¡erent unit, the second-or-
der Wiener kernel provides a two-dimensional visual
image of the unit’s second-order non-linear dynamics
(Eggermont, 1993; van Dijk et al., 1994, 1997a,b; Ya-
mada et al., 1996; Yamada, 1997; Yamada and Lewis,
1999). For a low-frequency auditory unit, the most
dominant feature of this image typically is a checker-
board pattern of light and dark squares (van Dijk et al.,
1997a; Yamada et al., 1996). For a high-frequency unit,
the most dominant feature typically is a pattern of par-

allel diagonal lines (van Dijk et al., 1997a; Yamada,
1997). Simple array arithmetic allows us to decompose
the second-order kernel into two separate images, one
corresponding solely to positive changes in spike rate
(e.g. excitatory processes), the other corresponding sole-
ly to negative changes in spike rate (e.g. inhibitory pro-
cesses). It also allows us to attach physiological mean-
ing to features such as the checkerboard and parallel
diagonal line patterns. In this paper we apply this ap-
proach to data from the American bullfrog (Rana ca-
tesbeiana). In a subsequent paper, we apply it to the
Mongolian gerbil (Meriones unguiculatus).

The ¢rst-order Wiener kernel (commonly known in
the hearing research community as the REVCOR func-
tion) is simply a waveform segment that can be inter-
preted as a truncated estimate of the linear component
of the unit’s impulse response. The kernel is produced
by reverse correlation of a white-noise stimulus and the
spikes produced by that stimulus in the auditory unit’s
axon (de Boer and Kuyper, 1968; de Boer and de
Jongh, 1978). In practice, it is computed from noise-
stimulus waveforms that are digitized with a ¢xed sam-
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1 In this paper, we use the term inhibition to include all of those
phenomena (such as adaptation and rate suppression) that result in
reduction of instantaneous spike rate in a primary auditory a¡erent
axon; it does not imply involvement of inhibitory synapses. We use
excitation to include all of those phenomena that result in increase of
instantaneous spike rate.
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pling rate ; the reciprocal of the sampling rate de¢nes
the unit of temporal resolution, or instant, in the result-
ing discrete-time representation. Current practice usu-
ally employs the following steps: (1) digitize both the
white-noise stimulus and the neural recording at a rate
of m samples per second (making each instant equal to
(1/m)th of a second); (2) estimate the instant (sampling
interval) during which the peak of each spike occurred;
(3) select the segment of white-noise stimulus (the
n successive samples of stimulus sound pressure) that
occurred at that instant and at the n31 instants imme-
diately preceding it, e.g. for n= 4

Si ¼ ith stimulus segment ¼ ai bi ci di ð1Þ

(4) reverse the segment in time,

SiðrevÞ ¼ di ci bi ai ð2Þ

(5) compute the average of all such n-sample seg-
ments; and (6) multiply the result by an appropriate
scale factor K (normalizing for mean spike rate and
noise-stimulus power level) (Schetzen, 1980; van Dijk
et al., 1994); the unit of the normalized kernel typically
would be 1.0 spike/s per Pa; e.g. for N spikes

h1ðd Þ ¼ K ½~dd ~cc ~bb ~aa� ¼ h1ð0Þ h1ð1Þ h1ð2Þ h1ð3Þ ð3Þ

where

~aa ¼ 1
N

XN
i¼1

ai

Thus, in practice, each white-noise segment is stored
as a linear array of n sound-pressure values ; and the
¢rst-order kernel, h1, is a linear array of n normalized
average sound-pressure values. Thus, h1(0) is the nor-
malized average value of the noise sound pressure at the
instant of the spike peak; h1(1) is the normalized aver-
age value of the noise sound pressure in the instant
immediately preceding the spike peak, and so forth.

The second-order kernel is computed by repeating
the ¢rst four steps used for the ¢rst-order kernel, then
proceeding through the following steps (Marmarelis
and Marmarelis, 1978; van Dijk et al., 1994): (5) take

the outer product of each reversed segment (Si(rev))
with itself (see Table 1)

aidi aici aibi a2
i

bidi bici b2
i biai

cidi c2
i cibi ciai

d2
i dici dibi diai

2
664

3
775 ð4Þ

(6) compute the average over all such nUn arrays,

~adad ~acac ~abab ~aaaa
~bdbd ~bcbc ~bbbb ~baba
~cdcd ~cccc ~cbcb ~caca
~dddd ~dcdc ~dbdb ~dada

2
664

3
775 ð5Þ

where, for example, for N spikes

~adad ¼ 1
N

XN
i¼1

aidi ð6Þ

(7) subtract the covariance matrix (cov) of the noise
stimulus (a symmetric nUn array of values computed
in exactly the same way, but from all possible n-sample
segments of the white-noise stimulus). Then (8) multiply
the result by an appropriate scale factor K2 (normaliz-
ing for mean spike rate and noise-stimulus power level)
(Schetzen, 1980; van Dijk et al., 1994).

cov ¼

~ADAD ~ACAC ~ABAB ~AAAA
~BDBD ~BCBC ~BBBB ~BABA
~CDCD ~CCCC ~CBCB ~CACA
~DDDD ~DCDC ~DBDB ~DADA

2
664

3
775 ð7Þ

h2ðd 1; d 2Þ ¼ K2

~adad3 ~ADAD ~acac3 ~ACAC ~abab3 ~ABAB ~aaaa3 ~AAAA
~bdbd3 ~BDBD ~bcbc3 ~BCBC ~bbbb3 ~BBBB ~baba3 ~BABA
~cdcd3 ~CDCD ~cccc3 ~CCCC ~cbcb3 ~CBCB ~caca3 ~CACA
~dddd3 ~DDDD ~dcdc3 ~DCDC ~dbdb3 ~DBDB ~dada3 ~DADA

