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I. INTRODUCTION 

A. Modeling Philosophy 

The making of models is universal in the search for a consistent and instructive 
picture of nature. This review examines the history, accomplishments, and promises 

1 During the preparation of this paper the research of E. R. Lewis was sponsored by the 
Air Force Office of Scientific Research, USAF Contract No. AF 4g(638)-1232, and by the 657th 

Aerospace Medical Research Labs., Air Force Systems Command, USAF Contract No. AF 

33(615)-2464* 
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of overt neural models. We use the term model synonomously with anaZog to mean 
that which is similar in function but differs in structure and origin from that which 
is modeled. By overt modeling we mean studies explicitly designed to complement 
experimental neurophysiology, not the tacit modeling that always accompanies 
experimental design, measurement, description, and interpretation of results. 

With growing emphasis being placed on the information-processing aspects 
of nervous systems, theoretical studies assume increasing importance. The use of 
models to help elucidate neural behavior has thus expanded rapidly during the 
last decade. Theoretical neurophysiologists have used a wide assortment of tools 
and techniques to study realistic analogs of membrane, single-unit, and network 
action. In some instances there are questions that appear to be unanswerable by 
present experimental techniques; in such cases, models can usefully augment di- 
rect physiological experimentation. Some of the tangible progress in the applica- 
tions of models is documented in this review. The advances so far obtained suggest 
that neural modeling may be expected to exert increasing influence on the course 
of neurophysiological research. 

An important part of the utility of a model lies in its ability to focus disparate 
evidence and interpretations into one coherent view; parsimony of explanation 
often leads to revealing unity. Models are also valuable to the extent that they 
raise new questions and suggest new relationships, perhaps leading to new experi- 
ments that might not otherwise have been considered. Worthwhile models are 
predictive; that is, new relevant properties are deducible from them. Further, a 
model often suggests constraints that may exist in the system being modeled. If  
these constraints are valid, they can serve to guide subsequent experimental inter- 
pretation. To thus reveal, test, compute, extrapolate, and predict is to accelerate 
the process of learning about the real world. 

Models are a necessary ingredient of scientific method: as deductively manip- 
ulatable constructs they are essential to the evolution of theory from observation. 
But the role of models and modeling is often controversial and ill understood. 

Several illuminating treatises on models are available, offering insight from 
rather disparate points of view. Bremermann (2g5), for example, develops the con- 
cept of an “eigen model,” which is essentially a model of the environment built 

into any system that responds actively to environmental changes. Fogel (297) dis- 
cusses the relationships between models and reality and the crucial role of models 
in scientific method. Rosenblueth and Wiener (305) develop utility criteria for 
models in science. Lillie (52), Schmitt (72), Harmon (300), and Perkel and Moore 
(303) examine the virtues and flaws of models in neurophysiology. Many aspects 
of the philosophy and practice of modeling are discussed in a multidiscipline sym- 
posium on biological models (292) and in one on information processing in nervous 
systems (299). 

Criticism of modeling has taken many forms. One interesting accusation de- 
nies the value of any model that is not “‘primary” (i.e., a direct representation of 
the real world). It is said that no “model of a model” can really add anything valid 
to scientific knowledge. However, it is difficult to conceive of a genuinely primary 
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model. It seems clear that all models as we know them are secondary (i.e., that 
they are models of models); our conceptions of our environment are themselves 
models and, indeed, are structured from more basic models [Bremermann (295); 

Once past the doubt that modeling is at all possible, we encounter criticisms 
of specific models. Two neural analogs that often are strongly criticized are the 
“Lillie iron-wire model” and the CCformal neuron” of McCulloch and Pitts. Rosen- 
blueth and Wiener (305) delivered the coup de grace to the iron-wire analog in I 945, 
pointing out that measurements on this model were more difficult than on nerve 
itself and that the underlying physical mechanisms of propagation were perhaps 
even more obscure in the model than in the modeled. They deplored the fact that 
physiologists had paid so much attention to the iron-wire model in years past. 

In a similar manner the formal neuron is presently deprecated as being an 
extremely unrealistic simplification of a biological neuron and thus insufficient as 
a model. Many modelers have particularly emphasized the contrasts between their 
analogs and the “simple” McCulloch-Pitts variety. 

