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In 1952, Hodgkin and Huxley and others generated a revolution in our 
concept of the axon membrane and how it propagates the action potential. 
In 1959, Bullock described another revolution, a “quiet revolution” in 
our concept of the functions performed by the remainder of the nerve 
cell. In this paper we have attempted to show a possible connection 
between these two revolutions. We have proposed that a single unifying 
concept, that of the Modem Ionic Hypothesis, can account for almost all 
of the diverse behavior described by Bullock. In addition, we have 
attempted to demonstrate the value of electronic analogs in the study of 
systems as complex as that of the neural membrane. 

1. Introduction 

In 1959, Bullock described a “quiet revolution in our concepts of how the 
nerve cells act alone and in concert”; and he proposed four major revisions 
in the classical concept of the neuron: (1) that the nerve impulse, or spike, is 
characteristic only of a specialized portion of the neuron, the axon; (2) that 
many parts of the neuron respond to impinging excitation in a completely 
graded manner and are incapable of all-or-none conduction; (3) that each of 
these graded responses does not spread to become a spike directly, but 
several together determine the firing of impulses in some critical region, and 
(4) that integrative processes at the unit level are not confined to the synapse 
but also occur in other regions. Bullock went on to say that up to 1938 the 
only known form of nerve cell activity was the all-or-none spike. In that year, 
however, the local potential was discovered; and since that time many types 
of generator potentials and synaptic potentials have been found. Synaptic 
potentials themselves exhibit at least three degrees of freedom. First, of 
course, a synapse may be excitatory or inhibitory. In addition, however, a 
synapse may be facilitating or antifacilitating. That is, the synaptic response 
to inputs may be enhanced or diminished by previous activity. Finally, 
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following a long train of input pulses, the synaptic potential may exhibit after 
effects, either positive or negative, or both. Still further increasing the com- 
plexity of the possible combination of processes is the tendency to spontaneous 
activity. Spontaneous or pacemaker potentials may or may not be accom- 
panied by a spike. The potential itself may be nearly sinusoidal or it may be 
more nearly sawtooth and include a marked pre-potential. 

Bullock (1959), in his discussion, proposed a “locus” model of the neuron 
in which the various activities (synaptic, spontaneous, local potentials, spike 
initiation, etc.) are considered to occur in spatially distinct and localized 
regions, or loci, in the nerve cell. The properties of a neuron would thus 
depend, to a great extent, on the spatial distribution of these loci. Bullock 
went on to say that the present physiological models of the single neuron do 
not lack degrees of freedom. “On the contrary, the permutations of the half- 
dozen integrative processes now known within the neuron permit so much 
complexity that we need to know what restrictions to place on the models.” 
He thus poses a very important question about his own locus model: “What 
restrictions can we place on this model of the neuron’?” A corollary to this 
question is: “Is there an underlying, unifying basis for the diverse forms of 
both threshold and subthreshold behavior attributed to the various neural 
loci ?” 

In this paper I would like to propose that the underlying basis may be the 
Modern Ionic Hypothesis. It can be shown that the system of delayed and 
nonlinearly responding ionic fluxes which is the essence of the Modern Ionic 
Hypothesis inherently contains mechanisms which can provide all of the 
synaptic “degrees of freedom”, the local potentials and the spontaneity found 
in neurons. Thus the hypothesis which was put forth to explain the generation 
and propagation of the all-or-none spike may well explain the diverse forms 
of subthreshold behavior observed in many neurons. In addition, with this 
hypothesis as the assumed underlying basis of subthreshold behavior, certain 
predictions of neuronal behavior were made which have since been verified. 

In 1952, Hodgkin & Huxley (1952a,b,c) described “voltage-clamp” 
experiments on the giant axon of the squid, Lo&o. In a fourth paper (Hodgkin 
& Huxley, 1952d), they formalized the data into a set of empirical nonlinear 
differential equations describing the hypothetical time course of events 
during the generation and propagation of the action potential in the squid 
axon, laying the foundation of the Modern Ionic Hypothesis. The system 
which they describe is basically one of dynamic opposition of two opposing 
ion fluxes, sodium and potassium, across the membrane surrounding the axon. 
The net flux of either ion species may be thought of as the sum of two com- 
ponents, diffusion down the concentration gradient and drift down the elec- 
tric potential gradient, both components being limited by the resistance of 
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the membrane. The potassium ions are in greatest concentration inside the 
axon with the result that potassium ions tend to diffuse outward, carrying 
positive charges with them. Sodium ions, on the other hand, are in greatest 
concentration outside the cell and tend to diffuse inward, again carrying 
positive charges. The potential across the membrane at any instant is related 
to the net difference in charge from inside to outside; the rate of change of 
this potential is related to the relative magnitudes of the ionic fluxes, which 
are in turn related to the relative permeabilities of the membrane to potassium 
and sodium ions. The Hodgkin-Huxley equations describe, in essence, the 
dependence of these permeabilities on the transmembrane potential and time, 
as they found them to be in the giant axon of the squid. Although the physical 
properties of the membrane are not well understood, it is generally not 
to be expected that the sum of the diffusion and drift components for a given 
ion is linearly related to the sum of the concentration potential for that ion 
and the actual potential difference across the cell membrane (Mullins, 1956; 
Ling, 1962; Bruner, 1965). The sum of these two potentials, however, was 
defined by Hodgkin & Huxley (1952d) to be the net driving force. 

Nonlinearities occur even in the simple case where the electric field is 
assumed to be constant across the membrane. In this case, we can write an 
expression for potassium flux Jx (amps/cm2) as follows: 

4s+1 J,=qp~[K+]fj-qD,--dl; 
where q is the electronic charge; pk is the mobility of potassium ions in the 
membrane; [K+] is the potassium ion concentration, which varies across the 
membrane; V, is the transmembrane potential referred to the inside of the 
cell; w  is the membrane thickness; DK is the diffusion constant for potassium 
ions in the membrane; and the x-coordinate is orthogonal to the membrane 
surface. Taking a steady-state condition where both the transmembrane 
potential and the potassium ion flux are constant, we obtain 

d[K+l 
JK 

~ = -dx. 
-- _ !!!! [K+] !j 
@k DK 

It is generally assumed in a system of fluxes that the resistance to a given 
species of flux is independent of the force driving that flux. The mobility for 
a given species is thus directly related to the diffusion constant for that species 
by a simple expression, the “Einstein” relationship 

c1 4 - =-. 
D kT’ 

where li is the Boltzmann constant and T is the absolute temperature. 
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Substituting the Einstein equation and solving the differential equations, we 
find 

- 
([K’& - [K+li e-q”m’kT)qk(k : 

JK=-p 

(e- 
qVmlkT 

-1) 

where [K+], is the potassium concentration outside the cell; [KSli is the 
concentration inside the cell. 

If we now set Jk equal to zero, we have an expression for equilibrium 
between the potassium diffusion and potassium drift fluxes: 

t-K+1 ! = e-qVdkT 
CK’li 

where VK is the transmembrane potential necessary for this equilibrium and 
is defined to be the potassium concentration potential. This expression is one 
version of the well-known Nernst equation. If we apply this expression and 
solve for the potassium ion flux in terms of (V,- V,) we obtain 

JK = ~&Ki]i{(Vk- V,)/w - VK/w){e-q(v~~vm)- I} 

{e- q(VK - V,)/kT _ e - qVdkT 1 * 
It can readily be seen that Jk is not a linear function of (V,- V,,,). 

Hodgkin & Huxley (1952d) found that in addition to the nonlinearities 
inherent in a system where (V, - V,,,) is defined as the driving force, a more 
profound nonlinearity existed in the relationship between the potassium ion 
flux and (V, - V,,,), as well as in the relationship between the sodium ion flux 
and (V,, - V,). Under the assumption of a reasonably uniform electric field 
across the membrane, these additional nonlinearities could only be explained 
in terms of voltage dependent mobilities. In other words, the permeabilities 
of the membrane to potassium and sodium ions depend on the trans- 
membrane potential. 

Hodgkin & Huxley (1952d) described the membrane system of the squid 
axon in terms of the electrical analog of Fig. 1, which represents 1 cm2 of 
membrane. The batteries represent the concentration potentials for each ion 
species, with the effects of all ions other than potassium and sodium lumped 
into a single “leakage” potential in series with a constant “leakage” con- 
ductance. The effective transmembrane capacitance was found to be essen- 
tially constant for the squid axon at 1 &zrn2 of membrane. This was found 
to be effectively in series with a very small resistor-approximately 7 ohms 
for 1 cm2 of membrane. The potassium and sodium conductances are the 
critical variables in this system and each depends on the transmembrane 
potential and time. 