2
664

3
775

¼

h2ð3; 0Þ h2ð3; 1Þ h2ð3; 2Þ h2ð3; 3Þ
h2ð2; 0Þ h2ð2; 1Þ h2ð2; 2Þ h2ð2; 3Þ
h2ð1; 0Þ h2ð1; 1Þ h2ð1; 2Þ h2ð1; 3Þ
h2ð0; 0Þ h2ð0; 1Þ h2ð0; 2Þ h2ð0; 3Þ

2
664

3
775 ð8Þ

Thus, h2(0,0) is the normalized average of the square
of the noise-stimulus amplitude that occurred at the
instant of the spike peak, less the normalized average
square of the noise-stimulus amplitude; h2(1,1) is the
normalized average of the square of the noise-stimulus
amplitude that occurred one instant before the spike
peak, less the normalized average square of the noise-
stimulus amplitude; and h2(k,j) is the normalized aver-
age of the product of the noise-stimulus amplitudes that
occurred k and j instants before the spike peak, less the
normalized average product of noise-stimulus ampli-
tudes k3j instants apart.

Table 1
Outer product of the vector di ci bi ai with itself

ai aidi aici aibi aiai
bi bidi bici bibi biai
ci cidi cici cibi ciai
di didi dici dibi diai

di ci bi ai
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By virtue of the manner in which it is constructed,
the second-order Wiener kernel (h2) for an auditory
unit is a square (nUn) array of real numbers, whose
values are symmetrically arranged about the rising di-
agonal of the square ^ as they are in the following
(4U4) array:

K L Q N 4

O h N 3 Q

R N 2 h L

N 1 R O K

2
664

3
775 ð9Þ

where each letter represents a positive or negative real
number, and the rising diagonal comprises the numbers
Ni. For such an array of numbers, the matrix operation
known as singular-value decomposition yields an espe-
cially simple result (Yamada, 1997), allowing us to re-
construct h2 from a weighted set of n waveforms
(known as singular vectors).

h2ðd 1; d 2Þ ¼
Xn
j¼1

kjĥhjðd 1Þĥhjðd 2Þ ð10Þ

For each singular vector, h“j, in this formulation, the
corresponding weight, kj, can be either a positive or a
negative real number (see Appendix).

Having computed the kernels, one can insert them
into the Wiener series (see Marmarelis and Marmarelis,
1978; Rugh, 1981; Schetzen, 1980) to obtain predic-
tions of the response, r(t), of the auditory unit to
a new stimulus waveform, p(t), of arbitrary complex-
ity.

rðtÞ ¼ h0 þ
Xn31

d¼0

h1ðd Þpðt3d Þþ

Xn31

d 2¼0

Xn31

d 1¼0

h2ðd 1; d 2Þpðt3d 1Þpðt3d 2Þ þ T

¼ r0 þ r1ðtÞ þ r2ðtÞ þ T ð11Þ

where h0 was the mean spike rate in the presence of the
white noise ; t is time (number of instants) from the
beginning of the stimulus waveform; r(t) is instantane-
ous spike rate; and p(t) is sound pressure. Thus, if the
stimulus waveform, p(t), were repeated M times, r(t)
would predict the content of the tth bin of the peristim-
ulus time histogram (PSTH) divided by the total time
represented by each bin, M/m (m being the rate at
which the noise was sampled). Singular-value decompo-
sition of h2 allows us to simplify the second-order
term, r2(t), in a revealing manner. Inserting the right-
hand side of Eq. 10 into the third term of Eq. 11, we
have

r2ðtÞ ¼
Xn31

d 1¼0

Xn31

d 2¼0

Xn
j¼1

kjĥhjðd 1Þĥhjðd 2Þ
" #

pðt3d 1Þpðt3d 2Þ

¼
Xn
j¼1

kj
Xn31

d 1¼0

ĥhjðd 1Þpðt3d 1Þ
Xn31

d 2¼0

ĥhjðd 2Þpðt3d 2Þ

¼
Xn
j¼1

kj
Xn31

d¼0

ĥhjðd Þpðt3d Þ
" #2

¼
Xn
j¼1

r̂rjðtÞ ð12Þ

where

r̂rjðtÞ ¼ kj
Xn31

d¼0

ĥhjðd Þpðt3d Þ
" #2

The form (¢rst-order convolution) of the ¢rst-order
term of the Wiener series represents a linear ¢ltering
process. The response r1(t) would be the output of the
¢lter when p(t) was its input; the impulse response of
the ¢lter would be h1(t). Similarly, the response r“j(t) in
Eq. 12 would be the square of the output of a linear
¢lter when p(t) was its input; the impulse response of
this ¢lter would be h“j(t). Thus r2(t) can be interpreted to
be a weighted sum of the squares of the outputs of
n linear ¢lters, each with its own impulse response or
¢lter function.

Notice that, regardless of the form of p(t), r“j(t) is
either entirely positive or entirely negative, depending
on the sign of kj. This allows one to decompose the
second-order kernel into two nUn arrays, the excitatory
component (h2exc) reconstructed from all singular vec-
tors with positive weights, and the inhibitory compo-
nent (h2inh) reconstructed from all singular vectors with
negative weights.