In view of the obvious validity of such criticisms we sometimes forget the im- 
portance of these models in their own time. The iron-wire model proved that a 
purely physicochemical system could conduct a disturbance without attenuation, 
and it provided strong early support for the membrane theory [Adrian (I)]. Simi- 
larly, the formal neuron played an important role in its demonstration of the 
theretofore unknown logical power of simple nerve nets. While the present utility 
of both of these models can be doubted, their historical value cannot. Man’s knowl- 
edge of nature is evolving. Admittedly, a model or a theory that leads to a dead 
end is of limited interest, but one that forms a link in the continuing chain is ex- 
tremely valuable, regardless of whether or not subsequent events far outreach it. 

The history of neural modeling is one of many false starts, dead ends, and 
continual groping. Progress has seldom been rapid and has often been frustrating. 
The advance, nonetheless, is measurable. We hope to show that the advance has, 
in fact, been substantial. 

B. Modeling Rationale 

In its ideal role of providing a coherent, parsimonious description of nature, 
a model is necessarily a simplified representation of the prototype. Were this re- 

duced representation useless, complete replication of the thing modeled would be 
necessarv, and the idea of “model” would lose all meaning. Thus, systems are 
usefully modeled by constructs that have some functional equivalence but are not 
identical in detail; the essential properties of the original are represented while the 
obscuring irrelevancies are ignored. However, this imposes a need for selection 
that lies at the heart of the modeler’s problems. 

There are two distinct philosophies in the selection of parameters in neural 
modeling, each with important application. In one, a very large number of neural 
properties is reproduced with high accuracy. Initially the model is presumed to 
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have been overspecified to some extent, and the tacit intention is to simplify if and 
when it seems reasonable to do so. In the other approach a more restricted set of 
properties is used, but the restrictions have been made on the basis of an a jviori 
set of assumptions as to the most significant ones. It is assumed in such CCminimum- 
parameter” models that the essential features have been retained, and the tacit 
intention is to introduce more complication if it becomes necessary to do SO.~ 

There are of course advantages and disadvantages to each approach. Models 
of the first type are more complete but are more difficult to realize and are more 
costly. Models of the second type are more amenable to analysis but are in greater 
danger of important omissions. Although one of the more nearly complete models 
can contain the features of several minimum-parameter models, the addition of 
accessories to the latter is equivalent to the changing of parameters in the former 
(to model different situations). 

Both kinds of models must always be open to question. It is essential in each 
approach to test and modify unceasingly to obtain convergent qualitative and 
quantitative agreement between analog and prototype. So long as there is continual 
testing for appropriateness and so long as neither seriously violates physiological 
evidence, the choice depends largely on the nature of the functions to be modeled. 

Once a model is realized there are three kinds of action to be taken. The first, 
which is mandatory, consists of preliminary validation by testing the model’s ac- 
curacy. This is done by matching the model’s behavior with physiological obser- 
vation. Successive refinements of the model may then lead to convergence to an 

accurate and revealing abstraction. 
Second, with validity tentatively established, one mav attempt to discover 

new properties of the model (i.e., operations not explicitly considered in the original 
design). Although such “discovered” properties are implicit, owing to the choice 
of parameters, it is most unlikely that all of them will have been foreseen. If  these 
new properties also match those known to exist for the biological system, or if on 
subsequent physiological testing they are shown to have successfully predicted 
functions not previously known, then the model’s validity is given additional sup- 

port. 
The third course of action is more speculative but can have great value. It 

consists of testing hypotheses and exploring their consequences more rapidly and 
economically than direct physiological measurement permits. In this way a large 
number of theoretical ideas can be tested and evaluated. Further, such preliminary 
observations can reveal the necessary consequences of a particular hypothesis; 
these in turn can be used as a basis for planning more effective physiological ex- 
periments. 

Although the kinds of models to be reviewed are diverse, one purpose lies 
behind their selection. This is the question of understanding the information- 
processing aspects of neural action, that is, the input-output signal relationships, 
sensory and motor coding and decoding, and logical or computer-like operations. 