POTENTIALS FROM THE HODGKIN-HUXLEY MODEL 129 

2. Potassium and Sodium Conductances 

Most of the conductance data of Hodgkin & Huxley (1952a,b,c) were in- 
ferred from experiments in which the transmembrane potential was suddenly 
changed and held at a new value, and the time course of the resulting trans- 
membrane current was observed. With the membrane at equilibrium, or at 
rest, the sodium conductance was extremely low, a few micromhos per square 
centimeter (a resistance of several hundred thousand ohms in series with VNa 
in Fig. 1). If the transmembrane potential is suddenly increased and held at 

inside of membrane 

OutsIde of membrone 

FIG. 1. The Hodgkin-Huxley model of 1 cm2 of membrane in the squid giant axon. 

a value greater than equilibrium, little or no change is observed in the sodium 
conductance. If, on the other hand, the transmembrane potential is suddenly 
reduced (depolarized) and held at a value less than the equilibrium potential, 
two components of change are observable in the sodium conductance, as 
shown in Fig. 2. One is a transient change in which the sodium conductance 
rises with a finite time constant and some delay to a peak value, only to fall 
again with a different time constant. The second component is steady and 
persists as long as the membrane is held at the non-equilibrium potential. 
The decline of the transient portion is generally attributed either to inactiva- 
tion of sodium carriers (Hodgkin & Huxley, 1952d) or to clogging of the 
passages through which the sodium ions flow (Mullins, 1956). Once restored 
to the equilibrium potential, the membrane recovers from this inactivation 
or clogging exponentially. If the equilibrium potential is restored instan- 
taneously, both components of sodium conductance fall rapidly to the 
equilibrium values. For a stepwise depolarization and subsequent repolariza- 
tion to the resting potential, the change in sodium conductance can be 
characterized by seven parameters: (1) delay time, which is much less than 
1 msec and depends to some extent on the magnitude of depolarization, 
(2) rise time, which is 1 msec or less and depends on the magnitude of the 
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depolarizing step, (3) inactivation time constant, which decreases mono- 
tonically with increasing depolarization, varying from approximately 10 msec 
to less than 1 msec, (4) time constant of recovery from inactivation, which 
was specifically measured for only one case, a 44-mv depolarization; the 
inactivation time constant was about 1 G3 msec, while that for the recovery 

FIG. 2. Generalized responses of the sodium and potassium conductances to a step 
depolarization from Hodgkin & Huxley (1952d). 

from inactivation was approximately 12 msec, (5) the peak value of sodium 
conductance, which increases monotonically and in an extremely nonlinear 
(cubic to quartic) manner with increasing depolarization and saturates at 
about 20 mmho/cm’ for very large depolarizing steps, (6) the steady state 
sodium conductance which, according to the Hodgkin-Huxley equations 
(Hodgkin & Huxley, 1952d) increases with increasing depolarizations for 
small depolarizations, then passes through a peak and declines with further 
increasing depolarizations, (7) fall time on sudden repolarization, which is 
less than 1 msec. 

While these parameters are reasonably inclusive, two important aspects of 
the sodium conductance have been omitted-namely, its behavior when the 
sudden depolarization takes place from a non-equilibrium potential, and its 
behavior when the membrane potential is varied slowly about the equilibrium 
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value. In one experiment described by Hodgkin & Huxley (1952c), the 
membrane potential was preset and maintained for some time at a non- 
equilibrium value and then depolarized to a level 44 mv below the equili- 
brium potential. This was repreated for several values of preset potential, 
both above and below the equilibrium potential. The peak magnitude of the 
sodium conductance was observed in each case during the subsequent 
depolarization. It was found that the peak magnitude decreased as the preset 
potential was decreased. In other words, if the membrane had originally been 
hyperpolarized, the peak conductance was greater than that reached from 
equilibrium, which in turn was greater than that reached from a slightly 
depolarized state. Hodgkin & Huxley (1952c,d) and others (e.g. Hoyt, 1963) 
have interpreted these results in terms of a steady-state “inactivation” as a 
function of preset potential. For every value of transmembrane potential, 
Hodgkin and Huxley assume a steady-state inactivation factor (/I,) which 
determines not only the steady-state sodium conductance at that point, but 
also the peak sodium conductance available for depolarization from that 
point. The picture is complicated, however, by another parameter (m,) 
assumed by Hodgkin and Huxley. This parameter is also a factor in deter- 
mining both the steady state and the transient sodium conductances. The 
factor m, differs from h,, however, in that it only affects the sodium 
conductance at the membrane potential to which it applies. In other words, 
at a given transmembrane potential (V,) we have m,( V1) and h,( V,), and 
the steady state conductance at V, is a function of both. The peak sodium 
conductance for a sudden depolarization from Vi to V,, on the other hand, 
is a function of m&V,) and h,(V,). The factor m,(V,) thus obscures the 
relationship between the steady-state conductance at V, and the peak con- 
ductance on depolarization from V1 to V,. Such a relationship may, in fact, 
be non-existent. 

It is interesting to try another assumption, namely that while the steady 
state sodium conductance depends on the magnitude of the transmembrane 
potential, the transient or peak sodium conductance is independent of that 
potential. We will assume instead that the magnitude of the transient sodium 
conductance depends only on the magnitude of any imposed depolarization, 
and is independent of the potential from which that depolarization took place. 
If this assumption is correct, we should be able to plot the Hodgkin-Huxley 
data with “magnitude of depolarizing step” as the abscissa and find that the 
data for depolarizations to a constant level fall on the same curve as 
depolarizations from a constant level. This has been done in Fig. 3, and it 
can be seen that the two sets of data almost exactly coincide. The peak sodium 
conductance appears to be dependent only on the “magnitude of depolarizing 
step”. If we now assume that the transient sodium conductance is not a 
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function of absolute membrane potential, we must reinterpret another aspect 
of the Hodgkin-Huxley formulation, namely the inactivation. This now 
becomes a form of accommodution. If the membrane potential is suddenly 
altered and held at a new value, the transient sodium conductance accommo- 
dates in time to that new level. If the change is a depolarization, the time 

Magnitude of depolarlzatlon (mv) 

FIG. 3. Comparison of effects of depolarization from a constant level (x) (equilibrium) 
and depolarization to a constant level (0) (44 mv below equilibrium) (from Hodgkin & 
Huxley, 1952c,d.) 

constant of accommodation is simply that which Hodgkin & Huxley (1952~) 
call the time constant of inactivation. If, on the other hand, the change is a 
polarization or hyperpolarization, the time constant of accommodation is 
simply the time constant of “recovery from inactivation”. How does this 
interpretation affect the Hodgkin-Huxley model? In three ways: first, it 
allows the same maximum peak sodium conductance to be reached on 
depolarization from any membrane potential; second, it provides that the 
peak sodium conductance obtained on sudden depolarization is independent 
of the steady-state conductance at the level from which depolarization took 
place; and, third, it contradicts the basis upon which steady-state sodium 
conductance is calculated with the Hodgkin-Huxley equations for large 
values of depolarization. 

It seems reasonable to generalize from this point that under our new 
assumption the sodium conductance can be characterized as being composed 
of two components: a steady-state component whose amplitude depends on 



POTENTIALS FROM THE HODGKIN-HUXLEY MODEL 133 

the absolute membrane potential, and a transient component whose magni- 
tude depends on the magnitude and rate of any depolarizations of membrane 
potential as well as on the recent history of membrane potential fluctuations. 

In response to a suddenly applied depolarization, the potassium conduct- 
ance rises with considerable delay to a steady value which is maintained as 
long as the membrane remains depolarized (Fig. 2). The rise of the potassium 
conductance was characterized by Hodgkin & Huxley (1952d) as a simple 
decreasing exponential rise taken to the fourth, fifth, or sixth power: 

gK = i(gKm)l’n - [(gKm)l’n -(gKO)l’nl exp [-t/Tnl>” 

n =4,5,or6 

where gko, is the final value of conductance; gliO is the value of conductance 
just prior to the depolarizing step, and r,, is a time constant which depends 
on the magnitude of the membrane potential after the step. The exponent, n, 
simply places an inflection point in what would otherwise be a curve with 
monotonically decreasing slope. The value of n has very little effect on the 
general shape of the curve but simply determines the “delay time” or distance 
along the time axis between the origin and the inflection point (Fig. 2). It can 
be shown that the inflection point occurs at 

t = z, log n. 

