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Transient responses to tone bursts 

E.R. Lewis ’ and K.R. Henry 2 
’ Depi. of EECS, University of California, Berkeley, Califomio, U.S.A. and 2 Dept. of Psychology, University of California, Davis, 

California, U. S. A. 

(Received 6 May 1988; accepted 13 September 1988) 

Investigating theoretical conditions under which linearly-operating tuned structures produce click-like transient responses to 
onsets and offsets of trapezoidal tone bursts, we come to the following conclusions: (1) each of the four comers of the trapezoidal 
tone burst is capable of eliciting such a response; (2) the amplitude of the response and its dependence on the frequency of the 
modulated tone both depend on the phase of the modulated sinusoid at the time a comer occurs; (3) such responses will arise in 
structures having sufficiently steep band edges, provided that the frequency of the modulated tone is well outside the pass band of the 
structure - for a comer in cosine phase, the sustained slope of the low-frequency band edge must be greater than zero and that of the 
high-frequency band edge must be greater than 12 dB/Ckt, for a comer in sine phase the sustained slope of the low-frequency band 
edge must be greater than 6 dB/Oct and that of the high-frequency band edge must be greater than 18 dB/Oct; (4) they will not 
arise in response to tone bursts whose frequencies fall within the pass band of the structure; (5) nor will they arise in response to a 
trapezoidal tone burst of any frequency applied to structures (such as simple microphones or drivers) following second-order 
dynamics and having both spectral zeros at infinity. 

We present theoretically derived relationships between the amplitude of transient responses and the tone-burst frequency, not 
only for the comers of trapezoidal tone bursts, but also for tone bursts of more general shapes. We conclude that, owing to its 
extraordinarily steep high-frequency rolloff, the filter associated with each cochlear axon is well suited to extracting temporal 
information from onset or offset singularities in modulated tones whose frequencies are above the characteristic frequency of the 
filter. Applying the theory to observed onset and offset responses to high-intensity tone bursts in auditory afferents of the Mongolian 
gerbil, we conclude that some of the responses we observed must have been sculpted in part by cochlear nonlinearities. 

Cochlear onset responses; Cochlear offset responses; Properties of tone bursts; Cochlear nonlinearities 

Introduction 

Owing to the conspicuous tuning properties of 
cochlear axons and the celebrated tonotopy of the 
cochlea, auditory scientists traditionally treat tonal 
stimuli as signals in the frequency domain. Thus, 
when a tonal stimulus is turned on or off, as in a 
tone burst, one’s tendency might be to consider 
the spectral ‘splatter’ generated by the onset and 
offset of the burst and the locations along the 
cochlea that might be excited by that splatter. 
Although this line of reasoning could be fruitful, it 

has inherent difficulties. The onset or offset of a 
tone is an event precisely placed in time. To depict 
that quintessential temporal aspect of the stimu- 
lus, its spectrum must include the frequency de- 
pendence of phase as well as that of amplitude. 
One difficulty arises from the fact that most inves- 
tigators are not facile in the art of mentally in- 
tegrating phase and amplitude information to de- 
duce temporal qualities. Another difficulty arises 
from the definition of ‘spectrum’. Strictly speak- 
ing, the spectrum of a stimulus waveform is de- 
fined by that waveform in its entirety. Thus, for 
example, the amplitude spectrum of a tone burst 
has peaks and nodes that correspond to construc- 
tive and destructive interference of spectral 
components generated at each end of the burst. 
One could isolate part of a tone burst (e.g., its 
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onset) by placing a temporal window around that 
part, but the nature of the resulting spectrum will 
depend on the width, shape and placement of that 
window. On the other hand, each part of the tone 
burst is well defined point-by-point in time. Thus, 
when one observes transient increases in the spike 
rates of cochlear axons at the onsets and offsets of 
tone bursts (e.g., Geisler and Sinex, 1982; Rhode 
and Smith, 1985), those responses might heuristi- 
cally be considered in the time domain - in terms 
of transient excitation of the cochlear tuning 
structures, rather than in the frequency domain - 
in terms of spectral splatter. 

Although cochlear tuning structures often be- 
have nonlinearly, Geisler and Sinex (1982) have 
shown that the essential features of transient exci- 
tation observed in cat cochlear axons in’response 
to onsets and offsets of tones can be explained in 
terms of a linear tuned structure. Consequently, 
we should be able to explore those responses 
profitably with the conventions engineering ap- 
proach to linear transient analysis, employing 
time-domain descriptions of the stimuli. In this 
paper we attempt to establish a basis for this 
approach by presenting time-domain descriptions 
of tone bursts and of the responses of a gener- 
alized linear tuned structure to such stimuli. We 
begin with the trapezoidal tone burst and then 
generalize the descriptions through Taylor’s theo- 
rem to other tone bursts. This approach not only 
provides a rational alternative to the notion of 
splatter, it also provides insight concerning the 
design of stimuli. Our results elaborate and gener- 
alize time-domain modeling studies already pub- 
lished by Moore (1973), Grandori (1979), Geisler 
and Sinex (1982), and Antonelli and Grandori 
(1984). Preliminary reports of our results have 
been presented in Lewis and Henry (1988) and 
Henry and Lewis (1988). 

Summary of theory 

In time-domain analysis, each function conven- 
tionally is defined as having only zero value prior 
to a particular onset (starting) time and finite 
values (or zero value) after that. Thus every such 
function possesses a singularity at its onset time 
(i.e., either the function itself or one of its time 
derivatives will exhibit a stepwise discontinuity at 
the onset time). In this paper we shall be con- 

Fig. 1. A trapezoid tone burst comprises a sum of four ramp- 
modulated sinusoids, one beginning at each of its four corners. 

The ramp with its onset at point 1 provides the rising phase of 

the burst. The ramp with its onset at point 2 modulates a 

sinusoid 180 degrees out of phase with that modulated by the 

first ramp. The sum of the two brings the slope of the tone-burst 

modulation to zero; and so forth. 

cerned largely with such singularities and with the 
excitations they produce in linear tuned struc- 
tures. 

In this manner, a ramp function with its onset 
at time t, is defined to be zero at all times prior to 
t,; subsequently, its value is taken to be directly 
proportional to the time elapsed since onset (i.e., 
to t - t,). The first time derivative of the ramp 
function exhibits a step discontinuity at the onset 
time. A sinusoid whose amplitude is modulated by 
a ramp function (i.e., a ramp-modulated sinusoid) 
also will possess a singularity at the onset time of 
the ramp. In its idealized form, the trapezoidal 
tone burst (Fig. 1) can be considered to comprise 
four ramp-modulated sinusoids, one beginning at 
each of its four corners (Appendix Al). Thus it 
possesses four singularities, each capable of excit- 
ing a tuned structure. 

If the cochlear tuning structure or any other 
structure (such as a spectral filter or a micro- 
phone) truly responded linearly to the trapezoidal 
tone burst, then it would respond independently 
to each singularity. Thus the responses to the 
singularities may be analyzed one at a time. The 
phase of the sinusoid at the ramp onset time may 
vary from one singularity to another; and the 
nature of the responses will vary accordingly. For 
a linearly responding structure, the response for 
any onset phase will be the appropriately weighted 
sum of the prototypic response to a ramp-mod- 
ulated sine wave (onset phase corresponds to the 
positive-going zero-crossing of the sinusoid) and 
the prototypic response to a ramp-modulated 
cosine wave (onset phase corresponds to the posi- 
tive peak of the sinusoid) (Appendix Al). With a 
digital waveform synthesizer and appropriate 



choices of rise, decay and plateau times, one can 
generate a trapezoidal tone burst with any desired 
phase for the ramp-modulated sinusoid added at 
each comer. 