* Berman (293) describes an interesting technique for parameter manipulation to develop 

unique models. He discusses the quantitative aspects of minimal system-perturbation experiments 
that can lead to constrained models in situations where the available experimental data are in- 
adequate for a full quantitative description. 
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One may profitably explore the information-processing aspects of neural ac- 
tivity at several levels. One may seek understanding at the subcellular level, deal- 
ing with molecular organization, ionic dynamics, and membrane mechanics. At 
another level, one may consider questions pertaining to cellular input-output 
functions, seeking understanding of information transfer in single-unit action; this 
is the domain of signal integration and transmission. At a still higher level it is use- 
ful to explore the function of cell assemblies and networks. Further, one might wish 
to investigate the holistic properties of signal generation, interaction, and propa- 
gation by viewing gross electrical activity. Finally, it is important to attempt to 
understand the entire organism from a behavioral point of view. 

Undoubtedly there would be considerable utility in achieving understanding 
at each of these levels. However, though there seems to be little question that 
phenomena from each level are causally related, it is not clear that one can readily 
extrapolate from one level to another. Membrane kinetics may be as uselessly re- 
mote from the physiology of visual Gestalt as is particle physics from celestial me- 
chanics. In each case, of course, there are direct causal relationships, but there may 
be little reason (or possibilitv) for establishing explicit functional dependencies. 

Yet another level in the understanding of any information-processing system 
is the elucidation of the information flow per se, without explication of the under- 
lying mechanisms. Thus one can comprehend the essential nature of a svstem such 
as a computer from its logical block diagram; in this case the machine’s informa- 
tion-processing functions can be understood even though no reference is made to 
physical devices underlying those functions. Such operational abstraction is an 
important ultimate goal of many who wish to understand nervous systems. 

It is essential to note that there are two radically distinct research areas to 
which the term “neural modeling” has been applied. In one the intent is to repre- 
sent the physiological phenomena. It is the purpose of this review to document the 
salient aspects of such modeling. 

In the other research area, often euphemistically called neural modeling, the 
network properties of systems of quasi-neural elements are explored. The intent 
often is to build automata whether or not they replicate in realistic detail any ac- 
tual physiological functions. Such is the province of “adaptive systems” and %self- 
organizing systems.” In most cases only a few selected neural properties are adopted 
simply to see what can be done by applying mathematical or computer concepts 
to neuron-like elements. The present review does not deal with such studies except 
for brief mention to sharpen the distinctions between the two kinds of “neural 
modeling.” 

Temptations are ever present in neural modeling as in all fields of science, 
and some modelers have yielded. One of these temptations is to design ingenious 
circuits that simulate some aspects of a neuron and then quietly edge away, leaving 
the model for others to apply. 

Another failing of some modelers is evidenced by what one might describe 
as the “reminiscence syndrome.” Early in a paper the author may describe some 
outputs from models that are “reminiscent” of this or that neural phenomenon, 
such as conditioning, slow potentials, or epilepsy. Toward the middle of the paper 
9eminiscent” is omitted in the apparent hope that the reader will infer equality 
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between the model’s performance and the neural phenomenon. By the end of the 
paper equality is overtly implied. 

Deft use of the excluded middle is often seen. Consider, for instance, the im- 
plication found in one neuron-modeling paper where it was stated that it is pos- 

sible to construct artificial neurons which are, as far as input-output relations are 
concerned, complete analogs of their biological counterpart. It was then said that 
the networks shown in the figures in the report were assembled and tested using 
artificial neurons. The implication, to the unwary reader, is that the cCartificial 
neurons” used were realistic analogs, whereas in fact they were but extremely 
vestigial. 

In this review we have attempted to include those models associated with 
more than a hope, a circuit, or a reminiscence. 

C. Modeling Techniques 

Neural analogs take a variety of forms, ranging from informal, verbal models 
to highly elaborate physical and mathematical constructs. Most models that have 
appeared during the last half century or so have taken the form of chemical sys- 
tems, electronic circuits, mathematical formulations, or computer simulations. 

Considerable advantages and serious shortcomings are found in each, although 
for a given modeling problem there is generally little difficulty in selecting the 
most appropriate technique. Since mathematical, electronic, and computer-simu- 
lation models comprise the majority of contemporary analogs, it is of interest to 
examine some of their intrinsic merits and deficiencies. 

Mathematical models have great utility in limited domains. They are invalu- 
able in cases where the number of variables is reasonably limited and nonlinearities 
do not present severe analytical difficulties. An outstanding application is found 
in the analyses of membrane biophysics. Formal mathematical description, how- 
ever, is simply unable in its present state of development to deal adequately with 
the multivariable nonlinear complexities of entire neurons; complete network anal- 
vsis is even more formidable. 