Based on experiments with the giant axon of LoIigo in which the membrane 
was first strongly hyperpolarized and then depolarized to the sodium con- 
centration potential, Cole & Moore (1960) revised the Hodgkin-Huxley 
formulation to read 

zK = @l-exp [-r(t+t,)])25 

where Y is the rate constant, Zi is the final value of potassium current and r0 
is a function of the preset potential from which depolarization takes place. 
Cole & Moore (1960) found that t, was effectively zero for hyperpolarizations 
of 212 mv. The magnitude of c, required to fit the data increases monotonically 
with decreasing hyperpolarization. In other words, the “delay time” in the 
rise in potassium conductance is a monotonic function of the membrane 
potential just prior to the step depolarization. The effect of increasing t, is 
very similar to that of decreasing the exponent, n, so the Hodgkin-Huxley 
formulation for a step depolarization from equilibrium provides results very 
similar to those given by the Cole & Moore formulation for the same region. 
With either formulation, the potassium conductance can be characterized by 
four parameters: (I) delay time, which decreases monotonically with 
increasing step depolarizations and which increases monotonically with the 
magnitude of the membrane potential from which the depolarization takes 
place; (2) rise time, which decreases monotonically with increasing 
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depolarization, varying from more than 10 to approximately 1 msec for 
depolarizations from equilibrium; (3) steady-state potassium conductance 
which increases monotonically with increasing depolarization (see Fig. 4), 
and (4) fall time on sudden repolarization which may be 8 msec or more and 
apparently decreases slightly with increasing depolarization. 

Depolarization (mvl 

FIG. 4. Potassium conductance as a function of membrane potential, data taken from 
Hodgkin & Huxley (1952d). Note the piecewise-linear appearance of the data. 

In addition to the parameters of sodium and potassium conductances, the 
following details complete the electric analogy of Hodgkin & Huxley (1952d): 

1. Potassium concentration potential 
2. Sodium concentration potential 
3. Leakage potential 
4. Leakage conductance 
5. Membrane capacitance 
6. Resting potential 

7. Spike amplitude 

80 to 85 mv 
45 to 50 mv 
38 to 43 mv 
approximately 0.25 mmho/cm’ 
approximately 1.0 j&cm2 
60 to 65 mv inside negative 

with respect to outside 
approximately 100 mv inside 

going positive with respect 
to outside. 

The Hodgkin-Huxley model can be summarized as a passive system coupled 
to a potassium current which is a delayed function of membrane potential, 
to a transient sodium current related in an extremely nonlinear manner to 
rate of change of membrane potential as well as the recent history of mem- 
brane potential fluctuations, and to a steady-state sodium current related 
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in a nonlinear and perhaps nonmonotonic manner to membrane potential. 
Our question is: Can such a system account for the subthreshold behavior 
described by Bullock (1959)? 

3. Use of Electronic Analogs in Studying the Ionic Model 
Regardless of the specific, detailed interpretation we give the Hodgkin- 

Huxley data, the overall system which this data reflects is an extremely 
complex one; yet this system represents only a small, single patch of cell 
membrane and does not begin to account for the various distributive effects 
which one can imagine. The basic system-the single membrane patch-is 
composed of a set of several nonlinear, interdependent and time dependent 
variables : 

The linear weighting function oft-t in INa may be replaced by an exponential 
function. A detailed study of this system must include the effects of both 
steady-state and time-varying perturbations on individual parameters and 
combinations of parameters. 

If, for example, one wished to examine the theoretical properties of this 
system functioning as subsynaptic membrane at a chemical synapse, one 
would need to study the effects of time varying conductance perturbations 
as outlined in the current theories on synaptic transmission (Eccles, 1963, 
1964). The currently popular theory of excitatory synaptic transduction is 
that the transmitter substance effects an increase in the general permeability 
of the subsynaptic membrane, which is equivalent to a simple shunting con- 
ductance across the membrane model of Fig. 1. This synaptically induced 
conductance is generally thought to be directly proportional to the trans- 
mitter concentration in the synapse. If the transmitter is assumed to be injected 
during a presynaptic spike and then inactivated by a first-order process, the 
resulting conductance change will rise rapidly during the spike and then fall 
in a decaying exponential manner. The time variation for inhibitory con- 
ductance changes will be similar to those for excitatory changes, but the 
synaptic transmitter is thought to act specifically on the potassium con- 
ductance, the chloride (“leakage”) conductance, or both. 

In addition to synaptic conductance changes, a detailed study of the 
system should include the effects of stimuli (voltage or current) applied directly 
to one side of the membrane model. The results should include, for example, 
the parametric dependence of strength-duration curves on various system 
parameters, the effects of sodium inactivation time constants on short-term 
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accommodation, the effects of stimulus frequency on the all-or-none response 
of the system, etc. In addition, the Hodgkin-Huxley data apply to the squid 
(Loligo) at 6°C and the parameters are extremely temperature sensitive (QlO’s 
of the order of 3). The parameters may also vary from axon to axon in the 
squid and in other animals, as well as from axon to soma to dendrite in 
individual neurons. For these reasons, a reasonably complete study of the 
system should include the effects of systematic parameter changes; so far we 
have listed 17 potentially independent system parameters. Examination of 
such a system with classical mathematic techniques would be extremely 
impractical if not impossible. Even with the aid of high-speed digital com- 
puters, examination of such a system is difficult and time consuming. Digital 
computers are generally designed to attack problems in a serial manner; this 
problem requires computation of many extremely complicated functions all 
varying simultaneously. In addition, the effect of any driving function or 
perturbation would have to be simultaneously computed. If we take the 
empirical equations of Hodgkin & Huxley (1952d), accepting for the moment 
their formalization of the system, we can estimate the number of computer 
operations required to evaluate the system variables over a given increment 
of time. The Hodgkin-Huxley equations are as follows: 

CI, = 0.01 (V+ lO)/(exp [(V+ lO)/lO] - 1) 
Pn = 0.125 exp [V/80] 
a, = 0.1 (V+25)/(exp [(V+25/10]- 1) 

Pm = 4 exp [V/18] 
ah = 0.07 exp [V/20] 

Pr = Next C<v + 30)/101+ 1) 
dn 
- = cc,(l-n)-&n 
dt 

dm 
- = a,(l-m)-j?,m 
dt 
dh 
dt = a,,(l-h)-&h 

dv 1 _ 
dt =c {GKn4(V-VK)+&,m3h(V-VNa)+Gl(V-5)). 

m 
If we give our program every advantage in speed-constructing in advance 
tables for all the a’s and b’s, and not employing any loops, these equations 
take about 500 psec on machines with 5 psec add times. In order to maintain 
reasonable accuracy, on the other hand, a solution should be made for every 
100 psec of real time in the neuron. Thus, even with modern high-speed 
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computers and a fairly straightforward, if somewhat rigid, formalization of 
the system variables, we still suffer a five to one increase in computer time 
over real time. If, for example, we add auxiliary programs designed to search 
for certain modes of overall system behavior (spontaneity, facilitation, etc.) 
and others to explore systematically the parameter space, a more realistic 
estimate of the time increase would probably be ten to one. With a ten to one 
increase in computer time over real time and with the current costs of high- 
speed computer time (approximately $500 per hour), it can be estimated 
that one hour of neuron time will cost in the neighborhood of $5000. In 
slower, cheaper machines (with millisecond add times), one hour of system 
time may take as much as six months of computer time. For problems 
requiring only a few seconds or even a few minutes of simulated real time, the 
time increase is probably unimportant. For problems requiring longer 
simulations, however, it will probably be a major factor 

The digital computer contains certain inherent advantages. It provides 
flexibility: any nonliuear or discontinuous function may be added to the 
system. It provides means of automating routine experiments: if an experi- 
ment is pre-programmable (i.e. if we do not require human feed-back during 
the running of an experiment), the digital computer can handle it while the 
researcher is doing more useful tasks. In addition, it provides means for 
automatic interpretation of data: the data may be processed in many ways 
automatically (pulse interval histograms, joint interval histograms, etc.) 
without adding significantly to the computer time. Present-day digital com- 
puters, on the other hand, generally have the following disadvantages: on-line 
experimentation cannot generally be carried out at computer facilities; large 
changes in the system will often require rewriting of portions of the program 
or large changes in the tables of values; and the accuracy of the tabled values 
and the number of tables are both limited by the size of the high-speed (core) 
memory. 