The response of any linearly operating struc- 
ture to any stimulus waveform with a singularity 
will consist of a sum of components from two 
classes. One class derives its fundamental nature 
entirely from the stimulus waveform. Depending 
on the circumstances and the shape of the stimu- 
lus, the members of this class are known as ‘steady 
state’ response components or ‘nonhomogeneous’ 
response components. They correspond to the 
particular solution of the differential equation de- 
scribing the dynamics of the structure. When the 
stimulus is a ramp-modulated sinusoid, the 
nonhomogeneous response components are ramp- 
modulated sinusoids and constant-amplitude 
sinusoids, both at the same frequency as the 
stimulus (Appendix A3). The other response class 
(Appendix A2) derives its fundamental nature en- 
tirely from the structure being excited. The mem- 
bers of this class are known as ‘ transient’ response 
components or ‘homogeneous’ response compo- 
nents. Each member is a solution of the structure’s 
differential equation in its homogeneous form (i.e., 
with the stimulus set equal to zero); and each 
corresponds to a ‘natural frequency’ of the struc- 
ture. If the structure were struck by an impulsive 
stimulus (such as a click striking the ear), it would 
‘ring’ at all of these natural frequencies at once 
(Guillemin, 1957). 

The natural frequencies of a structure corre- 
spond to poles in its transfer function. If the 
structure is dynamically stable, each pole either is 
a negative number or is one member of a pair of 
complex conjugate numbers with a negative real 
part (Appendix A2). For the natural frequencies 
corresponding to both kinds of poles, the exci- 
tations produced by the singularity of a ramp- 
modulated sine wave and by the singularity of a 
ramp-modulated cosine wave are derived in Ap- 
pendix A3. 

Tuning of the natural-frequency excitation by ramp 
sinusoids 

It is clear from Equations 21, 23, 28 and 30 of 
Appendix A3 that the degree to which a particular 
natural frequency of a tuned structure is excited 
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Fig. 2. Excitation of the natural frequency corresponding to a 
negative-real pole in a linear tuned structure, in response to the 
onset singularities of ramp-modulated sinusoids. Here the am- 
plitude of the excitation is plotted against the frequency of the 
modulated sinusoid. For the ramp sine, the onset of the ramp 
modulation coincided with a zero-crossing of the modulated 

sinusoid; for the ramp cosine it coincided with the peak. 

by the onset singularity of a ramp-modulated 
sinusoid depends on the ratio of the modulated 
stimulus frequency to the natural frequency being 
excited. In the case of the natural frequency corre- 
sponding to the negative, real pole, zk = -ok, the 
amplitude of the excitation by the onset singular- 
ity depends on the ratio ws/(rk, where w, is the 
frequency of the modulated sinusoid in rad/s. Fig. 
2 shows normalized plots of the amplitudes of 
excitation (Kak and K,, in Equations 21 and 28) 
for sine and cosine ramps. Notice that excitation 
by the onset singularity of a sine ramp is maxi- 
mum when W,/OL~ is less than 1.0, and declines at 
a rate of 6 dB/Oct at low stimulus frequencies 
and 18 dB/Oct at high stimulus frequencies. The 
amplitude of excitation by the onset singularity of 
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Fig. 3. Excitation of the natural frequencies corresponding to a 
pair of complex conjugate poles in a linear tuned structure, 
excited by the onset singularities of ramp-modulated sinusoids. 
Amplitude of excitation is plotted against frequency of the 

modulated sinusoid. 

a cosine ramp has a sharp null where w,/(Y~ 
equals 1.0. This corresponds to the value at which 
the polarity of the response reverses. At low 
stimulus frequencies, the response amplitude is 
constant; at high frequencies it declines at a rate 
of 12 dB/Oct. 

In the case of the conjugate complex poles, 
Zk = -ak + ipI, and zz = --(Ye - ip,., the ampli- 
tude of the excitation by the onset singularity can 
be plotted against the ratio w,/(rk. Fig. 3 shows 
normalized plots of the amplitudes of excitation 

(the amplitude of K,, and K,, in Equations 24 
and 31) for sine and cosine ramps. Curves are 
shown for cases of natural frequencies with very 
high Q and very low Q, curves for intermediate 
values of Q will lie between these. Again, exci- 
tation by the onset singularity of a ramp-mod- 
ulated sine wave declines at a rate of 6 dB/Oct at 
low frequencies, 18 dB/Oct at high frequencies. 
Excitation by the onset singularity of a ramp- 
modulated cosine wave is constant at low frequen- 
cies and declines at a rate of 12 dB/Oct at high 
frequencies. 

Estimating the shape of the complete response 
As we already mentioned, the complete re- 

sponse of a linearly-operating tuned structure to a 
ramp-modulated sinusoid comprises not only the 
excitations of natural frequencies by the onset 
singularity of the ramp, but also a step-modulated 
sinusoid and a ramp-modulated sinusoid, both at 
the same frequency as the modulated stimulus 
sinusoid. The overall response of the tuned struc- 
ture to the ramp sinusoid will depend on the 
shape of the steady-state frequency-response char- 
acteristics of the tuned structure and on the 
frequency of the stimulus sinusoid relative to those 
characteristics. On the basis of repeated analysis 
of specific cases and repeated experimentation 
with linear analog filter devices, we offer the fol- 
lowing conjecture: 

A. If the stimulus frequency is well within a 
pass band of a linear tuned structure, then the 
sum of the natural frequency excitations and the 
step and ramp sinusoids will yield an overall re- 
sponse that approximates the stimulus waveform 
but with its onset apparently delayed slightly. In 
such cases, the natural-frequency excitations will 
not stand alone as markers of the ramp onset. 
Instead, they merely are manifested as absence of 
the early sinusoidal response at the stimulus 
frequency. 

So far, we have found no exceptions to this 
rule. What follows is a second rule, which derives 
directly from the basic properties of linear analog 
spectral filters: 

B. If the stimulus frequency is outside the pass 
band of a linear tuned structure, and if the 
asymptotic slope of the pass-band edge closest to 
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Fig. 4. Responses (upper traces in each photograph) of a 
specific tuned structure to ramp-modulated sine or cosine 
waves (lower traces), showing the dependence of response 
shape on the frequency of the sinusoid relative to the pass 
band of the structure. The ramp-sines and their responses are 
on the left, ramp-cosines on the tight. The tuned structure was 
an analog filter set in the low-pass, maximally-flat (Butter- 
worth) mode, with 96 dB/Oct rolloff at its high-frequency 
edge. The stimulus frequency was 10 kHz in each case. For the 
upper photographs, the comer frequency of the filter was 7 
kHz, in the lower photographs it was 9 kHz. In the upper 
photographs, the response was amplified 500~ relative to the 
stimulus; in the lower photographs it was amplified 25 x relative 

to the stimulus. 

the stimulus frequency is steeper than the corre- 
sponding rolloff in Fig. 2, then the step and ramp 
sinusoid response components will be selectively 
attenuated. In such cases, one always will be able 
to select frequencies for the modulated tone that 
will place it sufficiently far from the band edge to 
allow the excitations of natural-frequencies to 
stand alone as markers of the ramp onset. For this 
to occur with a ramp-modulated cosine wave, the 
asymptotic high-frequency rolloff must be greater 
than 12 dB/Oct, the asymptotic low-frequency 
rolloff must be greater than zero; for it to occur 
with a ramp-modulated sine wave, the asymptotic 
~~-fr~uency rolloff must be greater than 18 
dB/Oct, the asymptotic low-frequency rolloff must 
be greater than 6 dB/Oct. 