In certain special cases, however, mathematical models of network behavior 
are extremely well qualified. This is particularly true for statistical treatment of 
large ensembles and for the analysis of large-scale electrical activity such as wave 
formation and propagation. 

Electronic models can simulate continuous-variable nonlinear operations ac- 
curately and economically. Providing real-time signals that may be observed while 
experimental conditions are manipulated, they permit a rapid and effective kind 
of observer-model interaction not easily achieved by other techniques. There is 
considerable advantage to direct observation of waveforms, phase relationships, 
modulations, and time-dependent interactions while stimuli and model parameters 

are changed. Such advantage is most effective for the modeling of one or a few 
interconnected units. For large networks, however, both observation and manipu- 
lation of parameters and connections become very difficult. 

Analog computers have advantages similar to those of electronic models, but 
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tend to be slow and cumbersome. Both have the advantage over mathematical 
models that they do not tend to compel oversimplification. 

The growing speed and storage capabilities of digital computers carry great 
promise for flexible, realistic modeling. The special problems that arise with large- 
network simulation are more readily handled by digital computation than by other 
techniques. It should be noted that serial digital processing intrinsically does not 
permit economical representation of continuous-variable nonlinear interactions; 
however, contemporary advances in speed, storage capacity, and parallel operation 
point to alleviation of such problems in the future. It seems likely that high-speed 
digital computers will ultimately provide one of the most satisfactory means for 
modeling complex neural systems. 

An additional powerful advantage of computer simulation is that the models 
can be made to work faster than their prototypes, and many more experiments 
can be run. Finally, an important asset of digital simulation is that the use of dis- 
crete symbols permits complete control and observation of assigned variables. It 
is advantageous, for example, to be able to obtain a precise “snapshot” of the state 
of an entire network at an arbitrary time, and such accurate, multiple-state repre- 
sentations are not easily obtained from either analog computers or electronic 
models. 

D. Cowrage of This Review 

This review is representative rather than exhaustive. We attempt to delineate 
the main streams of activity in neural modeling and to emphasize what seem to us 
the important directions and achievements. Both the references given in the model- 
ing studies cited and the reviews listed in the reference section indicate the enor- 
mous extent of this field. 

It should be noted, however, that the examples we consider are restricted to 
models of fixed properties of membranes, single units, and relatively small net- 
works. There has been no attempt to include models of information storage, i.e., 
analogs of memory, conditioning, or learning. Emphasis throughout is on the 
dynamic information-processing aspects of nervous systems. 

II. A BRIEF HISTORY OF NEURAL MODELING 

The earliest models of nervous systems arose from considerations of neuro- 
muscular action. The fact that nerves activate muscles was known as long ago as 
the Ptolemaic period, but only in the past hundred years has man begun to resolve 
two mysteries inherent in this knowledge: how does nerve conduct, and how does 
muscle contract? For many centuries these two questions were dealt with as one, 
so that an early nerve model was usually one-half of a nerve-muscle model. 

At least from the time of the pre-Galenic physician, Erasistratus, until well 
after the time of Glisson in the seventeenth century, the contraction of muscle was 
thought to be a result of swelling or increase in muscle volume. The commonly 



520 L. D. HARMON AND E. R. LEWIS Volume 46 

vati 

For 

FIG. I. A model of reciprocal inner- 
.on of two muscles of the human eye. 

details see text. [From Descartes (IT)] 

viewed picture was that of a long, inflatable tube whose ends came closer together 
as the tube was pumped up. The postulated role of nerve was to induce this swell- 
ing. The theory of nervous conduction, therefore, held that a liquid or gas flowed 
through pipe-like nerves to inflate the muscles, a concept that probably culminated 
with Descartes’s theories in the seventeenth century. 

Descartes (16) compared the nerves of animals with the water pipes in- the 
hydraulic machines and automata of his time. This comparison was not simply 
metaphorical; Descartes considered these machines to be good models of conduc- 
tion in nerve. In fact, he used these machines to demonstrate the plausibility of 
his theories of nervous conduction and muscular contraction. Among these theories, 
by the way, are some of the earliest discussions of involuntary reflexes and recip- 
rocal innervation of muscle. 