Some of the disadvantages of the digital computer can be avoided by the 
use of special electronic analog circuits. With nonlinear active filters con- 
structed to provide time- and voltage-dependent functions essentially identical 
to those of the potassium and sodium conductances, analog circuits can be 
designed and built to simulate all of the fundamental aspects of the ionic 
model. The outputs from the filters can be added to any synaptically induced 
conductance changes and applied to the inputs of multipliers. The function 
representing potassium conductance is multiplied by V,,,- V,, while that 
representing the sodium conductance is multiplied by V,- V,,. Currents 
proportional to the products are then formed. The synaptically induced 
chloride conductance and general shunt conductance can be simulated by two 
additional multipliers, and the remaining components of the ionic model, 
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which are passive, linear elements, are very easily simulated with standard 
electronic components. In addition, through the use of variable resistors, 
important parameters in the ionic model can be made variable in the elec- 
tronic analog. Once the analog has been designed and constructed, it costs 
very little to use. The basic hourly rate is essentially that of the experimenter. 
The analog approach contains other advantages. On-line or direct experi- 
mentation can easily be carried out; so human intuition can be applied with 
almost no time lag to the search of the parameter space. Real time simulation 
can readily be achieved, and the output is easily obtained in a natural form 
(membrane potential, conductance values, etc.) and can be compared with 
recordings from real neurons. In addition, changes in the system are relatively 
easy to achieve (by variable resistor adjustments, replacement of capacitors 
or nonlinear elements, etc.). The analog approach also has its disadvantages, 
however. Routine or pre-programmed searches of regions of the parameter 
space cannot easily be automated with presently available equipment. 
Automatic data reduction equipment is not inherently contained in the 
apparatus, so such reduction must either be done by hand or a digital 
computer must be employed. The system model is basically less flexible than 
in the digital simulation. Not all nonlinear, time-dependent functions are 
easily realized with electronic analogs; while, in principle, any function can 
be approximated with numerical techniques. 

It is interesting to compare the digital and analog approaches in another 
respect-namely in the simulation of small systems of neurons based on the 
ionic model. In the case of the single membrane patch, the digital computer 
provides more flexibility and greater data reduction but costs about $5000/ 
hr of simulated membrane time. The analog approach, on the other hand, 
costs less than .$20/hr and allows on-line experimentation. In a system 
of 10 membrane patches, the digital simulation cost increases somewhat 
disproportionally since limitations on the size of the high-speed memory in 
the fastest current machines force us to abandon the tabled value approach 
(unless the tables are assumed identical for all patches). The computation 
time for a single value of V, across a single patch becomes approximately 
1 msec. Adding the time for auxiliary computation brings the new total to 
approximately 1.5 msec for 100 psec of real time per patch. If we add 
synaptically induced, exponentially declining conductance changes, we must 
add about 50 psec per synapse to the total. So, for a system of 10 patches and 
20 synapses, the computer time is approximately 16 msec for 100 psec of 
real time. One hour of simulated system time now requires 160 hours of com- 
puter time and costs $80,000. Ten analog patches, on the other hand, cost 
very little more than a single analog patch to operate (maintenance may cost 
a bit more); so the system that costs $80,00O/hr to simulate digitally costs 
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less than $20/hr to simulate by means of electronic analogs. These cost 
estimates exclude programming for the digital computer and design and 
construction for the analog. 

In the studies discussed in this paper, the analog system of Fig. 5 was 
employed. The circuits are reasonably straightforward. They were not built 
to simulate the Hodgkin-Huxley equations, however, but were designed em- 
pirically to match the Hodgkin-Huxley data (Hodgkin & Huxley, 1952~ to d), 
They were constructed with capacitors, resistors, varistors, variable resistors. 
transistors and diodes. Several realizations of the system of Fig. 5 have been 
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FIG. 5. Block-diagram of the electronic system used to simulate the Hodgkin-Huxley 
model. The potassium and sodium conductance time course networks are active electronic 
filters designed to fit the Hodgkin & Huxley data (19526). The pulse-period modulators and 
conductance networks transform the filter outputs into equivalent conductances. 
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constructed over the past two years. In that time, the basic designs for the 
active filters have changed very little. The multiplier circuits, on the other 
hand, have changed radically. We originally employed “quarter square” 
analog multipliers in which diodes provided -(Vi - V,)’ and (Vi + I’,)‘. 
These were added to yield 2V, V,. This scheme was not completely satis- 
factory, since an accurate product could not be obtained over the required 
range of inputs (the sodium conductance varies as much as 1000 to 1). In a 
second version of the system, a pulse-height, pulse-width multiplier was 
employed. The output was in the form of pulses of amplitude V, and width 
proportional to V,. This scheme also failed to provide the necessary dynamic 
range. Finally we employed a pulse frequency modulating network. In this 
case, the pulse-width was fixed at approximately 1 msec; the amplitude was 
made equal to I’, ; and the frequency varied between approximately 500 pps 
and 500,000 pps and was proportional to V,. The latter scheme is particularly 
well adapted to this system, since the simulated membrane capacitance acts 
as an integrator for the pulses. Thus, for the potassium conductance, for 
example, the pulse amplitude is fixed at V, and the frequency is made propor- 
tional to the conductance value. The pulses are applied through a diode and 
a fixed conductance, G’, to the inside of the simulated membrane patch. 
During a pulse, the current through G’ is 

I = G’(I/,- V,). 

The average current over several pulses is: 

I, = 10-6fG’(r/;,-VK) 

wherefis the pulse frequency. The effective conductance is thus proportional 
to the frequency: 

G, = lO?jG’. 

In our studies with the electronic analog, we have looked for explanations 
for a number of phenomena. Our basic premise has been as follows: since 
the soma and dendritic membranes are very likely to be continuous with the 
axon membrane of a neuron, it seems reasonable that these membranes have 
electrical properties similar to those of the axon. It therefore seems reasonable 
that the ionic model or some variation of it should apply to somatic and 
dendritic membranes. An interesting question then arises: can the various 
loci and locus properties proposed by Bullock (1959) be explained in terms 
of the ionic model? In attempting to answer this question, we set out to look 
for the following in our analog: (1) varying degrees of electrical excitability 
and how to account for them; (2) spontaneity and how to account for it; 
(3) facilitation, antifacilitation, or neither and what post-synaptic mechanisms 
might account for them (this may seem unduly speculative to many physio- 
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logists since facilitation is almost universally thought to be a presynaptic 
function), and (4) synaptic after-effects or rebound and how to account for 
them. 

(A) ELECTRICAL EXCITABILITY 

While in most neurons the axon membrane responds to electrical stimuli 
with a spike, or action potential, the somatic and dendritic membranes of 
many neurons are electrically inexcitable (Bullock, 1959; Hagiwara, 1960; 
Hagiwara, Watanabe & Saito, 1959; Grundfest, 1957). In other words, these 
membranes are capable only of completely graded response to applied stimuli 
and are incapable of all-or-none spike generation. With the aid of our elec- 
tronic analog we have attempted to discoverjust what changes in the Hodgkin- 
Huxley model might account for electrical inexcitability. 

Before discussing the question of excitability, however, let us briefly review 
the regenerative action which, according to the Hodgkin-Huxley model, 
brings about the all-or-none action potential. Following a brief excitatory 
stimulus near the spike threshold, the membrane is slightly depolarized. The 
steady-state sodium conductance increases in response to this depolarization, 
and the potassium conductance tends to increase but is delayed. The increased 
sodium conductance induces an inward current which further depolarizes the 
membrane. This in turn produces a further increase in the steady-state sodium 
conductance and the process becomes regenerative. Without the transient 
sodium conductance, however, this regenerative process could not yield an 
all-or-none spike, since the delayed potassium current would soon overtake 
the steady-state sodium current and reverse the process. The peak membrane 
potential obtained before the process reversed would be a function of the 
stimulus magnitude; the response would be graded. Actually, as the 
depolarization increases beyond approximately IOmv, however, the transient 
sodium conductance becomes significant and adds to the regenerative process. 
If the excitatory stimulus was above threshold, the added component of 
sodium conductance makes it impossible for the potassium current to overtake 
the sodium current until a full spike has been developed. 