h2ðd 1; d 2Þ ¼ h2excðd 1; d 2Þ þ h2inhðd 1; d 2Þ ð13Þ

where

h2excðd 1; d 2Þ ¼
Xn
j¼1

kjĥhjðd 1Þĥhjðd 2Þ for kjs0

h2inhðd 1; d 2Þ ¼
Xn
j¼1

kjĥhjðd 1Þĥhjðd 2Þ for kj60
ð14Þ

2. Checkerboard patterns

The excitatory component of the second-order Wie-
ner kernel for each low-frequency frog or gerbil axon
(N of several hundreds) exhibited a robust checker-
board pattern. This pattern invariably arose from the
outer product of one, dominant, singular vector with
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itself (typically the highest-ranking singular vector) (see
Table 1); and that singular vector invariably had an
oscillatory shape that matched almost precisely the
shape of the ¢rst-order kernel (REVCOR function).
In other words, in each case, the shape (but not the
amplitude) of the checkerboard pattern in h2exc could
be reconstructed as the outer product of h1 with itself.
This makes the interpretation of the checkerboard pat-
tern in h2exc very simple. The predicted response of the
unit to a complex waveform will include a linearly-¢l-

tered version of that waveform (the ¢rst-order term of
the Wiener series of Eq. 11) plus the square of the same
linearly-¢ltered version, weighted by a positive number.
This represents a waveform that is ¢ltered and subse-
quently distorted in such a way that its positive excur-
sions are enlarged and its negative excursions reduced.
The e¡ect is modeled in Fig. 1. Here the ¢rst- and
second-order terms of a Wiener series are combined
to yield a prediction of the PSTH (bottom panel) in
response to a complex waveform (top panel).

Fig. 1. Predictions from a simple model of a 1.5-kHz cochlear unit, with h0 = 0 and h2 equal to 0.15 times the outer product of h1 with itself.
First panel (top): The input is a complex waveform, p(t). Second panel: We have constructed h1 as a truncated gammatone function. Third
panel: The convolution of p(t) with h1(t) yields the ¢rst-order term, r1(t), of the Wiener series. Fourth panel: With this simple model, the sec-
ond-order term, r2(t), of the Wiener series is 0.15[r1(t)]2. Fifth panel (bottom): The modeled PSTH, r(t), predicted by the Wiener series approx-
imates a phase-locked response, clipped at zero spikes per second. Prediction of abrupt clipping at zero spikes per second would require inclu-
sion of higher-order terms in the Wiener series.
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By itself, the ¢rst-order term, r1(t), of the Wiener
series predicts both positive and negative swings in
the instantaneous spike rate. The negative swings, of
course, can be seen only if they are superimposed on
background activity (represented by h0). When the
background activity is inadequate, the negative excur-
sions will be clipped at zero spikes per second. In that
case, the second-order term provides an approximation
to the clipping. For cases in which the background rate
(h0) is su⁄cient to prevent clipping, the second-order
term simply represents accentuation of the positive-
going excursions relative to the negative-going excur-
sions of the phase-locked response. This commonly-
seen form of even-order distortion can be explained in
terms of a negative slope in the probability density
function of the unit’s internal noise amplitude in the
vicinity of threshold at the spike trigger (see Lewis
and Henry, 1995).

The 1.5-kHz gammatone function used in the model
of Fig. 1 is presented again in the bottom left-hand
panel of Fig. 2. The phase and amplitude components
of its discrete Fourier transform (DFT) are shown di-
rectly above it. The upper panel of Fig. 3 shows h2, with
its bold checkerboard pattern, constructed as the outer

product of this h1 with itself (weighting factor = +1.0).
For the model of Fig. 1, this second-order kernel was
scaled (arbitrarily) by the factor +0.15.

3. Patterns comprising parallel diagonal lines

Under singular-value decomposition, a clear pattern
of parallel diagonal lines in the second-order Wiener
kernel of a frog or gerbil axon (Ns 100) invariably
has yielded a pair of oscillatory singular vectors with
essentially identical shapes, but 90‡ out of phase (i.e. in
quadrature) with one another. When the weights of
these two singular vectors are nearly equal, the corre-
sponding pattern consists of parallel diagonal lines;
when they are unequal, a checkerboard pattern is super-
imposed on the pattern of parallel lines. In Fig. 2 (right-
hand panels) and Fig. 3 (bottom panel) we have mod-
eled the situation with equal weights for a 6-kHz co-
chlear unit. The quadrature pair of singular vectors
(bottom right-hand panel of Fig. 2) comprises a gamma
sine function and a gamma cosine function. The phase
and amplitude components of their DFTs are shown
directly above them. The lower panel of Fig. 3 shows

Fig. 2. Model ¢lter functions. Left-hand panels: for a low-frequency unit, an eighth-order gammatone function and the amplitude and phase
components of its discrete Fourier transform (DFT). Right-hand panels: for a high-frequency unit a quadrature pair of eighth-order gamma-
tone functions and their DFTs.
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h2 constructed as the sum of the outer products of each
of these singular vectors with itself.

Patterns of parallel diagonal lines, without obvious
checkerboard patterns superimposed on them, were typ-
ical of h2exc for units whose characteristic frequencies
(CFs) were above the frequencies at which phase lock-
ing occurs. For units with somewhat lower CFs, with
checkerboard superimposed on parallel diagonal lines,
the shapes of the higher-ranking members of the
quadrature pairs of singular vectors invariably were
close matches to those of the ¢rst-order kernels, h1(t).
Thus, the checkerboard component of h2exc would be
interpreted in the same way that it is for low-CF units :
the predicted PSTH would include a linearly-¢ltered
version of the input waveform, plus the square of that
same linearly-¢ltered version, weighted appropriately.