Cartesian philosophy viewed life as mechanistic. To Descartes all lower ani- 
mals were automatons, and their every action could be explained in terms of the 
laws of nature [Cohen (15)]. Of all the animals only man had a rational element, 
the soul, and it was located in the pineal gland. The human body, like the animal 
body, was a machine; however, since it was partially controlled by the rational 
soul (ccZ’he raisonnable”), it was not an automaton. 

According to Descartes, “The animal spirits resemble a very subtle fluid, or 
rather a very pure and lively flame” [Fulton (Qg)]. These spirits were continuously 
generated in the heart and ascended to cavities of the brain, which served as a 
reservoir. (This naive notion was an inheritance from Galen 1400 years earlier, but 
still was a notable advance over Aristotle’s view that the function of the brain is to 
cool the blood.) From the brain the spirits passed through the hollow nerves to the 
muscles, causing contraction or relaxation depending on their quantity. The flow 
of animal spirits in a nerve was controlled by valves located at each junction. The 
valves were either under the direct control of the pineal gland or indirectly controlled 
by it through flow and pressure differences in different nerves. When the muscles 
were filled with animal spirits they swelled in the middle and the ends contracted; 
when emptied they relaxed. 
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As an example of Descartes’s schemes, consider Figure I, which is his repre- 
sentation of two reciprocally innervated, antagonistic muscles of the eye (I 7). 

Animal spirits flow through hollow nerves into the muscles D and E. There is a 
one-way valve at the base of each muscle. Valve g (at the bottom of muscle E) 
regulates flow from D to E, and valve f (at the bottom of muscle D) regulates flow 
from E to D. If the flow in both nerves were equal, both muscles would be equally 
tense. In the figure, however, the flow in the right branch is assumed to be greater 
than that in the left; this has two effects. It causes muscle D to become inflated, 
and it causes valve f  to open and valve g to close. With this valve arrangement the 
spirits flowing through g are not held in muscle E but flow on into muscle D. 
Muscle E thus relaxes as D contracts. Valves f  and g are controlled by pressure 
differential. After the eye motion has been completed, other valves (not shown) 
are adjusted to equalize the forces in the two branches. Valves f and g will then 
both be half open, and the pressures in muscles D and E will equalize. The animal 
spirits do not flow centripetally through the nerves, but are eventually lost through 
pores in the muscles. 

Descartes questioned whether or not a subtle fluid flowing through small 
tubes could be responsible for the rapid, powerful, coordinated actions typical of 
animals. He relied on previously existing hydraulic automata as models of his sys- 
tem to settle this issue. These machines had been contrived by engineers to do such 
things as playing musical instruments, pronouncing words, or moving in a human- 
or animal-like way; they were actuated by water flowing through small tubes con- 
trolled by systems of valves. Descartes compared the tubes of these machines with 
nerves, the hydraulic engines and springs with muscles, the water sources or foun- 
tains with the heart, and the central reservoirs with the cavities of the brain. 

The mechanistic views of Descartes influenced many seventeenth-century 
scientists. Among these was Borelli, who was not only a staunch mechanist but 
was also a champion of the theory that muscles contract by swelling. Borelli (IO) 
proposed a number of lnechanical models of muscle, most of which were based on 
the rhombohedron. If  the edges of a rhombohedron are fixed in length, the distance 
between opposite vertices will decrease over a considerable range of increasing 
volume. He used this analogy to show the consistency between swelling and con- 
traction and to 

In the last 
calculate the forces necessary for 
half of the seventeenth century at 

muscle contraction under load. 
least three physiologists, Glisson, 

Lower, and Swammerdam, independently demonstrated that muscle volume did 
not increase during contractions. In spite of these results the so-called ccBalloon 
Theory” persisted into the eighteenth century. Analogies were still drawn between 
the heart as a pump for blood and the brain as a pump for nervous spirits [Brazier 
(I 2)]. Glisson, on the other hand, had postulated that muscle contracted as a re- 
sult of intrinsic irritability, a concept that was finally made popular by Haller in the 
eighteenth century. A muscle was no longer considered simply a passive device 
waiting to be inflated or swollen by some action of nervous fluid; it was now thought 
to contain all the components necessary for contraction, needing only a stimulus 
to set it off. 

A new question arose: how could nerves transmit the stimulus to the muscle 
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with the apparently great velocities such as those observed in reflex action? Haller 
himself proposed several interesting possibilities. One of these was in the form of 
an analogy; one might call it the croquet model of nerve. Suppose nerve were con- 
structed of a long row of spheres- each in contact with both of its neighbors. If  
one were to rap the first sphere sharply, the last one would f ly off almost instan- 
taneously and would stimulate the muscle, inducing contraction [Hoff (42)]. 