Figs. 4 and 5 illustrate properties A and B with 
ramp-modulated sinusoids applied to a low-pass 
analog filter set for maximum flatness, with high- 
frequency rolloff at 96 dB/Oct. The ramp 
sinusoids were generated by a digital arbitrary 
waveform generator. Whenever the frequency of 

the sinusoid was within the passband of the filter, 
the transient excitations of the filter’s own natural 
frequencies were absorbed into the response at the 
stimulus frequency. Their sole manifestation was 
the absence of immediate response to the stimulus 
ramp. When the frequency of the sinusoid was 
above the pass band of the filter, the stimulus 
sinusoid was suppressed, allowing the transient 
excitations of the filter’s natural frequencies to 
emerge as a distinct sign of the onset of the 
ramp-modulation. We denote this phenomenon as 
a distinct edge response (see Rhode and Smith, 
1985). 

The frequency response curves of Figs. 2 and 3 
tell us that the natural frequencies most excited by 
the onset singularity of the ramp will be those 
closest to the frequency of the stimulus. Fig. 6 
depicts the frequency dependence of excitation of 
a natural frequency close to the upper band edge 
of a 96 dB/Oct low-pass filter when the stimulus 
is a ramp-cosine, Superimposed on that graph is 
the sinusoidal steady-state amplitude response 

Fig. 5. Further responses (upper traces) of the tuned structure 
of Fig. 4 to ramp modulated sine-waves (photographs on left) 
and ramp-modulated cosine waves (photographs on right). In 
each case, the stimulus frequency was 10 kHz. The comer 
frequency of the fifter was 4 kHz for the top pair of photo- 
graphs, 5 kHz for the middle pair, and 6 kHz for the bottom 
pair. In each case the response was amplified 1000 x relative to 

the stimulus. 
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Fig. 6. Qualitative explanation of the data in Figures 4 and 5. 
Here the frequency dependence (solid line) of the amplitude of 
excitation of a low-Q natural frequency is superimposed on the 
frequency dependence (dashed fine) of the low-pass filter. 
Stimulus frequency (abscissa) has been normalized with respect 
to the corner frequency of the filter. At frequencies well above 
the corner, where the filter strongly suppresses the amplitude 
of the stimulus sinusoid itself, the transient excitation of the 
natural frequency will emerge as a clear ‘edge response’ to the 

onset singularity of the ramp. 

characteristic of the filter. We expect a distinct 
edge response to occur whenever the frequency of 
the stimulus sinusoid falls in the region where the 
amplitude graph for the natural-frequency excita- 
tion lies well above the amplitude graph for 
sinusoidal steady-state response of the filter. The 
same rule should hold for any tuned structure 
(including microphones, acoustic drivers, co&leas, 
etc.). 

Clearly, if the rolloff of the steady-state tuning 
curve of a particular structure were not suffi- 
ciently steep, the amplitude graph for natural- 
frequency excitation would never diverge from the 
amplitude graph for the filter’s steady-state re- 
sponse. In that case, no distinct edge response 
would occur at any frequency. This result is il- 
lustrated in Figs. 7 and 8, which show the re- 
sponses of a second-order resonant filter with 
both zeros at infinity (high-frequency rolloff at 12 
dB/Oct, low-frequency rolloff at 0 dB/Oct) to 
ramp-cosines at various frequencies. Although 
these results were derived analytically with the aid 
of an algebraic manipulation program (VAXIMA), 
they are representative of the situations in many 
microphones and drivers with second-order dy- 
namics. Ramp-modulated sinusoids will not pro- 
duce edge responses in such devices. 

Finally, where edge responses do occur in lin- 
early-operating tuned structures, they comprise the 
combined excitations of all the natural frequencies 

in the pass bands, each weighted according to its 
distance from the frequency of the modulated 
stimulus sinusoid. Again, it is not a simple task to 
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Fig. 7. Computed responses of a second-order resonant (two- 
pole) filter with both zeros at infinity to ramp cosines at the 
resonance frequency (bottom panel) and at 10 x the resonance 
frequency (upper three panels). The Q of the filter is displayed 
in the upper left of each panel. Regardless of the Q of the filter 
(i.e., regardless of its bandwidth), and regardless of the 
frequency of the stimulus, ramp modulations of sinusoids at 
frequencies equal to or greater than the resonance frequency 
produce no edge responses. As predicted by the linear theory, 
at 12 dB/Oct the rolfoff of the filter is not sufficiently steep to 
selectively suppress the sinusoidal response relative to the 

natural-frequency excitation. 
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Fig. 8. The sequence of Fig. 7 continued for frequencies below 
the resonance frequency. Even as the modulated frequency 
approaches zero, the second-order filter fails to produce a 
distinct edge response. If one or both zeros of the filter had 
been placed at the origin, then a distinct edge response would 

have appeared as the modulated frequency approached zero. 

deduce precisely the shape of such complex edge 
responses; but we can state a simple rule of thumb 
that is applicable to linearly-operating tuned 
structures with some zeros at infinity (i.e., with a 
high-frequency band edge with indefinitely sus- 
tained rolloff). Thus it would apply to linear oper- 
ation of the filter of Fig. 6 and evidently to linear 
operation of the mammalian cochlea as well as 
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that of the hearing organs of non-mammalian 
vertebrates: 

C. When an edge response is produced in a 
linearly-operating tuned structure with n zeros at 
infinity (i.e., with indefinitely-sustained high- 
frequency rolloff at 6n dB/Oct), the nth temporal 
derivative (d”/dt”) is the lowest order derivative 
not initially equal to zero in the edge-response 
waveform. For a given pass-band, increasing n 
will result in the initial portion of the edge re- 
sponse becoming more deeply inflected; the onset 
of the edge response therefore will appear to be 
increasingly delayed. This apparent delay would 
become conspicuous if the edge response were 
observed through a threshold device, such as a 
spike generator (i.e., there would be no response at 
all until the edge response reached the 
threshold). * 

To be convinced of the validity of this rule of 
thumb, imagine all of the partial-fraction terms 
corresponding to an edge response being recom- 
bined over a common denominator. Since its de- 
nominator includes all of the poles of the individ- 
ual terms of the partial-fraction expansion, this 
combined response term can be factored into two 
components - one with either a negative-real pole 
or a pair of conjugate complex poles, arbitrarily 
chosen from among those in the partial-fraction 
expansion, the other containing the rest of the 
poles. The factor containing the single pole or 
pole-pair can be considered to be the Laplace 
transform of an input (whose shape is that of an 
impulse-excitation to the corresponding natural 
frequency). The remaining term then would repre- 
sent a tuned structure through which that natural 
frequency excitation must pass, and which there- 
fore would reshape the response waveform. Each 
zero at infinity in that remaining term will repre- 
sent a separate temporal integration of the initial 
part of the waveform; and each such integration 

* It is important to recall that a true linear time delay is a 
device with the capacity to store an infinite amount of 
information (all of the values of a time function over the 
entire duration of the delay). A linear system of finite order 
can store only a finite number of values of a time function. 
Combining such a system with a threshold device (which is 
inherently nonlinear) does not increase its memory capacity. 
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Fig. 9. Excitation of the natural frequency corresponding to a 

negative-real pole in a linear tuned structure, in response to the 

onset singularities of sinusoids modulated by r-squared. The 

amplitude of the excitation is plotted against the frequency of 

the modulated sinusoid. 

removes another nonzero temporal derivative at 
the beginning of the response. 

Modulation by functions other than ramps 
A wide variety of tone-burst envelopes should 

be representable by a Taylor’s series that com- 
bines terms in various powers of the time elapsed 
since a single onset time, with each term assigned 

an appropriate sign and an appropriate amplitude 
parameter. This approach is presented in Appen- 
dix A4 Each term in the series would have its own 
singularity at the onset time; and a linearly oper- 

ating structure would respond independently to 
each of these singularities. For each generic term 
- e.g., step modulation, ramp modulation, time- 
squared modulation, time-cubed modulation, and 
so forth, one can derive plots similar to those of 
Figs. 2 and 3, showing the dependence of the 
amplitude of natural-frequency excitation by the 
onset singularity on the frequency of the sinusoid 
being modulated. 