Following a moderate superthreshold stimulus then, the early part of the 
regenerative response is due to the steady-state sodium current, while the 
later part is due to the transient sodium current (Hodgkin & Huxley, 1952d). 
A full all-or-none spike is not possible without the action of the transient 
sodium current. For large amplitude stimuli, in fact, the steady-state sodium 
current may not play any significant role in spike generation. Membrane 
parameters which determine excitability then are those which determine the 
relative effectiveness of the transient sodium conductance and its antagonist, 
the potassium current. 
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In our early studies we found that inexcitability might result from the 
following changes, taken singly or in combination: decreased sodium current 
as a function of membrane depolarization, increased rate of sodium con- 
ductance inactivation, increased potassium current as a function of membrane 
depolarization, increased leakage, or chloride conductance, increased 
membrane capacitance, and finally, changes in a number of less likely 
candidates such as rates of conductance change (Lewis, in press). Of all these 
parameters, membrane capacitance now seems to be the most reasonable. 

Stimulus pulse amplitude (/AA) 

FIG. 6. The peak transmembrane depolarization reached in response to a 5 msec current 
pulse; the abscissa is the magnitude of the current pulse. The number beside each curve 
indicates the transmembrane capacitance in pF/cma. 

Increasing the membrane capacitance reduces the effectiveness of the tran- 
sient sodium conductance. This is simply because a given inward current 
depolarizes the membrane at a rate inversely proportional to the capacitance. 
As the rate of depolarization is reduced, the resulting transient sodium 
conductance is reduced. 

If we set all the parameters of the analog equal to those specified by 
Hodgkin & Huxley (1952d) and apply 5-msec current pulses of various 
amplitudes, we obtain the response shown by curve 1 of Fig. 6. The system 
responds in a graded manner up to a membrane potential of approximately 
5 mv. At this point it jumps abruptly to full spike amplitude (100 mv). No 
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intermediate peak membrane potential is ever observed. If C,,, is now doubled 
(to 2 pF/cm2) the shape of the response curve becomes completely graded. 
It is extremely nonlinear, however, and becomes very steep above a membrane 
potential of 10 mv. If C,,, is again doubled (to 4 @m*) the slope of the 
response curve is greatly reduced and the curve does not really become steep 
until the membrane potential is above 40 mv. While the squid giant axon 
capacitance (Hodgkin, Huxley & Katz, 1952) is approximately 1 pF/cm2, 
soma membrane capacitances of 4 pF/crn’ or more have been measured by 
several investigators in the puffer, Spheroider (Hagiwara, 1960; Hagiwara & 
Saito, 1959), the lobster cardiac ganglion (Hagiwara, 1960), the cat (Coombs, 
Eccles & Fatt, 1955), the toad (Araki & Otani, 1955), and others. There is 
some doubt as to the accuracy of membrane capacitance measurements 
(Rail, 1960) so a definite correlation between excitability and membrane 
capacitance cannot be stated at this time. Increased membrane capacitance 
does appear to be a likely candidate, however, to produce inexcitability. 
Fitzhugh (1961) has pointed out that completely graded response should be 
theoretically possible in all cases, but that it cannot always be seen because 
of lack of fineness in stimulus amplitude adjustment. We can say, however, 
that the model appears to exhibit all-or-none activity for values of membrane 
capacitance less than 1 pi. 

Even with increased capacitance and with the capability of only graded 
response, the membrane can still respond in an extremely nonlinear manner. 
In addition, the peak membrane potential in response to a 5-msec current 
pulse is enhanced by a steady depolarizing current and diminished by a 
steady hyperpolarizing current. These currents thus affect the excitability of 
the system. This can be explained in terms of the steady-state sodium con- 
ductance. Since it is a nonlinear function of membrane potential, a steady 
depolarization increases its regenerative effect during the early response 
phases; this increase is amplified through the remainder of the response. 
Conversely, a steady hyperpolarization decreases its regenerative effect. A 
very small depolarization or hyperpolarization can be extremely effective in 
altering the response. 

(B) OSCILLATORY MECHANISMS INHERENT IN THE IONIC MODEL 

Many neurons appear to produce periodic spikes or bursts of spikes in the 
complete absence of external inputs (pacemaker neurons) or in the presence 
of external stimuli (sensory neurons). Many sensory neurons appear to be 
pacemakers whose output frequency is altered by external stimuli, but which 
do not require external stimuli in order to produce spikes. The question which 
arises is “What mechanisms may account for pacemaker activity?“. Early in 
our work with the analog we tested a rather obvious hypothesis: a depolariz- 
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ing “leakage” current which prevents establishment of a permanent equili- 
brium will produce a pacemaker effect. A non-zero sodium flux at what would 
otherwise be the equilibrium potential would provide such a current; and, 
with a simulation of the flux, our analog quite readily became unstable and 
produced periodic spikes. In subsequent experiments, however, we found a 
number of other mechanisms which produced instability. Pacemaker activity 
occurred in the following modes: (1) oscillations between the potassium 
current and the “leakage” ion current; (2) oscillations between the potassium 
current and the steady-state sodium current; (3) oscillations between the 
potassium current and the transient sodium current, and (4) oscillations 
between the potassium current and both sodium currents. These oscillations 
could be induced in the following ways: (1) introduction of a finite steady- 
state sodium current at what would otherwise be the equilibrium potential; 
(2) introduction of an externally applied depolarizing current; (3) alteration 
of either the potassium or the leakage ion concentration potential; (4) a 
single excitatory pulse applied to the membrane (in mode 3), and (5) 
introduction of a general shunting conductance. 

The first mode listed above (oscillations between the potassium current 
and the leakage or chloride current) is of special interest because it can occur 
without the regenerative action of the sodium current. This is typically a 
high frequency mode, approximately 20 to 2OOcs/s for the Hodgkin-Huxley 
system. Since this system is for the squid giant axon at 6°C and since Hodgkin 
and Huxley generally found the system Q,, to be about 3 for the various rate 
constants, we would expect very much higher frequencies at room tempera- 
ture (180 to 18OOcs/s). Since the sodium current does not enter, the depolariz- 
ing phase in these oscillations is limited and does not lead to an action 
potential. While these oscillations occur with an isolated portion of the 
system and may therefore be of questionable significance, it is important 
to keep them in mind since they may very well come into play at the sub- 
threshold level and be important in the overall response of membrane systems. 
One can demonstrate mathematically the potential for oscillations in this 
mode. Using either Cole & Moore’s (1960) formulation or Hodgkin & 
Huxley’s (1952d) formulation, we have for a step depolarization : 

I, = AZ,(l-exp [-cz(t+tO)])n+ZKO 

where to, n, and c( may all be functions of membrane potential. If we consider 
the small-signal case where fluctuations in membrane potential are small and 
t,, n, and CI are essentially constant, we can obtain the Laplace transform of 
the response : 

3’[ZK] = AZ, 
n! ct” exp [st,] 

s(s+cr)(s+2cl). . .(s+na)’ 
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The transform of the step depolarization which produces this current is 

so the transform of the transfer function is 

IZ ! un exp [st,] 
AI’-,,, (s+tl)(s+2cr). . .(s+ncc)’ 

Since we are interested in small a/c signals and not step depolarizations, we 
may substitute 

(Vx-V,) ‘2 for AIk/Al/,. 
m 

Also, since we are interested in small fluctuations about the equilibrium 
potential, and since the Hodgkin-Huxley and the Cole-Moore formulations 
are essentially equivalent at this potential, we can eliminate the delay factor 
(to) by choosing the proper exponent (n). Hodgkin & Huxley (1952d) settled 
on 4 for practical computations, but thought 5 or 6 would better fit the data. 
Cole & Moore (1960) prefered 6. The transfer function is now simply 

d GK 
IKb) 

(V,-V,) -- n!a” 

T,(s) = __ = dV;,- 

V,(s) (s+ u)(s + 2c(). . . (s + nu) 
Unfortunately, this transfer function applies only for increasing ZK. The 
potassium current in response to a step repolarization decreases in a simple 
exponential manner, and the transfer function for decreasing IK is 