Another view was quite prevalent in the eighteenth century. In two very short 
paragraphs (Q ueries 23 and 24, included in the second edition of Opticks) Newton 
(58) postulated that nerves were solid but transparent and that excitation was 
propagated as optical vibrations through them, exactly as he supposed light was 
propagated in the %ther.” In this, as in most matters, Newton’s influence was 
very strong, and these postulates dominated early eighteenth-century concepts of 
nervous transmission. 

Toward the end of the eighteenth century, however, the concept of “Animal 
Electricity” began to emerge. Even before Galvani published the results of his 
frog experiments, electricity was accepted as the cause of discomfort when one 
touched fish such as Torpedo or &‘&rophorus. In I 776 Cavendish (14) published 
“An account of some attempts to imitate the effects of the Torpedo by electricity.” 
This contains a description of what must certainly rank as one of the earliest de- 
vices actually constructed and tested as a physiological model. Cavendish built an 
electric model of the ray, Torpedo, and with that model he was able to convince a 
previously skeptical scientific community that the shock of the ray could indeed be 
caused by electricity. 

The ability of Torpedo to produce a shock had been known from very early 
times [Walker (Tg)]. Aristotle, for example, wrote about this phenomenon. Redi 
and Lorenzini investigated the ray and published accounts of the investigation in 
1675 and 1678. Lorenzini postulated that the shock was due to corpuscles or “efflu- 
via” that entered the hand when it touched the ray. Reaumer proposed in I 7 I 4 
that the shock was due to the sharp contraction of the ray’s muscles, which he sup- 
posed produced a sharp mechanical blow on the person touching the fish; a similar 
theory had been proposed earlier by Borelli [Grundfest (33)]. 

By I 772 several scientists had independently proposed that the shocks of the 
ray were due to electricity, and Walsh tested the new hypothesis [Walker (Tg)]. 
He determined that the shock was conducted only through electrical conductors. 
He also found that the shock was diminished as the number of circuits through 
which it passed was increased. Unfortunately, he could observe no spark across 
gaps introduced in the circuit and no electrostatic attraction or repulsion, even 
with the most sensitive electrometers of the day. Many scientists were ready to 
accept the theory that the shock was the result of electricity, but these two negative 
results left them in doubt. Another disturbing point was the fact that Torpedo could 
deliver shocks in salt water, a known conductor, and that these shocks were not 
significantly increased when the fish was in air. 

While Walsh continued his attempts to obtain a spark from the discharge of 
the real Torpedo, Cavendish (14) began a series of experiments with artificial tor- 
pedoes. First by reasoning and then by means of these experiments, Cavendish 
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FIG. 2. A model of the elec- 
tric ray (Torpedo). The body was 

? 

made of wood or leather, with 

electrodes (p) mounted on both 
L sides, each connected to a wire 

(w) that passed through a glass 

tube (g) on the handle. [Redrawn 
from Cavendish (14)] 

Torpedo with a 
of the model, 

and insulated wires led from these plates to the end of the handle. The entire model 

satisfied himself and the scientific community that there was “nothing in the phe- 
nomena of the Torpedo at all incompatible with electricity.” His first model ray, 
shown in Figure 2, consisted of laminated wood in the shape of a 
long handle. Pewter plates were attached to the top and bottom 

was 
the 

for several covered with sheepskin and was soaked 
conductance of the wood. 

days in salt water to increase 

Cavendish submerged the artificial torpedo in a trough of salt water and then 
placed one hand over each pewter plate while an assistant touched the wires to a bat- 
tery of charged Leyden jars. He repeated this experiment, varying the charges on 
the individual jars as well as the total number of series- and parallel-connected jars 
in the battery. He found that he received a greater shock from a large number of 
weakly charged jars (low voltage, high capacitance) than from a small number of 
strongly charged jars (high voltage, low capacitance). If he used enough jars, the 
shock was equivalent to that of Torpedo even when the “force of the current” 
(i.e., voltage) was not enough to jump even the smallest gap in the circuit. In addi- 
tion, the discharge was completed so rapidly that even the most sensitive electro- 
meters of the day were not deflected. Thus the first two objections to Walsh’s re- 
sults were answered. 