Fig. 9 shows the excitation of the natural 
frequency corresponding to a negative real pole, 
(Ye, as a function of the ratio w,/‘(Y~ (recall that w, 
is the frequency of the modulated sinusoid in 
rad/s). Notice that the high-frequency rolloff of 
the excitation in response to the onset singularity 
of the sine wave modulated by t-squared has the 
same asymptotic slope as the excitation in re- 

sponse to the onset singularity of a ramp-mod- 
ulated sine wave; the asymptotic slope of the 
high-frequency rolloff for the onset singularity of 
a cosine wave modulated by t-squared is 12 

dB/Oct greater than that for the ramp-modulated 
cosine wave. This pattern continues indefi~tely: 
when the degree, k, of the tk modulation increases 
from an odd integer to the subsequent even in- 
teger, the asymptotic slope of the high-frequency 
rolloff for natural-frequency excitation by the 

onset singularity of a modulated sine wave does 
not change; that for a modulated cosine wave 
increases by 12 dB/Oct. When k increases from 

an even integer to the subsequent odd integer, it is 
the asymptotic slope of the high-frequency rolloff 

for excitation by the onset singularity of the mod- 
ulated sine wave that increases by 12 dB/Oct, 

while that for the modulated cosine wave does not 
change. Curves of the sort shown in Fig. 9 can be 
constructed for various values of k, for natural 
frequencies corresponding to negative real poles 
and for natural frequencies corresponding to com- 
plex conjugate poles. The algebraic manipulations 
required for generation of the plotted functions 
are easily carried out with available software. 

Rules A, B and C apply to tk modulation as 
well as to ramp modulation, but the rolloff slopes 
specified in Rule B would have to be adjusted for 
the particular value of k. For example. with k = 0 

(corresponding to a step-modulated sinusoid), the 
slopes for the cosine wave remain the same, those 
for the sine wave become 6 dB/Oct on both low- 

and high-frequency sides. Thus, as expected, the 
modeling observations of Antonelli and Grandori 
(1984; see their Fig. 7) with pulsed tone bursts are 
consistent with these rules. 

Under certain circumstances, such as studies of 
whole nerve (compound) action potentials, it is 
desirable to randomize the phase of the modulated 
sinusoid at the time of onset singularity, so that 
the phase varies from one tone burst to the next. 
When the phase of the modulated sinusoid at the 
time of modulation onset is not a precise multiple 
of l/4 cycle (so that the modulated sinusoid is 
neither pure sine nor pure cosine, but a combina- 
tion of the two), then: (1) the sharp nulls in Figs. 2 
and 9 will not be present; (2) cosine excitation will 
prevail at low stimulus frequencies; and (3) the 
excitation with less-steep high-frequency rolloff 



227 

Modulation 

- step - - 

square ---- 

_ Cubic - - 

.000001 
I1111 t1111 11111 

.Ol 100 

LOG FREQUENCY 

Fig. 10. Excitation of the natural frequency corresponding to a 
negative-real pole in a linear tuned structure, in response to the 
onset singularities of sinusoids modulated by various powers of 
r. The frequency dependence of amplitude is approximated 
here for onsets at random phases of the modulated sinusoid 

(see text for explanation). 

will prevail at high frequencies. Thus, for ramp- 
sinusoids of this type, cosine excitation will pre- 
vail at high frequencies (see Figs. 2 and 3); for 
t-square sinusoids of this type, sine excitation will 
prevail at high frequencies (see Fig. 9). In Figs. 10 
and 11, we have incorporated conditions (1) 
through (3) into the graph for each degree (k) by 
plotting the excitation (sine or cosine) that is 
larger at each value of frequency. The results are 

10 
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Fig. 11. Excitation of the natural frequencies corresponding to 
a complex conjugate pair of poles in a linear tuned structure, in 
response to the onset singularities of sinusoids modulated by 
various powers of t. As in Fig. 10, the frequency dependence of 
amplitude is approximated here for onsets at random phases of 

the modulated sinusoid. 

shown for excitation of the natural frequency cor- 
responding to a negative real pole, and for exci- 
tation of the natural frequencies corresponding to 
a very high-Q pair of complex conjugate poles. 
Notice that the amplitude of the slope of the 
high-frequency rolloff begins at 6 dB/Oct for the 
step-modulated sinusoid and increases by 6 
dB/Oct for each increase of 1.0 in the degree (k) 

of the tk modulation. 
The situation in Figs. 4 and 5 might be con- 

sidered a crude model of the cochlea, depicting 
responses by axons with different CFs to the onset 
singularity of one tone. We now can see that the 
excitation profile over those axons would depend 
markedly on the shape of the modulation. Thus 
we have the interesting proposition that the audi- 
tory nerve might encode the shapes of modulation 
waveforms in the profile of edge responses of 
axons, with an important part of that profile being 
mapped over axons whose CFs are different from 
the frequency of the stimulus sinusoid. 

Application to some experimental results 

Methods 
60 to 200-day old Mongolian gerbils (Meriones 

unguiculatw), reared in an acoustically controlled 
room, were examined to insure that they were free 
from aural cholesteatoma and otitis. Healthy 
animals were pretranquilized with chlo~rot~xene 
(5 mg/kg, i.m.) and anesthetized 30 to 160 min 
later with ketamine (40 mg/kg, i.p.). Supplemen- 
tal doses of ketamine (10 mg/kg, i.p.) were admin- 
istered as needed. The surgical approach was that 
first published by Chamberlain (1977). The left 
pinna and associated muscles were removed, leav- 
ing the left ear canal exposed an unimpeded. The 
left bulla was opened, exposing the round-window 
antrum; and part of the floor of the antrum was 
removed to expose the cochlear nerve of the left 
ear. Single co&ear afferent axons within 0.25 mm 
of the surface of the nerve were penetrated with 
glass micropipettes filled with 3 M NaCl and 
having impedances greater than 50 m&L Spike 
activity was recorded simultaneously with the 
stimulus and stimulus trigger. The stimulus was a 
trapezoid tone burst, approximately 20 ms in 
duration, with the onset occurring at random 
phases of the modulated sine wave. It was moni- 
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tored with an Etymotic ER7G probe microphone 
inserted in the ear canal. The output of the probe 
microphone was calibrated with a Bruel and Kjaer 
sound pressure level meter and analyzed on-line 
with a Hewlett-Packard 3561A Dynamic Signal 
Analyzer. Both instruments were used to calibrate 
the stimulus amplitude over the entire frequency 
range employed in the experiment. Throughout 
the experiments, the stimuli all were well within 
the linear operating range of the Yamaha piezo- 
electric acoustic driver; thus the Dynamic Signal 
Analyzer revealed no ~p~tude-dependent in the 
normalized shape of the spectral profile of the 
acoustic driver output. Also, throughout the ex- 
periment, the core temperature of the animal 
(sensed by rectal probe) was maintained between 
36 * and 39” C; and the level of anesthesia was 
maintained at a level sufficient to eliminate re- 
flexive movement to tail pinch. 

The CF of each unit was determined from 
on-line auditory presentations of spike responses 
to 20-ms trapezoidal tone bursts presented at a 
rate of 5/s. The CF was bracketed increasingly 
narrowly as the amplitude of the stimulus was 
reduced in steps, beginning at approximately 60 
dB SPL. The threshold in each case was taken to 
be the minimum sound pressure level at CF at 
which the experimenter could hear clear spike 
responses to each tone burst. Once CF had been 
determined, the stimulus amplitude was increased 
to a level approximately 50 dB above threshold at 
CF, and the frequency, amplitude and the slopes 
of the trapezoidal modulation (‘rise’ and ‘decay’ 
times of the tone burst) were varied in steps. 