When the weights of the members of a quadrature

pair of singular vectors are equal, interpretation of their
contribution to the predicted response is relatively sim-
ple (see Yamada and Lewis, 1999). Eq. 12 tells us that
the contribution comprises the sum of the squares of
the outputs of two linear ¢lters ^ the impulse responses
of which are the two singular vectors. Before they are
squared these two output waveforms themselves are in
quadrature. The sum of the square of two waveforms in
quadrature is the square of the positive half envelope of
either ¢ltered waveform. This is modeled in Fig. 4. A
complex input waveform, p(t), is convolved with each
of the two members, ha and hb, of the quadrature pair
(same pair as bottom right panel of Fig. 2). This yields
the (¢ltered) waveforms ya and yb. These are squared
and summed to yield the predicted PSTH in the bottom
panel of Fig. 4. If, instead of a burst of band-limited
noise, the stimulus p(t) in Fig. 4 had been a continuing
sinusoid (i.e. a tonal stimulus), r2(t) would have been a
positive constant (e.g. a positive dc contribution to
spike rate). Thus, the class of responses represented
by patterns of parallel diagonal lines in h2exc includes
those often labeled excitatory dc responses.

4. Examples from the frog amphibian papilla

American bullfrogs (R. catesbeiana) were anesthetized
by a combination of sodium pentobarbital and ket-
amine. The auditory nerve was exposed by a ventral
approach, through the roof of the mouth. Recordings
were made from single a¡erent axons, penetrated with
glass micropipette electrodes. Auditory stimuli were ap-
plied through a closed-¢eld system that included a
probe microphone for sensing the sound-pressure level
at the tympanum. Single-unit spikes and tympanic
sound-pressure level were recorded together on separate
channels of a cassette tape recorder, to be analyzed
later o¡-line. Speci¢c details, including dosages and
equipment, have been published previously (Yamada
and Lewis, 1999)2.

The examples shown here were selected for illustra-
tive purposes. The upper panel in Fig. 5 is a second-
order Wiener kernel (n= 200) taken over 3900 spikes
from a 300-Hz amphibian-papillar unit (in response to
white noise, 90 dB SPL, 100 Hz to 3.8 kHz). Singular-
value decomposition of h2 produced 200 singular vec-
tors; the weights of the highest ranking of these are
shown in Fig. 6. All 200 singular vectors were used in
the construction of the excitatory and inhibitory com-
ponents of h2 (middle and bottom panels, respectively,
of Fig. 5). Fig. 7 (bottom panel, dashed line) shows the

Fig. 3. Second-order Wiener kernels derived from the ¢lter functions
in Fig. 2.

2 All animal experiments were performed in accordance with proto-
cols approved by the UC Berkeley Animal Care and Use Committee
(protocol # R081-1097).
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highest-ranking singular vector (SV1, corresponding to
rank 1 in Fig. 6) plotted together with the ¢rst-order
Wiener kernel, h1 (solid line), for this unit. The ampli-
tude and phase components of the DFTs of these func-
tions are plotted above them. As discussed previously in
Section 2, the fact that the shapes of h1 and SV1 are so
nearly identical allows us to interpret them both as
re£ecting a single linear ¢lter, with some square-law
distortion (e.g. clipping) at its output. Fig. 8 (bottom
panel, dashed line) shows the second-ranked singular
vector, SV2, plotted together with SV1 (solid line).

Clearly SV1 (in part) and SV2 compose a quadrature
pair, which must re£ect underlying parallel diagonal
lines in h2 and in its excitatory component, h2exc. In
Fig. 6 one can see that the weight for SV1 is approx-
imately 40, and that for SV2 is approximately 9. Thus
the fraction of SV1 that contributes to the diagonal
parallel lines is approximately 9/40, and the fraction
that contributes to the checkerboard pattern is approx-
imately 31/40. This in turn implies that 31/40 of SV1

contributes to square-law distortion of the response
that is phase-locked to the linearly-¢ltered version of

Fig. 4. Predictions from a model of a 6-kHz cochlear unit, with h0 = 0, h1 = 0, and h2 being the equally-weighted sum of the outer products of
each member of the quadrature pair ha and hb with itself. First panel (top): The input is the complex waveform, p(t) (note time-scale change
from Fig. 1). Second panel: We have constructed ha and hb as quadrature gammatone functions. Third panel: The convolution of p(t) with ha

and hb yields the ¢ltered functions, ya and yb, respectively. Fourth panel: Each of the functions ya and yb is squared. Fifth panel (bottom):
The modeled PSTH, r(t) = y2

a+y2
b, predicted by the Wiener series is the square of the positive half envelope of ya and yb.
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the stimulus waveform; 9/40 of SV1 contributes to the
response that is phase-locked to the square of the enve-
lope of that ¢ltered waveform.

Fig. 6 shows that the weights of the third, fourth and

¢fth ranked singular vectors (SV3, SV4 and SV5) are
negative. This means that they contribute to h2inh rather
than h2exc. In addition to the dark line along its main
(rising) diagonal, the most obvious features of h2inh in
Fig. 5 are a pattern of diagonal parallel lines in the
vicinity of 5 ms and another (more faint and possibly
overlaid with checkerboard) between 10 and 20 ms.
Whereas h2exc represents strictly additive (positive) con-
tributions to the instantaneous spike rate (r2(t) in Eq.
12), h2inh represents strictly subtractive (negative) con-
tributions. Thus, while a pattern of parallel diagonal
lines in h2exc represents an added component of instan-
taneous spike rate that follows the square of the enve-
lope of a ¢ltered waveform (including positive dc re-
sponse to a constant-amplitude tone), that sort of
pattern in h2inh represents the subtraction of such a
component (including a negative dc response to a con-
stant-amplitude tone).

One can see that the periodicity of the pattern in the
vicinity of 5 ms in h2inh re£ects tuning to a frequency
that is higher than that represented by the checkerboard
pattern in h2exc. The periodicity of the pattern between
10 and 20 ms in h2inh is very similar to that of the
checkerboard pattern in h2exc, evidently re£ecting tuning
to approximately the same frequency. This conclusion is
supported by the tuning of the DFTs of SV3 and SV4

(Fig. 9, top panel). These two singular vectors clearly
represent both patterns, the higher-frequency pattern
around 5 ms and the lower-frequency pattern between
10 and 20 ms (compare the bottom panels of Figs. 5
and 9). Their DFTs show tuning peaks at approxi-

Fig. 5. Second-order Wiener kernel, along with its excitatory and in-
hibitory components, from a bullfrog amphibian-papillar unit.