The third objection proved more difficult. With the jars charged so that the 
shock of the artificial ray in salt water was equivalent to that of the real ray, the 
shock in air was much too great. Reasoning that the conductance of water-soaked 
leather would be greater than that of water-soaked wood and, in fact, closer to the 
conductance of Torpedo, Cavendish constructed another model made of laminated 
leather. The Leyden jars now required more charge to produce a shock equivalent 
to that of the wooden model, but the shock in air was no longer greatly dissimilar 
to that in water. Thus, with the aid of his model, Cavendish answered all of the 
major objections to the hypothesis of electricity in Torpedo and Eleectrophorus [Lewis 

(4711 . 
Fifteen years later, in I 791, Galvani (3 I) published the results of two experi- 

ments: the first showed that electricity could induce contraction in muscle, and the 
second purportedly demonstrated the presence of electricity in muscle. A third 
experiment (published anonymously in 1794) is now thought to have definitely 
proved the existence of electricity in muscle (32). 

All three experiments were discredited, however, by Volta, who attributed 
the results of the second and third experiments to electricity generated by contacts 
between dissimilar metals .and dissimilar 
vani discussed analogies between living 

tissues, respectively. Both Volta and Gal- 
tissues and electric devices. Galvini com- 
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pared muscle to a Leyden jar, or capacitor, which was discharged by nerve, 
causing contraction. Volta, who denied the presence of electricity in muscle, com- 
pared his Voltaic cell with the electric organs of fish. The controversy between 
Volta and Galvani left the scientific world in a state of confusion [Fulton and 
Gushing (30)]; it remained for du Bois-Reymond to settle the issue once and for 
all. 

Between 1840 and 1850, du Bois-Reymond (18, 19) constructed a pair of very 
sensitive galvanometers. With them he was able to measure electric currents as- 
sociated with both nerve and muscle activity. He performed experiments not only 
with living nerve and muscle, but also with electrochemical analogs of both. 

Du Bois-Reymond used these models to extend his thinking and to test his 
own hypotheses on animal electricity. He used electrochemical analogs, in fact, 
to develop his “peripolar molecular” theory, which is said to be the forerunner of 
ionic hypotheses [Brazier (I*)]. The analogs themselves were the predecessors of a 
long series of electrochemical neural models, many of which are still in use today. 

Du Bois-Reymond observed what he called the “electrical antagonism between 
the longitudinal and the transverse sections of muscle,” the former being positive 
with respect to the latter. In reality what he saw was an injury current, but he 
interpreted his results to mean that an intact muscle has a gross resting potential 
between its belly (longitudinal section) and its tendons (transverse section). With 
more refined measurements he found that there were potential differences even 
within a given section. He attempted to model this potential distribution with a 
solid copper cylinder, with the cylindrical surface coated with zinc and the ends 
left bare. The ends represented the transverse section of a muscle and the cylin- 
drical surface represented the longitudinal section. If he applied one end of a wet 
electrolytic conductor to the zinc and the other end to the copper, a current flowed 
between the zinc and the copper, 

In this configuration, however, the model provided no potential gradations 
over either the zinc suface or the copper. The cylinder was subsequently submerged 
in spring water, causing steady currents to flow from zinc to copper. The maximum 
negativity occurred on the cylinder axis, and the potential was graded from that 
point to the point of maximum positivity on the cylindrical surface. Du Bois-Rey- 
mond measured the currents flowing about this cylinder and found them spatially 
arranged in a manner similar to the currents in whole muscles. 

A flaw still existed in this model. In real muscle the “electric antagonism” 
existed even in the smallest dissected parts. Thus, if the muscle were cut apart, the 
smallest obtainable pieces still exhibited a transverse section that was negative to 
the longitudinal section. This would obviously not be true in the cylinder model. 
If it were cut in half, parallel to the cylindrical axis, a portion of the zinc suface 
would be cut away, and part of the longitudinal section would be negative. 

Next, du Bois-Reymond (18, 20) proposed a “peripolar molecular” model. 
In order that every transverse section should always be negative with respect to 
every longitudinal section (no matter how finely divided the muscle), he assumed 
that the interior of the muscle was composed of polarized molecules. These “peri- 
polar” molecules, he assumed, were negative at both ends and positive in the cen- 
ter, the negative ends pointing toward the ends of the muscle. 
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FIG. 3. An electrochemical 

model designed to test the peri- 
polar , molecular theory, con- 
sisting of 48 short cylinders (seen 

on end) with zinc strips mounted 
on two sides. The entire array 
was submerged in spring water. 
[From du Bois-Reymond (20)]. 