Experimental resuits and disewsion 

Figs. 12 and 15-17 display peristimulus time 
histograms of tone burst responses from three 
axons that are representative of our sample to 
date (well over 100 axons). The axon of Fig. 12 
exhibited a threshold of approximately 20 dB SPL 
at its CF (4.7 kHz). In response to trapezoidal 
tone bursts with 0.3 ms rise and decay (r/d) times 
at frequencies well above CF, it exhibited con- 
spicuous tendencies to produce spikes synchro- 
nized with the onsets and offsets of the tone 
bursts. However, at frequencies close to or equal 
to CF, it produced no such responses, even when 
the r/d times were reduced drastically. This pat- 
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Fig. 12. Pe~stimuIus time histograms of the responses of a 
gerbil cochlear afferent axon to trapezoidal tone bursts of 
random phase. The CF of the axon and the parameters of the 
stimulus are presented in the upper right of each panel (r/d = 
rise and decay times, amplitude is given for the tone-burst 
plateau). The timing of the tone burst is depicted by the 
diagram in the upper left. The tone burst was presented at a 
rate of 5 per s; thus the histogram in each case shows the entire 

stimulus cycle. 

tern (onset and offset responses at frequencies 
well above CF, none at CF) was repeated often in 
our sample of cochlear axons. It might be ex- 
plained by the shape of the response of a linear 
tuning structure to a ramp-modulated sinusoid. If 
the band edge of the structure’s tuning curve is 



sufficiently steep (e.g., greater than 12 dB/Oct for 
ramp-modulated cosine waves), and the mod- 
ulated frequency of the stimulus falls well above 
the structure’s pass band, then the transient exci- 
tation of the structure’s own natural frequencies 
will emerge as distinct (edge) responses at the 
onset of each ramp-modulated sinusoid. On the 
other hand, when the modulated stimulus 
frequency falls within the structure’s tuning band, 
the transient excitation of the structure’s natural 
frequencies will not emerge as distinct (edge) re- 
sponses. 

Recall that the trapezoid tone burst comprises 
four ramp-modulated sinusoids. In principle, one 
expects a. distinct response to the onset singularity 
of each of them (Fig. 13). However, when the 
periods of the excited natural frequencies are com- 
parable to the r/d times of the trapezoid, then the 
edge responses of the tuning structure will merge 
(Fig. 14). In order to separate these responses, we 
applied tone bursts with longer r/d times. Fig. 15 
shows the responses of a cochlear axon with a 
threshold less than 10 dR SPL at CF (6.6 kHz). 
The stimulus in this case was a 10 kHz tone burst 
with r/d times ranging from 2 to 9 ms. In the 
upper two panels, we see distinct responses to the 
first two corners of the tone burst (corners 1 and 2 
in Fig. l), with the response to the first comer 
being by far the larger. In the upper panel, it is 
not clear whether comer 3 or comer 4 is responsi- 
ble for the strong response at the end of the 
trapezoid; but the response seems to anticipate 
comer 4, implying that it is caused by comer 3. 
This causal relationship is clarified in the subse- 
quent panels, in which the response clearly an- 
ticipates corner 4 and exhibits a nearly constant 
latency (approximately 2 ms) with respect to comer 
3. In terms of the slopes of its constituent ramp- 
sinusoids, a 90 dB SPL trapezoid with 9 ms r/d 
times is the same as a 60 dB SPL trapezoid with 
0.3 ms r/d times. Recall that the phase of the 
trapezoidally-modulated sinusoid was random. 
Therefore, taken over the entire sample of ap- 
proximately 50 tone bursts for each panel, the 
four comers of the trapezoid represented essen- 
tially identical sets of ramp-modulated sinusoids. 
From the linear theory alone there is no explana- 
tion for the selective responsiveness to comers 1 
and 3 in the top two panels and to comer 3 alone 

Fig. 13. Responses of a specific tuned structure (analog filter, 
set for maximally-flat, low-pass operation, 96 dB/Oct rolloff) 
to a trapezoid tone burst (see also Grandori, 1979; Geisler and 
Sinex, 1982). For the top photograph, the filter corner frequency 
was 5 kHz; the stimulus frequency was 10 kHz; and the 
response (upper trace) was amplified 5OWX relative to the 
stimulus. For the top photograph, a 24 dB/Gct high-pass filter 
(comer frequency =I kHz) was added in cascade with the 
low-pass filter. This prevented low-frequency noise compo- 
nents from obscuring the edge responses. For the bottom 
photograph, the stimulus frequency was 10 kHz; the filter 
comer frequency was 6.6 kHz; and the response (upper trace) 

was amplified 500 x relative to the stimulus (lower trace). 

in the bottom two panels. The linear theory alone 
also cannot account for the conspicuous difference 
in latency between the response to comer 1 and 
that to comer 3. 

Additionally, the linear theory does not explain 
another response pattern seen in several cochlear 
axons in our sample. That pattern comprised dis- 
tinct edge responses for high-intensity tone bursts 
at frequencies close to or equal to CF. The re- 
sponses of such an axon are shown in Figs. 16 and 
17. This cochlear afferent exhibited a threshold of 
approximately 20 dB SPL at its CF (2.6 kHz). At 
low to moderate stimulus intensities at CF, the 
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Fig. 14. Responses of a low-pass filter with comer frequency at 
4.7 kHz to a series of tone bursts similar to those used in the 
experiments of Fig. 12. The analog filter again was set for 
maximally-flat low-pass operation with 96 dB/Oct rolloff. 
Stimulus frequencies: upper left =lO kHz; upper right = 8 
kHz; lower left = 6 kHz; lower right = 4.7 kHz. For the photo- 
graphs at 6, 8 and 10 kHz, the response (upper trace) was 
amplified 25 x relative to the stimulus. For the photograph at 
4.7 kHz, the response was amplified 2.5X relative to the 

stimulus. 

axon exhibited the classic ‘primary-type’ response 
(upper panel in Fig. 16). As the stimulus intensity 
was increased, clear edge responses emerged. 
However, while the edge response at the onset of 
the tone burst was well synchronized, that at the 
offset was not. In this respect, the offset response 
at CF was conspicuously different from that to 
tone bursts well above CF (Fig. 17). 

The linear theory presented earlier in this paper 
forces us to invoke nonlinear mechanisms in our 
attempts to explain the response patterns of Figs. 
12 and 15-17. Among other things, the linear 
theory demonstrates conclusively that one must 
not dismiss these patterns as mere consequences 
of ‘spectral splatter’. Regardless of how one might 
define ‘splatter’, the time domain analysis demon- 
strates that it must be the same for all four comers 
of the trapezoid tone burst with random phase. 
Why then would an axon be selectively sensitive 
to comer 3; and why would the latency in the 
response to comer 3 be so much longer than that 
to comer l? We found the selective sensitivity to 
comer 3 (relative to comers 2 and 4) not only 
among individual axons, but also in the whole- 
nerve compound action potential (CAP). How- 
ever, the CAP response generally reflects greatest 
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Fig. 15. Peristimulus time histograms showing responses of a 
gerbil cochlear afferent axon to tone bursts with rise and decay 
times designed to sort the edge responses to the four comers of 
a trapezoidal tone burst (the onsets of the four component 
ramps). The timing of the tone burst is depicted by the figure 
inserted in each panel. The tone burst was repeated at a rate of 
5 per s; therefore the histogram in each case displays only 
one-fourth (50 ms) of the complete stimulus cycle. Between 500 
Hz and 20 kHz, the sound level within the acoustical chamber 
was less than 1.4X10e6 Pa/Hz’/’ in the absence of the 
animal. No effort was made to control for cardiovascular, 
respiratory, or gastro-intestinal sounds emitted by the animal 
itself. The late&es of responses to comer 1 typically were less 
than 1 ms. The latencies for second-order auditory neurons in 
the gerbil are reported to be approximately 7 to 9 ms (Woolf 

and Ryan, 1985). 