Fig. 6. Weights for the 40 highest-ranking singular vectors of the
Wiener kernel of Fig. 5.
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mately 850 Hz and 300 Hz, respectively for the two
patterns.

We now can incorporate the information contained
in Figs. 5^9 into a single interpretation in terms of both
time and frequency. If we take the origin of the time
plots in these ¢gures (all three panels of Fig. 5, bottom
panels of Figs. 7^9) to represent the present moment in
time, then we have the following components in the
present instantaneous spike rate, r(t) : (1) From h1,
there is a component of the present instantaneous spike
rate that is phase-locked to a ¢ltered version of the
stimulus constituents that occurred approximately 4^
10 ms ago and had spectral energy in the vicinity of
300 Hz (Fig. 7). (2) From h2exc, there is additive
square-law distortion of component 1 and a small ad-

ditive contribution proportional to the square of the
envelope of component 1. (3) From h2inh, there is a
subtractive component of the present instantaneous
spike rate proportional to the square of the envelope
of a ¢ltered version of the stimulus constituents that
occurred approximately 4^7 ms ago and had spectral
energy in the vicinity of 850 Hz. (4) Also from h2inh,
there is a subtractive component proportional to the
square of the envelope of a ¢ltered version of the stim-
ulus constituent that occurred approximately 10^20 ms
ago and had spectral energy in the vicinity of 300 Hz.

Thus, the response to a brief 300-Hz stimulus would
be reduced by the presence of an earlier 300-Hz stim-
ulus. We presume that this corresponds to the phenom-
enon commonly labelled adaptation. The response to
the brief 300-Hz stimulus also would be reduced by
the simultaneous presence of an 850-Hz stimulus. We
presume that this corresponds to the phenomenon com-

Fig. 7. First-order Wiener kernel (bottom panel, solid line) and the
highest-ranking singular vector (bottom panel, dashed line) of the
second-order Wiener kernel of the amphibian-papillar unit of Fig. 5.
For comparison of shapes, both waveforms were normalized to
yield a peak positive value of 1.0. The corresponding DFTs are
shown in the top and middle panels.

Fig. 8. Highest-ranking pair of singular vectors of the second-order
Wiener kernel of Fig. 5, normalized as in Fig. 7, along with their
DFTs. These two vectors form an excitatory quadrature pair, em-
bodying excitatory timing and tuning.
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monly labelled suppression. The bottom panel of Fig. 5
shows what appears to be a graded transition between
these two phenomena (between approximately 8 and 12
ms). We often ¢nd this feature in the h2inh from a frog
amphibian-papillar unit or a gerbil cochlear unit. It is
clear that in h2 and its singular vectors, we have evi-
dence concerning not only the tuning of these two phe-
nomena, but also their timing.

The second-order Wiener kernel described in Figs.
10^14 was taken over 4100 spikes from a 560-Hz am-
phibian-papillar unit (in response to white noise, 82 dB
SPL, 100 Hz to 3.8 kHz). In frog amphibian-papillar
units, phase locking becomes weak at frequencies above
approximately 500 Hz (Hillery and Narins, 1987). For
this 560-Hz unit, the weights for SV1 and SV2 are
nearly equal; h2exc therefore re£ects largely an additive

Fig. 9. Third-ranking (solid line) and fourth-ranking (dashed line)
singular vectors of the second-order Wiener kernel of Fig. 5, nor-
malized as in Fig. 7, along with their DFTs. These vectors embody
timing and tuning of suppression (vicinity of 5 ms, 800 Hz) and
adaptation (beyond approximately 7 ms, 300 Hz).

Fig. 10. Second-order Wiener kernel, along with its excitatory and
inhibitory components, from another bullfrog amphibian-papillar
unit.
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component to the present instantaneous spike rate that
is proportional to the square of the envelope of a line-
arly-¢ltered version of the stimulus constituents that
occurred approximately 4^10 ms ago and had spectral
energy in the vicinity of 560 Hz (see Fig. 12). The in-
hibitory component, h2inh, shows a very faint pattern of
adaptation (which was not represented cleanly by any
singular vector) and a clear pattern of suppression. The
latter is embodied in a subtractive component propor-
tional to the square of the envelope of a linearly-¢ltered
version of the stimulus constituent that occurred ap-
proximately 4^7 ms ago and had spectral energy in
the vicinity of 1.2 kHz (see Fig. 13). The shape of the
¢rst-order kernel for this unit nearly matched that of
SV1 (Fig. 14, bottom panel), but the peak of the am-
plitude component of its DFT is shifted to approxi-
mately 500 Hz. We presume that SV1 re£ects the pe-
ripheral tuning up to the hair bundle, and that the high-
frequency side of the corresponding amplitude DFT
was shaved o¡ by the low-pass ¢ltering that occurs
between the hair bundle and the a¡erent spike trigger.
It is this low-pass ¢ltering that evidently accounts for
the reduction in phase-locking ability above approxi-
mately 500 Hz (Hillery and Narins, 1987; Weiss and
Rose, 1988).

The second-order Wiener kernel described in Figs. 15
and 16 was taken over 23 500 spikes from a 160-Hz
amphibian-papillar unit (in response to white noise,
70 dB SPL, 50 Hz to 1.8 kHz). As was observed con-
sistently in low-frequency units, the shape of the high-
est-ranking singular vector, SV1, matched very well that
of the ¢rst-order Wiener kernel, h1 (see Fig. 16). The

excitatory component of h2 re£ects square-law distor-
tion of the response phase-locked to the ¢ltered stimu-
lus waveform. Although the inhibitory component of h2

clearly re£ects both suppression and adaptation, neither
was represented cleanly in any singular vector (see Ap-
pendix A.3).