IK(s) dl, a’ 
T,(s) = _____ zzz _ --~ 

V,(s) dI$, s+a 
where a’ is not necessarily equal to OZ. If we eliminate the sodium conductance, 
and consider only small a/c signals, the Hodgkin-Huxley model of Fig. 1 
can be reduced to the system of Fig. 7. If T(s) = T,(s) this system has two of 

FIG. 7. A small signal equivalent of the Hodgkin-Huxley system without the sodium 
conductance. 

the properties necessary for instability: potential 180” phase shift and negative 
feedback. If, on the other hand T(s) = T,(s), the phase shift can only approach 
180” and the system is unconditionally stable. Since the latter case is 

‘T.B. 10 
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uninteresting, let us examine the system with T(S) = T2(s). The overall transfer 
function is now 

n ! an/Cm 

?-’ = (s+CI)(s+2a). . .(s+ncr)(s+/3) 

where j? = G,/C,,, and is the reciprocal of the membrane time constant; G, 
is the parallel combination of the leakage conductance and the equilibrium 
potassium conductance. For values of membrane potential near equilibrium, 
Hodgkin & Huxley (1952d) found 

WKg 
m 

to be approximately 1 mmho/cm2. Taking their value of 1 pF/cm2 for C,, 
the open-loop transfer function of the system in Fig. 7 thus becomes 

+ys) = 103n! GI” 
(2) 

in (s+CL)(s+2a). . .(S+m)(S+p) 

where a and /? are in set-‘. We can find points of potential instability for 
the open loop transfer function of equation (2) by substituting jw for s and 
solving for the values of o which provide 180” phase shift. This has been 
done in a digital computer for values of CI from 100 to 1000, fi from 100 to 
1000 and n equal to 4, 5 and 6. The results are shown in Fig. 8. The contours 
are those of constant open-loop gain, and constant frequency. The system 
will be unstable when the open loop gain is greater than unity. The areas 
below the heavy contour lines thus represent regions in the parameter space 
where oscillations may occur. It can be seen that this area increases with 
increasing value of n. Hodgkin & Huxley (1952d) found a to be approxi- 
mately 200 set- ’ near equilibrium while their value for p is 500 set- ’ . When 
n = 4 or 5, the system is reasonably stable for these values (open loop gain 
= 0.56 and 0.67, respectively); when n = 6, however, the system is very 
nearly unstable (open loop gain = O-76), and minor fluctuations in system 
parameters can produce oscillations. The frequency of these oscillations 
would be approximately 40 es/s. Thus, if we ignore the discontinuity 
in the system transfer function (i.e. the shift from Tl to T2) we find that very 
minor parameter changes in the Hodgkin-Huxley system may produce 
oscillations between the potassium current and the leakage current. Changes 
which might bring this about are as follows : (1) decreased resting potential 
or increased potassium potential-a 10% shift in either would suffice; 
(2) decreased membrane capacitance or increased membrane resistance-a 
30% change would suffice; (3) a 30% increase in dG,/dV,; (4) a 40% 
decrease in LX. Inclusion of the discontinuity reduces the tendency of our 
system to oscillate. The extent of such reduction is difficult to assess since 
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FIG. 8. Contours of constant frequency (25, 50, IS, etc.) and contours of constant open- 
loop gain (4, 1, 2, etc.) plotted against system rate constants, a and B. 

(a) to (c) The system comprised of the potassium current and the chloride, or leakage ion 
current. In each case the potassium conductance is taken to be continuous and to respond 
in the delayed exponential manner ([l - exp (- kZ’)j”). In (a) n = 4; (b) n = 5; (c) n = 6. 

(d) Same system as (a) but with the effects of sodium conductance added: 

the system is not easily analyzed. Here again, analog techniques are useful. 
The analog network of Fig. 9, for example, is equivalent to the Hodgkin- 
Huxley system with 

24 a4Ap 
‘(‘) = (s+a)(s+2a)(s+3a)(s+4a)(s+p) 

Tz(s) = e. s+Y 
Studies with this network have led to the following generalizations: inclusion 
of the discontinuity generally brings about a marked increase in the natural 
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frequency of the system. The frequency becomes strongly dependent on the 
system gain. It varies from approximately the frequency before inclusion of 
the discontinuity to almost twice that frequency, increasing monotonically 
with increasing gain, The gain required for oscillation is approximately 
doubled, so the system stability is essentially doubled. The variation in open- 
loop gain as a function of LX and /I is almost identical to that for the con- 
tinuous system. The system spends very little time in the mode of 7’,(s); so, 
for the most part, the natural oscillations look like the output of a fullwave 
rectifier. This probably accounts for the frequency doubling. Table 1 shows 

TABLE 1 

Results obtained from analog of Fig. 9 

a=5000 y=2500 G, = OQOOO3 ohm-’ 

(1) (2) (3) 
T = T,(s) T = Tl(S), T,(s) T = T,(s), Tz(s) 

Discontinuity in 

No discontinuity in transfer Discontinuity in transfer function 

function transfer function with negative 
transconductance in 

parallel 

B At Frequency A Frequency A Frequency 
1000 5.0 42 11.5 72 2.4 35 
2000 4.5 49 10.2 86 2.9 54 
3000 4.5 53 10.0 93 3.3 67 
4000 4.6 56 10.4 100 3.7 77 
5000 4.7 59 10.8 106 4.0 83 
6000 4,8 60 11.2 112 4.3 88 
7000 4.9 61 11.7 115 4.6 93 
8000 5.0 62 12.2 118 4.9 95 
go00 5.0 63 12.5 119 5.2 95 

10,000 5.1 64 13.0 120 5.4 96 

At -= gain required for oscillation. 

examples of the results obtained with this network, and Plate I shows the 
waveform of the oscillations obtained from the network. 

In the second oscillatory mode mentioned above, the regenerative action 
of the steady-state sodium conductance is an important factor in the 
depolarizing phase. As in the previous case, however, the oscillations would 
not be possible without the delayed potassium current, which produces the 
hyperpolarizing phase. The depolarizing phase in this case is aided by the 
steady-state sodium current. The steady-state sodium conductance near the 
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equilibrium potential increases roughly as the square of depolarization. The 
steady-state sodium current, which is depolarizing, thus increases in a non- 
linear manner with increasing depolarization. The net effect is equivalent to 
that of a nonlinear negative resistance, providing a regenerative depolariza- 
tion of the membrane. Repolarization occurs when the delayed potassium 
current becomes sufficiently strong to overcome the sodium current. As the 
membrane becomes repolarized, the sodium conductance falls rapidly, but 
the falling potassium conductance lags the membrane potential enough to 
allow the membrane to become hyperpolarized. Repolarization is thus 
regenerative. For small a/c signals superimposed on a slight depolarization, 
the steady-state sodium conductance is equivalent to a fixed negative trans- 
conductance in parallel with T(S) in the system of Fig. 7. The magnitude of 
the transconductance is simply 

(I$,-- V,) d+ 
m 

where V,, is the sodium equilibrium potential and GNamso is the steady-state 
sodium conductance. The system can be analyzed quite easily for T(s) = T,(S). 
The solutions were obtained on a digital computer and are shown in Fig. 8. 
If the discontinuity in T(s) is included, the system again becomes very difficult 
to analyze. The analog of Fig. 9 can be used, however, to examine the system 
properties directly. Again several generalizations can be drawn from studies 
with such an analog. The system with the steady-state sodium conductance 
becomes more unstable, in fact, a very small negative transconductance 
will more than overcome the increased stability due to the discontinuity in 
T(S). The frequency of oscillation is markedly decreased by inclusion of the 
negative transconductance, and decreases monotonically with increasing 
magnitude of the transconductance. Data from this analog study are included 
in Table 1, and Plate I shows the typical waveform resulting from inclusion 
of the negative transconductance. 

One further point should be mentioned : with the parameters of the analog 
set to the values stipulated by Hodgkin & Huxley for the giant axon of 
Loligo (i.e. a = 200 set-‘, /I = 500 set-‘, y = 125 set-‘, n = 4), and with 
the open loop gain for T = T,(s) set at 0.56 (the value computed for those 
parameter values) the system became unstable when the negative trans- 
conductance reached 0.54 x 10m3 mho. In our representation of the system 

d&a the transconductance equals (I& - I’,> F. The Hodgkin-Huxley value, 

for (V,, - V,,,) is approximately 100 mv; thui for oscillations with the stated 
%a parameter values, do must be greater than 0.0054 mmho/mv. According 

m 
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%a to Hodgkin and Huxley’s data (Hodgkin 8z Huxley, 1952d), r reaches 

this value when the membrane is depolarized in the range of 6 to lt!!mv. The 
Hodgkin-Huxley system should thus become unstable in this range of 
depolarization even without the highly regenerative action of the transient 
sodium conductance. The system becomes even more unstable with the sixth 
power formulation for potassium conductance, so it is quite possible, within 
the framework of the Hodgkin-Huxley model, to have oscillations even when 
the sodium conductance is in a state of inactivation (e.g. during the relative 
refractory period). 