sensitivity to comer 1. Since the CAP apparently 
corresponds to near-synchronous responses of 
many axons, the selectivity of the CAP response 
to comer 3 (relative to comers 2 and 4) implies 
that this aspect of Fig. 15 is representative of a 
large population of cochlear axons. According to 
the results in the lower two panels of Fig. 15, the 
presence of the portion of the tone burst that 
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Fig. 16. Peristimulus time histograms showing responses of a 
gerbil co&ear afferent axon to tone bursts at CF. A few of the 
axons in our sample showed onset and offset responses to tone 
bursts at CF; others, such as that of Fig. 12, did not. See 
caption of Fig. 15 for discussion relevant to apparent suppres- 

sion to spike rates below spontaneous level. 
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Fig. 17. Peristimulus time histograms for the axon of Fig. 16, 
stimulated at a frequency 1.8 octaves above CF. The offset 

response is considerably sharper than it was at CF. 

occurs prior to comer 3 somehow has modified 
the sensor and/or its afferent axon in such a way 
that it now is responsive to a stimulus to which it 
previously was insensitive. 

So far in the CAP we have not seen conspicu- 
ous latency differences in the responses to comers 
1 and 3. Nevertheless, its presence in Fig. 15 
implies a marked change in the dynamics of the 
tuning structure in that case, between the time of 
the response to comer 1 and the time of the 
response to comer 3. Our third rule of thumb (C) 
regarding the shapes of edge responses tells us 
that one possibility is an increase in the number of 
zeros at infinity. Another possibility would be a 
downward shift in the natural frequencies excited 
by the onset singularity of the ramp-sinusoid. Re- 
gardless of its underlying causes, some sort of 
change in the dynamics of the tuning structure 
definitely is implied by the data of Fig. 15. If 
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sensitivity to comer 3 in all of the panels in Fig. 
15 is a consequence of the same modification that 
apparently produces it in the lower two panels, 
then the change in dynamics that leads to the 
latency difference might be concomitant with the 
shift in sensitivity that allows the system to re- 
spond to comer 3. If that were the case, we would 
have a phenomenon in the ear (concomitant shifts 
in sensitivity and dynamics in response to applied 
stimuli) apparently analogous to that first dis- 
covered by Fuortes and Hodgkin (1964) in in- 
vertebrate photoreceptors and subsequently ob- 
served by Baylor et al. (1974) and others in pho- 
toreceptors of vertebrates. It is possible that in the 
ear the modification involves a shift in the trade-off 
between spectral resolution and temporal resolu- 
tion (e.g., see Lewis, 1987). 

All of these issues await further investigation. 

Final speculation 
It is clear that precise temporal resolution is a 

key ingredient in spatial localization of sound, and 
that the temporal resolution (a few tens of mi- 
croseconds) implied by psychophysical measure- 
ments in humans (Hafter et al., 1980) is remarka- 
ble considering the apparent timing jitter in 
VIIIth-nerve axons. Of course one can imagine 
considerable enhancement of the temporal signal/ 
noise ratio by ensemble averaging over large popu- 
lations of auditory axons. In this regard, it is 
interesting to note a paper published by Katz and 
Schmitt in 1940, in which they show that spikes 
being conducted in neighboring unmyelinated 
axons tend to become synchronized if they are not 
too far apart and the axonal conduction velocities 
are not too different. The spike in the faster axon 
is slowed by the presence of the spike in the 
slower axon, and that in the slower axon is accel- 
erated by the presence of the spike in the faster 
axon. In this manner, the spikes tend to come 
together in space and time. Extending this result 
to a bundle of unmyelinated fibers, one can imag- 
ine that bundle serving as a synchrony amplifier. 
Unless nodes of Ranvier are aligned, it seems 
unlikely that this phenomenon could occur among 
myelinated fibers. On the other hand, it might well 
occur among unmyelinated fibers at various loca- 
tions in the auditory system. 

Appendices 

Al. Decomposition of a trapezoidal tone burst 

A trapezoidal tone burst (Fig. 1) can be decom- 
posed into a series of four ramp-modulated sine 
functions and four ramp-modulated cosine func- 
tions, as follows (see Grandori, 1979, for a similar 
decomposition of a pulsed tone burst): 

v(t) =.Y&> +Y*(t) 

y,(t)=m,[(t-t,)sin(w,t)u(t-t,) 

-(t-t,) sin(w,t)u(t-t,) 

-(t-t,)sin(w,t)u(t-t,) 

+(t-t,)sin(w,t)u(t-t4)] 

(Ia> 

(lb) 

y*(f) = mb[(t - 4) cos(w,t)4t - 4) 

-(t-t,)C0S(W,t)#(t-t*) 

-(t-t,)cos(w,t)ll(t-r3) 

+(t-t,)cos(w,t).(t-f4)] (ICI 

w, = 27rfS (14 

u(t-t,)=l t2t, 

=o t<t, (le) 

where y(t) is the overall tone burst; f, is the 
frequency of the tone (in Hz); and 

1, -=z I, I t, -c t, (W 

t, - t, = t4 - I, (lid 

When t2 = t,, the trapezoidal tone burst becomes 
a tent-shaped tone burst (see Geisler and Sinex, 
1982). The parameters m, and mb determine both 
the phase, cp, of the sinusoid during the tone burst 
(relative to cos[w,t]) and the magnitude, M, of the 
slopes of the rising and falling skirts of the tone 
burst: 

M = (rnz + rni)l’* (2a) 

+ = tan-‘[ m,/m,] (2b) 



233 

If the co&ear tuning structure or any other 
structure (such as a spectral filter or a micro- 
phone) responded linearly to the tone burst, then 
it would respond independently to each of the 
four sine ramps in yi(t) and each of the four 
cosine ramps in y*(t). Define x,(t - ti)u(t - ti) 
to be the (linear) response of the tuned structure 
to the ramp (t- ti) sin[w,t]u(f- ti) and x,(t- 
ti)u( t - ti) to be its (linear) response to the ramp 
(t - ti) cos[w,t]u(t - r,), where u(t - ti) is zero 
for all values of t less than or equal to ti and 1.0 
for all values of t greater than or equal to fi. If a 
tuned structure responded linearly, then the re- 
sponse, xi(t), to the stimulus component yl(t) 
would be 

-x&Jr-t*)u(t-tt,) 

-x,(t-Qu(t-tt,) 

+Xatt--4b(f-t4)) (34 

the response, x2(t) to y2(t) would be 

-X&-Qu(t-t2) 

+x&-t4M--t4)) (3b) 

and the response, x(t), of the tuned structure to 
the complete stimulus, y(l), would be 

Therefore, we can characterize the linear response 
x(t) completely if we know the two basic compo- 
nent responses x,(t) and xt,(t). 

A2. Predicted linear responses to impulses 

The theories of Laplace transforms and 
partial-fraction expansion allow us to describe the 
overall linear operation of any structure as a finite 
or infinite series of terms, each representing an 
elementary time-domain operation. Each term 

corresponds to a ‘natural frequency’ of the struc- 
ture. Although, theoretically, a structure may ex- 
hibit multiple occurrences of the same natural 
frequency, the probability of this happening in a 
real structure is zero. Furthermore, even if it did 
happen, the dynamic behavior of the structure 
would be no different if the set of identical natural 
frequencies were replaced by a set of distinct 
natural frequencies whose differences were infini- 
tesimal. Therefore, we can describe the linear 
operation (including time delay) of any structure 
(including a traveling wave st~cture) as a series of 
terms each corresponding to a different natural 
frequency. 