5. Conclusions

In the now-classical studies that de¢ned our current
state of knowledge about the stimulus^response proper-
ties of auditory a¡erent axons, the three fundamental
phenomena ^ excitation, adaptation and suppression
were examined independently with simple stimuli.
Although it was widely acknowledged that complex

Fig. 11. Weights for the 40 highest-ranking singular vectors of the
Wiener kernel of Fig. 10.

Fig. 12. Highest-ranking pair of singular vectors of the second-order
Wiener kernel of Fig. 10, normalized as in Fig. 7, along with their
DFTs. These two vectors form an excitatory quadrature pair, em-
bodying excitatory timing and tuning.
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stimuli would evoke all three phenomena at once, it was
not clear that their e¡ects in such a situation would be
separable. The stimuli invoked in our studies were very
complex (continuous, non-repeating, random acoustic
waveforms with broad spectra). Our results show that
excitation, adaptation and suppression indeed do occur
together in response to these stimuli ; and their e¡ects
appear simultaneously in the second-order Wiener ker-
nel. We also have found that singular-value decompo-
sition allows us to pull these e¡ects apart easily and
to study them individually ^ revealing not only their
spectral relationships, but also their temporal relation-
ships.

For each of the three amphibian-papillar units used
as examples in this paper (Figs. 5, 10 and 14) the pat-
tern of parallel diagonal lines representing suppression

was shorter in duration than the pattern representing
excitation, and it was simultaneous with the part of the
excitatory pattern closest to the origin (closest to the
time of the spike). This implies that the impact of a
transient suppressive stimulus on the response to a tran-
sient excitatory stimulus is e¡ective if the suppressive
stimulus is applied toward the end of the excitatory
stimulus. This relationship was observed consistently
in the second-order Wiener kernels of bullfrog amphib-
ian-papillar units. In the inhibitory component of the
second-order kernel of Fig. 5, the transition from adap-
tation to suppression is accompanied by converging
lines. This pattern was common among the second-or-
der Wiener kernels for amphibian-papillar units. We
were unable to create similar patterns in second-order
kernels constructed from two quadrature pairs of ¢lter
functions tuned to di¡erent frequencies and partially

Fig. 13. Fourth-ranking (solid line) and ¢fth-ranking (dashed line)
singular vectors of the second-order Wiener kernel of Fig. 10, both
normalized as in Fig. 7, along with their DFTs. These vectors em-
body timing and tuning of suppression (vicinity of 5 ms, 1200 Hz).

Fig. 14. First-order Wiener kernel (solid line) and highest-ranking
singular vector of the second-order Wiener kernel of Fig. 10, both
normalized as in Fig. 7, along with their DFTs.
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overlapping in time. Therefore we tentatively take it to
imply the presence of a rapid upward glide in the fre-
quency of sensitivity during the transition from adapta-
tion to suppression. It suggests the possibility that, in
the bullfrog amphibian papilla, adaptation and suppres-
sion are linked. Sinusoidal steady-state analysis had
suggested the same thing, along with the conclusion
that both adaptation and suppression in the bullfrog
amphibian papilla are re£ected largely in negative dc
shifts in the instantaneous spike rate (Lewis, 1986).

In our attempts to reconstruct the transition from
adaptation to suppression in inhibitory kernels, we em-
ployed gammatone ¢lter functions, which have no fre-
quency glides of their own. A reviewer pointed out that
downward frequency glides appear in all of the ob-

Fig. 15. Second-order Wiener kernel, along with its excitatory and
inhibitory components, from a low-frequency amphibian-papillar
unit.

Fig. 16. First-order Wiener kernel (bottom panel, solid line) and the
highest-ranking singular vector (bottom panel, dashed line) of the
second-order Wiener kernel of the unit of Fig. 15. The correspond-
ing DFTs are shown in the top and middle panels.
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served excitatory ¢lter functions that we present in this
paper (see bottom panels of Figs. 7, 8, 12, 14 and 16).
The reviewer suggested further that since the tuning for
adaptation should be similar to that for excitation, the
upward frequency glide in the inhibitory transition
(which occurs in reverse time, i.e. from right to left in
the inhibitory kernel) might simply mirror the down-
ward frequency glide (which occurs in forward time)
in the excitatory ¢lter function. This is an interesting
possibility. In the case of the unit of Fig. 5, however,
the downward glide in excitatory ¢lter function (seen in
both the bottom panel of Fig. 7 and the center panel of
Fig. 5) extends over a frequency change of approxi-
mately 20%. The frequency change in the apparent glide
in the inhibitory transition (in the vicinity of 10 ms) in
the bottom panel of Fig. 5 is more than 100%. Thus the
glide in the excitatory ¢lter function may not be su⁄-
cient to account entirely for the apparent glide in the
inhibitory transition. The possible relationship needs to
be explored further, however.

Conspicuous downward frequency glides in excita-
tory ¢lter functions are common in units from the bull-
frog amphibian papilla (Lewis et al., 1990). Carney et
al. (1999) reported their presence in the mammalian
cochlea as well. Showing that they occur in units
from the three organs (basilar papilla of the red-eared
turtle, saccule of the bullfrog, and bullfrog amphibian
papilla) where electrical resonances were ¢rst reported,
Lewis et al. (1990) argued that they re£ect tuning struc-
tures of high dynamic order ^ as opposed to simple
resonances. The selective advantages of such tuning,
where frequency discrimination is achieved by means
of tuning band edges made steep by high dynamic or-
der, have been discussed extensively (e.g. see Lewis,
1990).