Like the steady-state sodium conductance, the transient sodium con- 
ductance increases nonlinearly with increasing depolarization. Since the 
sodium current is depolarizing, the transient sodium conductance provides a 
regenerative process across the membrane. Addition of the transient sodium 
conductance to our system will thus either enhance any existing oscillations 

%a In or increase the tendency of the system to oscillate by increasing -. 
dvm 

addition, the transient sodium conductance may produce all-or-none action 
potentials on the depolarizing phases. We now come to the complete Hodgkin- 
Huxley system-including leakage conductance, potassium conductance, and 
steady-state and transient sodium conductances. From the previous results 
we can infer several things: (1) the potassium ion flux forms a potentially 
unstable or oscillatory system when combined with the chloride, or leakage 
ion flux in the Hodgkin-Huxley model; the sodium ion flux is not required 
for oscillatory behavior; (2) addition of the effects of steady-state sodium ion 
flux increases the tendency of the system to oscillate, and the natural frequency 
of the system tends to be reduced as the sodium ion flux becomes more 
effective; (3) even with the fourth power formulation for the potassium 
conductance, the Hodgkin-Huxley system is potentially unstable for values 
of depolarization slightly more than 6 mv, even without the effects of the 
transient sodium conductance. Two interesting questions now arise: What 
results can one expect from the interaction of the various oscillatory and 
regenerative mechanisms inherent in the Hodgkin-Huxley model? How might 
these results depend on the various parameters of the model? These questions 
might be attacked by means of a digital computer, but this seems impractical. 
The analog of Fig. 5 provides a simple means of examining these questions. 
By setting the parameters of this analog to correspond to the values of the 
Hodgkin-Huxley model, and then systematically varying various parameters 
about those values, we have observed many interesting types of spon- 
taneous behavior. This includes pairing of spontaneous action potentials (i.e. 
a long interval followed by a short interval, as in Plate II), burst formation (a 
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spontaneous, periodic burst of action potentials followed by a silent period), 
and regular, periodic action potentials, essentially identical to the pacemaker 
potentials observed by Bullock. All of these phenomena can be explained, 
therefore, in terms of the Ionic Hypothesis, and a single membrane patch. 

Another interesting phenomenon was discovered by plotting pulse interval 
histograms of spontaneous action potentials produced by the analog. 
Generally, the analog produces regular, periodic action potentials with almost 
no detectable spread in period. Under certain conditions, however, the 
spontaneous pulse intervals are distributed as in Fig. 10(a). This figure simply 
reflects a Poisson process with refractoriness imposed upon it for short 
intervals. Now, a very slight change in the excitatory state of the system 
(decreased excitability) can change this histogram to that of Fig. IO(b), 10(c) 
or IO(d). It is interesting that these multimodal histograms are essentially 
identical to those observed in units of the cat retina and lateral geniculate 
by Levick & Williams (1964) and Bishop, Levick & Williams (1964). 
Thus a form of complex, patterned behavior found in real neurons was 
found independently in a simulated single membrane patch. The explana- 
tion, as far as the analog is concerned, is simple. Following a given 
spike the analog becomes refractory (i.e. the transient sodium conductance 
has been inactivated). As shown previously, however, subthreshold oscilla- 
tions may occur even in the absence of an active transient sodium conductance. 
In the presence of these oscillations, the next spike will tend to occur during 
a depolarizing phase of the oscillations. We thus obtain an oscillatory change 
in excitability superimposed on a Poisson process, and the combination 
yields the multimodal histograms of Figs 10(b), (c) and (d). The model pro- 
posed by Bishop et al. (1964) to explain the multimodal histograms includes 
several nerve cells with statistical pulse outputs. Here we have the same 
histograms resulting from a model of a single membrane patch. 

(C) FACILITATORY MECHANISMS INHERENT IN THE IONIC HYPOTHESIS 

One of the important synaptic degrees of freedom mentioned by Bullock 
(1959) is that of facilitation, antifacilitation, or neither. In the case of facilita- 
tion, the response (postsynaptic potential) of the postsynaptic cell to a given 
presynaptic spike is enhanced by previous spikes in the same presynaptic axon. 
Antifacilitation is simply the reverse : postsynaptic responses are diminished 
by previous activity. Facilitation is thus essentially a nonlinear accumulation 
(or integration) of a series of input pulses from a given channel, the last pulse 
being much more effective than the first. Antifacilitation, on the other hand, 
is more like differentiation or rapid accommodation to a series of input 
pulses, the first pulse being most effective. Both of these effects are generally 
believed by physiologists to be presynaptic in origin. One popular theory, 



PLATE I. Oscillatory potentials obtained with the circuit of Fig. 8. 
(a) Oscillations between potassium current and chloride or leakage ion current, response 

of potassium conductance taken to be continuous (see text). 
(b) Oscillations between potassium current and chloride current with discontinuity in 

response of potassium conductance. 
(c) Same system as Fig. 10(b) with effects of sodium conductance included. 



(b) 

PLATE II. Spontaneous action potentials generated by the model of Fig. 5. (a) Single 
spikes; (b) spike pairs; (c) spike triplets. 



PLATE III. Simulated excitatory postsynaptic potentials from the analog system of Fig. 5. 
All membrane parameters were held constant at the values stipulated by Hodgkin & Huxley 
(19520-d). The time constant of recovery from sodium inactivation was set at 10 msec; 
while the time constant (T) of simulated synaptic transmitter inactivation was varied: (a) 
T = 5 msec, (b) T= lOmsec, (c) T = 15 msec, (d) T = 20msec, (e) T= 25 msec, 
(f) T = 35 msec, (g) T = 50 msec. The amplitude of the first epsp in each case corresponds 
to 5 mv. The horizontal line corresponds to 20 msec. 
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for example, is that facilitation results from enhanced transmitter emission 
(e.g. acetylcholine emission) as a result of previous synaptic activity 
(Grundfest, 1957). Another is that more and more terminal knobs of a given 
fiber become active as activity progresses. This might result, for example, 
from an accumulation of excitation at low safety factor branchings of the 
fiber. Antifacilitation can be explained in terms of short-term depletion of 
available transmitter in the terminal knobs of the presynaptic cell. All of 
these hypotheses are reasonable, and good evidence exists which supports the 
general thesis that facilitation and antifacilitation are presynaptic in origin. 

There is, however, another possible explanation which appears quite 
reasonable: that facilitation and antifacilitation may, in some cases, be post- 
synaptic in origin, that the Ionic Hypothesis inherently provides both facilita- 
tory and antifacilitatory mechanisms, and, finally, that variation in a single 
parameter (the concentration of transmitter-inactivating enzyme) can change 
a synapse from facilitatory to antifacilitatory. 

According to the currently accepted theories on chemical synaptic trans- 
mission (Eccles, 1963,1964) the excitatory synaptic transmitter substance 
induces a general shunting conductance to all ions across a local region of 
the cell membrane (subsynaptic membrane), while the inhibitory transmitter 
induces either an increase in potassium conductance or chloride conductance, 
or both. In each case the induced conductance is assumed to be proportional 
to the concentration of transmitter substance at the subsynaptic membrane 
(Eccles, 1963). The transmitter substance is presumed to be emitted during a 
presynaptic spike and subsequently either inactivated chemically or diffused 
away. In either case, the simplest result is a first-order reduction of effective 
transmitter concentration. The synaptically induced conductance will thus 
rise rapidly during a presynaptic spike and then fall exponentially toward 
zero. If we suppose that the subsynaptic membrane is similar in its basic 
properties to the axon membrane, we can ask an interesting question: What 
effect will synaptically induced conductance changes have on the system 
postulated by Hodgkin and Huxley for the axon membrane? Once again we 
are faced with a problem not well suited to digital computer study. We want 
to begin with a system with nonlinearly interdependent variables and time 
varying parameters and impose upon it various series of conductance changes 
which sum and each of which rises rapidly and decays exponentially. This 
type of experiment can be accomplished quite easily with the analog of Fig. 5. 