If the structure is dynamically stable, the ring- 
ing corresponding to each natural frequency will 
be damped and eventually will subside. In that 
case, the individual components of ringing will 
take one of two forms: either 

fi(t) =Ai exp[ --a$] when t 2 0 @a) 

fitt) =O when t -C 0 (5b) 

or 

fj(t)=2aj eXP[-tXjt]COS[fijt] -2bj 

X exp[-ojt]sin[/3jrj when t 2 0 

&a) 

fj(t) =o when t -z 0 (6b) 

Each of these components is the response to an 
impulse stimulus occurring at t = 0. In the case of 
fi, the natural frequency corresponds to a negative 
real exponential coefficient ( -ai), which some- 
times is described as an imaginary frequency [units 
equal to nepers (e-foldings) per s]. In the case of 
4, the ringing corresponds to a concomitant pair 
of exponential coefficients that are conjugate com- 
plex numbers. Each member of the pair comprises 
a real frequency component, pj (radians per s) 
and an imaginary frequency component, aj (nepers 
per s). In the realm of Laplace transforms, these 
time-domain functions become 

(7) 
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and for a negative real pole, and 

(8) 

where ,C{f(t)} is the Laplace transform of f(t). 
Each imaginary natural frequency in f(t) is repre- 
sented in the denominator polynomial of L { f(t)} 
by a negative real zero, which is a negative real 
pole of the function F(s) = L { f( t)}. Similarly, 
each complex natural frequency in f(t) is repre- 
sented by a complex pole of F(s), with the imag- 
inary component of frequency being represented 
by the real component of the pole, and vice versa. 

An impulse stimulus of unit amplitude is ap- 
plied to a linear structure at time t = 0. The re- 
sponse, h(t), will be 

h(l) =M> +f*W +f,(t> + ... (9) 

where each function on the right-hand side has the 
same form as either fi(t) or f;(t). The Laplace 
transform of h(l) is 

H(s)=L{f(r)}=F,(s)+F2(s)+FF,(s)+... 

(10) 

where each term on the right-hand side has the 
same form as either F,(s) or Fj(s) and represents 
either a single negative real pole, zi, 

Zi = --(y. (11) 

or a conjugate pair of complex poles, zj and zj*, 

Zj= --cxj+i/S, (124 

z,? = - aj - ibj (12b) 

of the function H(s). In that case, the amplitude 
coefficients for the terms on the right-hand sides 
of Equations 9 and 10 are given by 

(13) 

aj=Re (s-Zj)H(s)] 
i s=z ) 

b,=Im (~-+Wls=z, i 
‘i 
J 

for a complex pole; where 

(14a) 

(14b) 

Re{a+ib} =a (14c) 

and 

Zm{a+ib} =b (144 

Each of these coefficients or pairs of coeffi- 
cients reflects the ability of an impulse of unit 
amplitude to elicit a transient response component 
at the corresponding natural frequency. Next we 
shall compare these coefficients with those ob- 
tained when the stimulus is a sine or cosine ramp 
rather than an impulse. 

A3. Predicted linear responses to sine and cosine 
ramps 

The Laplace transforms of sine and cosine 
ramps are 

Y,,(s)=L{Mt sin[w,t]} =~Mw,s/(.s’+w~) 

(Isa) 

and 

Y,(s)=L{Mtc0s[w,t]} 

= M(s2 - wI)/( s* + w:)’ (15b) 

where M is the slope of the ramp. The Laplace 
transforms of the responses of the structure of the 
previous paragraphs to sine and cosine ramps, 
respectively, are 

x(s) = ff(s)Y,(s) (164 

and 

x,(s) = H(s)Y,(s) (16b) 
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The poles of X,(s) and X,,(s) include all of those 
of the function H(s). Additionally, X,(s) and 
X,,(s) have duplicate poles at iw, and - iw,. 
Therefore, partial-fraction expansions of the two 
functions can be developed in the following forms: 

TJ”) = 4alcM s2+ w;> +qa2(s)/(sZ+ w:)’ 

+Kd4(4 + K,%W + K&(4 

+ . . . (174 

+ . . . (17b) 

where q,,(s) is a polynomial in .s, with degree 
equal to or less than 2; and the generic factors K,, 
and K,, are real or complex numbers. Our task is 
to find these factors K, and K,. 

Translated back into the time domain func- 
tions, xa( t) and xt,( t), the terms on the right sides 
of Equations 17a and 17b yield three classes of 
response: (1) a step-modulated sinusoid whose 
frequency is the same as that of the stimulus 
sinusoid (but whose phase may be different), with 
its step modulation occurring at the time of onset 
of the stimulus ramp (i.e., this component has zero 
amplitude prior to the onset of the stimulus ramp 
and constant peak-to-peak amplitude thereafter), 
(2) a ramp-modulated sinusoid whose frequency is 
the same as that of the stimulus sinusoid (but 
whose phase may be different), with the onset of 
its ramp modulation synchronized to the onset of 
the stimulus ramp, (3) excitation of every natural 
frequency of the tuned structure, with each such 
excitation being that which would take place in 
response to an impulse of appropriate amplitude 
occurring at the moment of onset of the stimulus 
ramp. Thus, taken individually, the response com- 
ponent corresponding to each term on the right- 
hand side of Equation 17a or 17b is easy to 
envision. On the other hand, it is not at all easy to 
envision the overall response that emerges from 
the summation of all of these components. How- 
ever, by dealing with the components individually, 
and by considering the overall nature of the tuned 

structure, we shall be able to develop some in- 
sights and some rules of thumb. 

We shall begin by finding the factors K,, and 
K,,, which transform the impulse response ampli- 
tudes of the tuned structure into sine and cosine 
ramp response amplitudes. In this way, we can 
determine the effectiveness of the onset singularity 
of the sine or cosine ramp in exciting the natural 
frequency corresponding to the generic pole zk, 
which can be either real or complex. 

Since the natural frequencies of our hypotheti- 
cal structure are not duplicated, we can compute 
K,, and Kbk as follows: if zk is a negative real 

pole, 

and if zk is a complex pole, 

K&k + i&J = (3 - ZIJYa(S)H(S)lS = z 
k 

@W 

where A,, ak and b, are the amplitude coeffi- 
cients for the impulse responses (see Equations 13 
and 14a, b). In either case, 

&k = Y,b)l s = Zk 
= 2i%kws/( 2; + w;)’ (19) 

for a sine ramp; and, by similar argument, 

Kbk = yb(s)l s = ‘?k 
= 2M( 2; - G)/(zkz + wf)’ 

(20) 
for a cosine ramp. 

Natural-frequency excitation by sine ramps 

In the case of a sine ramp, we apply Equation 
19. For excitation of the natural frequency corre- 
sponding to the negative real pole, zir = - Q~, we 
have 

K,, = -2M+w,/( fx: + wi)” (21) 

Here, K,, is a real number; and the time-dom~n 
response (to a sine ramp) corresponding to the 
negative real pole -ixL is 

fait(t) =&,,A, exp[ -akt] when t r 0 (224 

f&w = 0 when t c 0 (22b) 
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This simple exponential response begins at the 
time of the onset of the ramp that modulates the 
sinusoid (t = 0 in this case). Thus it is the response 
that would be elicited by an impulse of ap- 
propriate amplitude, synchronized with the onset 
of the ramp. 