From the ¢rst- and second-order Wiener kernels, we
found amphibian-papillar excitatory CFs ranging from
approximately 100 Hz to approximately 1000 Hz. This
is the same range found previously with tonal stimuli
(Feng et al., 1975; Lewis et al., 1982). Studies of sup-
pression with tonal stimuli in the frog amphibian pa-
pilla have largely focussed on reduction of the re-
sponses to tones at the excitatory CF when a second
tone is presented simultaneously (two-tone suppres-
sion). Studies of the frequency dependence of the e¡ec-
tiveness of the suppressor tone led to the determination
of suppressor CFs, which, in the bullfrog amphibian
papilla, typically were 300 to 800 Hz higher than the
excitatory CFs (Frishkopf and Goldstein, 1963; Feng et
al., 1975; Capranica, 1976). That corresponds well to
what we found in the second-order Wiener kernels from
that organ.

Peristimulus^time histograms (PSTHs) commonly are
used to display the time courses of adaptation for re-
peated, short-duration stimuli of constant amplitude.

Although the general timing of adaptation implied by
our results with second-order Wiener kernels is consis-
tent with the general timing seen in such PSTHs for the
bullfrog amphibian papilla (Megela and Capranica,
1981; Megela, 1984), the temporal details available in
the PSTHs are not immediately apparent in the kernels
or the singular vectors. To translate the kernels into
PSTHs, one would substitute an expression for the re-
peated stimulus waveform, p(t), into the Wiener series
(Eq. 11). In general, one expects the Wiener series to
provide good predictions of the PSTH as long as the
root-mean-square amplitude of the stimulus waveform
is comparable to that of the noise used to derive the
kernels (for examples, see de Boer and de Jongh, 1978;
Yamada et al., 1996; Yamada and Lewis, 1999). As it
does in the mammalian cochlea (Lewis and Henry,
1995), however, adaptation in the bullfrog amphibian
papilla involves both shifts in the dc spike-rate response
and gain changes in the ac spike-rate response (Yu,
1991). Whereas the dc shifts are embodied in the in-
hibitory components of the second-order kernels, the
ac gain changes are not. They are found in the depen-
dence of K (in Eq. 3) on the level of the noise stimulus
(Yamada, 1997).
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Appendix

A.1. Rephrasing singular-value decomposition for
symmetric matrices

For singular-value decomposition we use the svd op-
eration in MATLAB0, which in turn uses the LIN-
PACK routine ZSVDC (Dongarra et al., 1979). For a
square matrix, symmetric about the main diagonal, the
operation decomposes the nUn matrix X into the fol-
lowing sum:

X ¼
Xn
j¼1

sjujvT
j ðA1Þ

where both uj and vj are n-element column vectors; and
sj is a positive number, with sj v sjþ1. Owing to the
manner of construction of the singular-value decompo-
sition and the symmetry of X about the main diagonal,
either

uj ¼ vj ðA2Þ
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or

uj ¼ 3vj ðA3Þ

We have elected to rewrite the decomposition as fol-
lows:

X ¼
Xn
j¼1

sgn½ujðiÞvjðiÞ�sjujuT
j ¼

Xn
j¼1

kjujuT
j ðA4Þ

with

kj ¼ sgn½ujðiÞvjðiÞ�sj

Fig. 17. Attempts to recover original ¢lter functions by singular-value decomposition of simulated second-order Wiener kernels. A: Quadrature
pair of gammatone functions with Qi = 8, Ki = 20, fi = 10. B: Quadrature pair of gammatone functions with Qi = 8, Ki = 20, fi = 21. The value of
K in each case was set to make the root-mean-square (rms) value of the truncated function equal to 1.0. C^H: Singular vectors extracted from
matrices constructed with various combinations of the waveforms in A and B (see text). I : Quadrature pair of gammatone functions with
Qi = 4, Ki = 30, fi = 21. J: Quadrature pair of gammatone functions with Qi = 30, Ki = 45, fi = 10. Again, the value of K in each case was set to
make the rms value of the truncated function equal to 1.0. K, L: Singular vectors extracted from the matrix constructed from the waveforms
of I and J. M: Quadrature pair of gammatone functions with Qi = 6, Ki = 27, fi = 21. N: Quadrature pair of gammatone functions with Qi = 28,
Ki = 45, fi = 10 ^ values of K set to make the rms values equal 1.0. O, P: Singular vectors extracted from the matrix constructed from the wave-
forms of M and N.
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where uj(i) and vj(i) are the ith elements (non-zero ele-
ments) of column vectors uj and vj, respectively, where i
is any integer between 1 and n.

A.2. Extraction of individual ¢lter functions from
complex matrices

If one constructs an nUn matrix as the weighted sum
of the outer products of a set of n-element vectors with
themselves, then applies the MATLAB0 svd operation

Fig. 18. Simulated second-order Wiener kernels with various amounts of additive noise (see text).
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to that matrix, the singular vectors, uj, that are com-
puted will not necessarily be good matches to the vec-
tors that went into the construction of the matrix. The
singular-value decomposition operation is basically an
optimization process, with the following steps (for sym-
metric matrices) : (1) Find the n-element vector whose
(positive or negative) outer product with itself gives the
best ¢t to the nUn matrix (in the sense of having the
least mean square error). (2) Subtract the (positive or
negative) outer product of that vector with itself from
the matrix. (3) Repeat steps 1 and 2 on the residual
nUn matrix. (4) Continue this process until n such vec-
tors have been found. There is no obvious reason to
expect this process to systematically ¢nd individual ¢l-

ter functions embedded in backgrounds of other ¢lter
functions or noise. Nonetheless, experiments with sec-
ond-order kernels simulated with gammatone functions
show that singular-value decomposition is often able to
do just that.