When we had completed our first electronic analog of the ionic model, one 
of the first experiments we performed was a simulation of excitatory synaptic 
inputs. We immediately observed behavior corresponding to facilitation and, 
after some parameter changes, behavior corresponding to antifacilitation. We 
examined this behavior more closely with later, more complete versions of the 
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analog and found a rather simple explanation (Lewis, 1964). Consider the 
following sequence in the Hodgkin-Huxley model: A sudden shunting 
conductance, AG, is synaptically induced across the membrane. This in turn 
allows a depolarizing current to flow which in turn begins to discharge the 
membrane capacitance. The resulting depolarization induces an immediate 
increase in both the steady-state and transient sodium conductances and a 
delayed increase in potassium conductance. The increased sodium con- 
ductance allows more depolarizing current to flow and the membrane 
depolarization becomes regenerative. If the synaptic input is subthreshold, 
the regenerative process is limited by inactivation of the transient sodium 
conductance and by the delayed potassium current overcoming sodium cur- 
rent. The original synaptically induced tendency toward depolarization is 
thus amplified with time by a nonlinear regenerative system until a limiting 
process sets in (Lewis, 1964). The membrane potential now falls back toward 
the resting level; it may even overshoot slightly. The excitatory postsynaptic 
potential has virtually disappeared, but residual effects remain in at least two 
state variables: the sodium conductance is inactivated and some residual 
transmitter substance remains at the subsynaptic membrane. A second 
presynaptic pulse induces emission of more transmitter substance and this is 
added to that remaining in the synapse. The effect of the newly induced 
conductance change added to the residual conductance is amplified in an 
extremely nonlinear manner with time producing a second excitatory post- 
synaptic potential (epsp). If the sodium conductance has recovered sufficiently 
from inactivation, the second epsp may be much larger than the first. If, on 
the other hand, the sodium conductance is still relatively inactive, the 
regenerative action is reduced; and the second epsp may be much smaller 
than the first. A simplified analysis of this system showed that a residual 
transmitter concentration which resulted in a residual depolarization of 3 % 
of the amplitude of the first epsp can facilitate the second epsp by 50% 
(Lewis, 1964). The residual synaptic transmitter concentration and the 
residual inactivation of the transient sodium conductance both decay 
exponentially with time after an epsp, The relative rates of decay determine 
the nature of the response. If the time constant for recovery from inactivation 
of the transient sodium conductance is fixed, therefore, the time constant of 
inactivation of the transmitter substance should determine whether the 
system is facilitating or antifacilitating. In an experiment with the analog of 
Fig. 5, the time constant of recovery from inactivation of the transient sodium 
conductance was fixed at 12 msec (the only value of this variable specifically 
mentioned by Hodgkin & Huxley, 1952~). The membrane capacitance was 
set at 4 1(F and the remaining parameters were given the values and inter- 
dependence stipulated by Hodgkin & Huxley (1952d). With this configuration, 
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the system was capable only of graded activity, yet was still able to respond 
in an extremely nonlinear manner (Fig. 6). 

Bursts of simulated synaptic inputs were applied to the system and the 
value of the transmitter inactivation time constant was varied. The results 
are shown in Plate III. It can be seen that, as the time constant is increased, 
epsp’s change from marked antifacilitation to marked facilitation. Thus, a 
single variable can determine the nature of the system; and if the synaptic 
transmitter is inactivated chemically, that variable is equivalent to the con- 
centration of inactivating enzyme available at the subsynaptic membrane. 
Facilitation was also observed with simulated inhibitory synaptic inputs but 
no antifacilitation has been observed (Lewis, 1964, in press). Facilitated 
ipsp’s occur when the membrane is slightly depolarized or when a finite 
sodium current flows at equilibrium. Facilitation comes about from the 
nonlinear decrease in sodium current with hyperpolarization. 

As previously described, the facilitatory mechanisms inherent in the Ionic 
Hypothesis are the same mechanisms that effect excitability. One would 
expect, therefore, that reduction of overall system excitability (e.g. by 
increased membrane capacitance) would lead to reduction of facilitation. This 
was found to be the case in the analog: facilitation disappeared as the 
membrane capacitance was increased beyond approximately 10 pi. 

On the basis of these results, one would expect in certain cases facilitation 
of the response of an excitatory synapse by “priming” activity at another- 
in other words, one would expect mutual facilitation. If such mutual facilita- 
tion occurred, one would expect it to be accompanied by a very slight 
depolarization, and if it were a fairly long-lived effect, one would expect it to 
be independent of the state of the postsynaptic membrane at the time of the 
priming pulse or pulses. Regardless of that state, these pulses would induce 
the emission of transmitter substance, and the residue of that substance 
would induce a residual depolarization which would far outlast any effects 
of the membrane state at the time of the priming pulse. A test pulse at the 
facilitated synapse would produce the same facilitated epsp. In addition, one 
would not expect directly induced (nonsynaptically induced) spikes in the 
postsynaptic cell to produce facilitation since these would not induce pre- 
synaptic emission of transmitter. Mutual facilitation has been found in Aplysiu 
(Kandel & Taut, 1964). A burst of presynaptic spikes in the priming fiber 
produces : (1) spikes in the postsynaptic cell and (2) long-lived facilitation of the 
postsynaptic response to inputs at a completely different synapse. In addition, 
Kandel & Taut (1964) observed a slight residual depolarization with maximal 
facilitation. In order to localize the facilitatory mechanism, they : (1) induced 
spikes directly in the postsynaptic cell and observed no facilitation and (2) 
hyperpolarized the postsynaptic cell during the priming stimulus so that the 
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synaptically induced conductance changes could not produce spikes in the 
postsynaptic cell; this did not alter the facilitatory effect. They concluded 
from this evidence that the facilitatory mechanism was presynaptic and 
postulated that the priming fiber sends collaterals to the synaptic knob of 
the facilitated synapse and pulses in this fiber not only induce epsp’s and spikes 
in the postsynaptic cell, but also induce synaptic potentials in the knob. The 
emission of transmitter from the knob is thus enhanced and we have 
“heterosynaptic facilitation”. This explanation may be correct, but one 
cannot overlook the fact that a single patch of membrane according to the 
Hodgkin-Huxley model and including two excitatory synapses can produce 
the same effect and pass the same tests and, in addition, account for the 
residual depolarization. 

(D) REBOUND MECHANISMS INHERENT IN THE IONIC HYPOTHESIS 

Following a prolonged burst of presynaptic spikes, the postsynaptic cell 
may exhibit positive or negative aftereffects or neither or both. Positive after- 
effects are prolonged excitation following otherwise normal epsp’s and 
prolonged inhibition following otherwise normal ipsp’s. Negative aftereffects 
--or rebound, are more commonly known as postexcitatory depression and 
postinhibitory excitation. All four of these modes have been observed in 
intracellular potentials; in fact, all four have been observed in one animal- 
Aplysia (Chalazonitis & Arvanitaki, 1961). Both Bullock (1958,1959) and 
Chalazonitis & Arvanitaki (1961) have observed oscillatory aftereffects with 
alternating cycles of depression and excitation. 

Both the rebound and the oscillatory behavior can be accounted for with 
the Ionic Hypothesis. Inhibitory rebound is easily explained in terms of the 
delayed potassium conductance and the mechanisms which also produce the 
after-hyperpolarization following a spike. Excitatory rebound can be 
explained in terms of accommodation of the transient sodium conductance 
and the mechanisms which account for the spike so often observed on anode 
break. Both of these explanations were offered by Chalazonitis & Arvanitaki 
(1961) and are familiar to physiologists. The oscillatory aftereffects can easily 
be accounted for by the oscillatory mechanisms mentioned previously in this 
paper. It is difficult to imagine, on the other hand, mechanisms strictly 
inherent in the ionic model which can account for prolonged positive after- 
effects. Chalazonitis & Arvanitaki (1961), however, regard positive aftereffects 
as autochthonous processes. An alternative explanation may be in terms of a 
long-lived accumulation of synaptic transmitter. In either case, most of the 
known aftereffects, including rebound, can be explained in terms of the 
Ionic Hypothesis. 
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