For excitation of the natural frequencies corre- 
sponding to the complex pole, zk = - CY~ + iPk, 
we have 

K,, = 2M( -(Ye + ifik)w,/([ -ak + i/3,]* + wz)’ 

(23a) 

which can be restated as follows: 

K,,= [2M/~~](-6+i)w,/([-6+i]2+02)2 

(23b) 

where 

6 = %/Pk 

and 

lJ = WJPk 

(234 

(23d) 

Here, K,, is a complex number: 

K,, = c,~ + id, (244 

so that the left side of Equation 18b becomes 

K,k(ak+ibk)=g,k+h,k (24b) 

where 

&k = cakuk - dakbk (24c) 

and 

‘, = ‘,k’k + %kbk (24d) 

Therefore, the time-domain response (to a sine 
ramp) corresponding to the pair of complex poles 
- LYE + ipk and -CY~ - ipk is 

fktt) = 2gak exd-aktl cos[Pkfl - 2hak 

x exp[ -akt] sin[p,t] when t 2 0 

(25a) 

f,(t)=0 when t<O (25b) 

This exponentially-decaying sinusoid is the re- 
sponse that would be elicited by an impulse of 
appropriate amplitude, synchronized with the 
onset of the ramp. 

Although the expression for K,, corresponding 
to the complex pole -CY~ + ipk is complicated, it 
simplifies when that pole corresponds to a 
sharply-tuned (high-Q) resonance. In that case 

6 -=K 1 (26a) 

and 

K,, = i(2//?:) o/( w2 - 1)’ (26b) 

which is valid except when w is close to 1.0 (i.e., 
the stimulus frequency, wS, is very close to the 
resonance frequency, Pk). In that case 

K,, = i(2/pi)/( o* - 1 - 2iS)* (274 

which becomes 

K,, = -i/2a: (27b) 

when o is 1.0. This last expression, then, applies 
to a high-Q (second-order) resonance excited by a 
ramp-modulated sine wave whose frequency is just 
equal to that of the resonance. 

Natural-frequency excitation by cosine ramps 
In the case of a cosine ramp, we apply Equa- 

tion 20. For excitation of the natural frequency 
corresponding to the negative real pole, zk = - OLD, 
we have 

K,,=M(+ ws’>/(4 + 4)’ (28) 

Here, K,, is a real number; and the time-domain 
response (to a cosine ramp) corresponding to the 
negative real pole --(Ye is 

fbk(t) = K,,A, exp[ -cy,t] when t 2 0 (29a) 

ft,k(d =O when t < 0 (29b) 

Again, this is the response that would be elicited 
by an impulse of appropriate amplitude, synchro- 
nized with the onset of the ramp. 
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For excitation of the natural frequencies corre- 
sponding to the complex pole, t = -ok + i&, we 
have 

K,,=M((-*,+i&)‘-w:) 

/([-%+~Pk12+w~)2 (304 

which can be restated as follows: 

K,,= [M/p:]((-6+ij2-ww:) 

where S and w are defined in Equations 23c and 
d. Here, K,, is a complex number: 

K,, = Cbk + id& (3la) 

so that 

Kbk(ak + jbkj = gbk + hbk @lb) 

where 

gbk = ‘bk”k - hkbk (31c) 

and 

‘bk = dbkak + Cbkbk @Id) 

Therefore, the time-domain response (to a cosine 
ramp) corresponding to the complex pole - 4~~ f 
ifik is 

fkttb=2gbk exd-akfl cos[@ktl -2hbk 

xexp[-cu,?] sin[&t] when t>O 

(32a) 

f&j =O when t < 0 (32b) 

Again, this is the response that would be elicited 
by an impulse of appropriate amplitude, synchro- 
nized with the onset of the ramp. 

When the pole zk corresponds to a high-Q 
resonance, 

s -SC 1 (334 

and 

1y,, = - (l/flk”>( a2 + I)/(w2 - 1)2 (33b) 

which is valid except when the stimulus frequency 
( wS) is very close to the resonance frequency (&.). 
In that case, 

K,, = -(l/p:)< w2 + l)/( w2 - 1 - 2iSj2 (34a) 

When the ramp-modulated stimulus frequency is 
equal to the resonance frequency (i.e., w = l.O), 

K,, = 1/2ff2, t34b) 

A4. Onsets and offsets with other shapes 

Consider a tone modulated by the general func- 
tion R(t)u(t - t,), which is zero for all values of t 
less than ti. If R(t) is n times differentiable for all 
values of t greater than ti, then one can expand it 
into a Taylor’s series with terms up to degree n; 
and that series will approximate R(t)u(t - ti) in 
the interval ti < t < 00. 

R(t)u(t - ti) 

= [Mo+M,(t-ti)+Mz(t-tij2+ . . . 

+M,,(t-ti)“+remainder]u(t-ti) (35) 

Invoking the principle of superposition, we can 
deduce the response of a linear filter to each term, 
then add all such responses to yield an estimate of 
the response to the complete waveform. For that 
purpose we need the Laplace transforms of 

Maktk sin[ wt] 
f,&c(t) = o 

when t 2 0 

when t -c 0 
(36a) 

and 

M,,ktk cos[wt] 
fbkct) = o 

when t 2 0 

when t -c 0 
(36b) 

These can be found in published tables of Laplace 
transforms (e.g., see Roberts and Kaufman, 1966). 
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However, in their generic forms they are com- 
plicated functions, tedious to manipulate. With 
the availability of algebraic analysis programs, one 
can generate and display these transforms on a 
computer - by beginning with the Laplace 
transforms for step-modulated sine and cosine 
waves 

(36c) 

(36d) 

cos[ wi ] 
gbclt~) = o 

when f z 0 

when t -c 0 
(364 

L(gbo} =s/(s*+w*) (360 

and applying the following general property of the 
Laplace transform: 

L{@(t)} = -dF(s),/& (36g) 

where 

For k = 0 to 4 we have the following: Step- 
modulated sinusoid beginning at t = 0, 

sine L { f,,(t)) = NI,w/(s2 + w’) (37a) 

cosine ~(f,,(t)) =%o~/t~~+w~) (37b) 

Ramp-modulated sinusoids beginning at 1= 0, 

sine L { fat(t))} = 2M,,w.s/(s2 + w”)” (37c) 

cosine ~Ubl(f))f =%,(s2-w2) 

/(s’+ w’)’ (374 

Sinusoids modulated by t2 beginning at t = 0, 

sine L { f,,(t)] = 2M,,w(3s2 - w”) 

/(s2 + w’)’ (37e) 

cosine L{&,(r)} =2M,,s(s*-3w*) 

/( s2 + w’)’ (37f) 

Sinusoids modulated by t3 beginning at t = 0, 

sine L(f&)f =24M,,sw(.+ w’) 

/(s2 + w”)” (3%) 

cosine &- (f,,(t)> = 6M,, 

($4 - 6w2s2 + w”),( 2 + w”)” 

( 37h) 

Sinusoids modulated by t4 beginning at t = 0, 

sine ~(f,,(t)) = 24~~~~ 

(5s4 - 10w2sZ + w”)/(s’+ w’)’ 

(37i) 

cosine L ( fh4( t)} = 241I$,&~ - low’s2 + 5w4) 

/qs* + w”)” (Vi) 

The transient response corresponding to each 
modulation term on the right-hand side of Equa- 
tion 35 and each term in the partial-fraction ex- 
pansion of a linear filter’s transfer function will 
take the form of an impulse response beginning at 
ti, with an amplitude computable by application 
of Equation 19 or 20. Thus, to find the frequency- 
dependent amplitude factors for transient re- 
sponses to abruptly initiated (step-modulated) sine 
and cosine waves, we substitute the right-hand 
sides of Equation 37a and 37b for Y(s) in Equa- 
tions 19 and 20; for sine and cosine waves mod- 
ulated by the factor (t - 1i)2u(r - ri), we sub- 
stitute the right-hand sides of Equations 37e and 
37f for Y(s) in Equations 19 and 20; and so forth. 
Having done this, one derives expressions for the 
dependence of the amplitude of natural-frequency 
excitation on the frequency of the modulated 
sinusoid. 
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