Fig. 17 shows examples based on quadrature pairs of
truncated gammatone functions,

f iðtÞ ¼
Ki1tQ ie3K i t sin½2Zf it� 06t91:0

0 t90; ts1:0




giðtÞ ¼
Ki2tQ ieK i t cos½2Zf it� 06t91:0

0 t90; ts1:0



ðA5Þ

Fig. 19. Attempts to extract original ¢lter functions by singular-value decomposition of the simulated second-order Wiener kernels in Fig. 18
(see text). A: Original ¢lter functions (a quadrature pair). B^N: Extracted ¢lter functions (solid lines), compared with originals (dashed lines).
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combined in various ways to simulate second-order ker-
nels, which then were subjected to singular-value de-
composition. Fig. 17C and D show the four non-zero
singular vectors that emerged from singular-value de-
composition of a matrix created as the sum of the outer
products of each of the four truncated waveforms in

Fig. 17A and B with itself. Notice that the original
waveforms (Fig. 17A and B) did not emerge intact;
each of the singular vectors (Fig. 17C and D) is a com-
posite of the originals. This is a common observation
when the two original pairs represent the same polarity
of response (either both excitatory or both inhibitory),
are of comparable amplitude, and have considerable
temporal overlap, as these do. By contrast, when the
two waveform pairs represent opposite e¡ects (one
being excitatory, the other inhibitory) or are su⁄ciently
di¡erent in amplitude, then singular-value decomposi-
tion tends to extract them intact from the matrix. Fig.
17E and F, for example, show the four non-zero singu-
lar vectors that emerged from singular-value decompo-
sition of a matrix created in the same way, but with the
waveform pair in Fig. 17A being excitatory, that in Fig.
17B being inhibitory. Fig. 17G and H show the four
non-zero singular vectors that emerged from singular-
value decomposition of a matrix created in the same
way, but with both waveform pairs being excitatory
and the amplitude of the pair in Fig. 17B being reduced
by 5 dB.

The original waveforms also tend to emerge intact if
they have adequate temporal separation. For example,
Fig. 17K and L show the four non-zero singular vectors
that emerged from singular-value decomposition of a
matrix created as the sum of the outer products of
each of the four truncated waveforms in Fig. 17I and
J with itself. By contrast, when the matrix was created
in the same way from the truncated waveform pairs in
Fig. 17M and N, which have somewhat greater tempo-
ral overlap, singular-value decomposition failed to ex-
tract them intact. What emerged instead were the four
singular vectors in Fig. 17O and P, which are compo-
sites of those in Fig. 17M and N.

A.3. Extracting ¢lter functions from noisy matrices

By virtue of the manner in which they are con-
structed, second-order Wiener kernels derived from
noise stimuli are themselves noisy. The noise and ¢lter
functions are contemporaneous; and, occasionally, the
pattern generated by the ¢lter function may appear
faintly in a noisy background. Even when the pattern
is faint, singular-value decomposition often is successful
in extracting the ¢lter function relatively cleanly ^ typ-
ically as a singular vector with rank lower than two. In
Figs. 18^20, we have simulated situations with purely
additive noise. The 400U400 matrix in the upper left-
hand panel of Fig. 18 was generated as the sum of the
outer products of the two eighth-order gammatone ¢l-
ter functions in Fig. 19A. This matrix was then normal-
ized to make the value of its largest element equal 1.0.
In the subsequent panels, this matrix was added to a
400U400 noise matrix whose weight was varied in

Fig. 20. Uncovering the ¢lter functions in the very noisy second-or-
der Wiener kernel of the center, right-hand panel of Fig. 18.
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10-dB steps. The noise matrix was created from a
400U400 array of random numbers, selected from a
uniform distribution ranging from 0 to 1. The outer
product of each column vector with itself was added
to that of each of the 399 other column vectors. This
was repeated for all 400 row vectors, and the result
subtracted from the sum for column vectors.

Fig. 19B and C show the ¢lter functions (solid lines)
that were extracted by singular-value decomposition of
the noiseless matrix in the upper left-hand panel of Fig.
18. The dashed line in each panel from Fig. 19B^N
shows the corresponding original waveform (from Fig.
19A). Fig. 19D and E show the ¢lter functions (solid
lines) extracted from the matrix on the center left panel
of Fig. 18; in this case the rms value of the added noise
was 330 dB re 1.0. Fig. 19F, G and H show the ¢lter
functions extracted from the bottom left-hand panel of
Fig. 18; in this case the rms value of the added noise
was 320 dB re 1.0. Notice that one member of the
¢lter^function pair was extracted cleanly (Fig. 19H),
but the other member was extracted in two install-
ments, each mixed with substantial noise. In Fig. 19I^
L, with the noise level increased further (310 dB for
Fig. 19I, J; 0 dB for Fig. 19K, L), the ¢lter functions
once again were extracted cleanly. The corresponding
matrices are shown in the upper (310 dB) and center
(0 dB) right-hand panels of Fig. 18. In the lower right-
hand panel of Fig. 18 the rms value of the noise was
10 dB re 1.0. In this case, the ¢lter functions were not
obviously represented in any of the singular vectors
(e.g. Fig. 19M, N).

In Fig. 19B, C and D, E, the ¢lter functions were
extracted as the highest-ranking pair of singular vectors
(SV1 and SV2). In Fig. 19I, J and K, L, they were
extracted as SV3 and SV4 (SV1 and SV2 in both cases
re£ected pure noise). The situation in Fig. 19F^H was
transitional: Fig. 19F (SV1), Fig. 19G (SV4), Fig. 19H
(SV3). Fig. 20 shows the manner in which pure noise
was peeled away (by singular-value decomposition)
from the matrix in the center right-hand panel of Fig.
17. The center panel of Fig. 20 shows that matrix after
removal of the contributions from SV1 and SV2.
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