This hypothesis was tested with other zinc-and-copper models. The new models 
consisted of up to 72 small, hollow, copper cylinders with zinc strips soldered to 
their sides (Fig. 3 shows a 48-cylinder version). The inside of each cylinder was 
insulated with varnish. All the cylinders were evenly spaced in a box with the 
zinc strips oriented in the same direction. The box was filled with an electrolytic 
solution, and the resulting currents were measured with platinum electrodes. 

Du Bois-Reymond was satisfied that these measurements justified his “peri- 
polar molecular” hypothesis. A further justification was found in what he called 
the “negative variation.” During a tetanizing stimulus, the muscle current dimin- 
ished; the “electric antagonism” had vanished. Du Bois-Reymond felt that this 
could be adequately explained only in terms of very small polar centers that could 
rapidly be reoriented. 

Electrotonic spread was a mystery at first to the mid-nineteenth-century 
physiologists who observed it. They were unable to explain how a current applied 
between two points on a nerve could induce potential changes beyond the region 
bounded by the points. Du Bois-Reymond attempted to explain this phenomenon 
also in terms of his peripolar molecule. He supposed that each peripolar molecule 
might be made up of two dipoles with their poles together. Each molecule would 
thus be electrostatically neutral and there would be no net polarization of the 
nerve. He then assumed that an applied current would cause all the individual 
dipoles to align in its direction of flow, resulting in polarization of the nerve. He 
further assumed that the polarization between electrodes would induce alignment 
of dipoles in the regions beyond and thus result in electrotonic spread. This expla- 
nation was fairly well accepted until Matteucci discredited it by means of another 
electrochemical model, one of the first Vhdeiter,” or “core conductors.” 

Matteucci (53), in 1863, decided to see if electrotonus was strictly a biological 
phenomenon. To determine whether or not it could be duplicated in nonliving 
electrochemical systems, he stretched a platinum wire with a cloth sheath in an 
electrolytic solution and applied a current between two points on the sheath. He 
then examined the regions beyond the points of current application and indeed 
found potentials in these regions. The molecular theory of du Bois-Reymond had 
hinged on the presence of a pre-existing voltage in nerve-a concept that was then 
in doubt and later was completely discredited because of the confusion between 
injury potential and resting potential [Biedermann (2g4)]. Matteucci had now 
shown that electrotonus was possible in a system having no pre-existing electro- 
motive force (emf); du Bois-Reymond’s theory of electrotonus was superfluous. 
Matteucci (53, 54) proposed a simpler explanation: electrotonus was due to the 
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spread of electrolysis by diffusion. This explanation, however, was soon replaced 
by that of Hermann, who also relied on electrochemical models as analogs of nerve. 

Hermann (37, 38) greatly extended the experiments of Matteucci, working 
not only with cloth-sheathed wires, but also with bare wires immersed in electro- 
lytic solutions. He showed that the electrotonic spread in such models was a result 
of polarization of the wire surface. 

In I 883, Hermann worked with a core model (platinum in zinc sulphate) 2 m 
long, stimulated at one end with repetitive current pulses. He found electrotonic 
currents that sometimes attained their maximum value only after the polarizing 
current was off. As in nerve there were two successive, unequal phases of current, 
the first being in the same direction as the polarizing current, the second opposite. 
He attributed the second phase to recovery from polarization. 

Whereas Hermann was careful not to draw too strong an analogy between 
these phenomena and propagation in nerve, Boruttau (I I) was not. He experi- 
mented with applied alternating current in very long core models of platinum or 
palladium wire in sodium chloride and found rapid transmission of the negative 
phase but not of the positive phase. Boruttau equated this with the propagating 
“negative variation” (spike) in nerve. Must physiologists did not accept this theory, 
however. Biedermann (2g4), for example, put forth a very strong argument against 
it by pointing out that the propagated negative variation in real nerve followed 
mechanical and chemical stimuli as well as electrical stimuli, which was not the 
case with the wire. 

In addition to Matteucci, Hermann, and Boruttau, a number of physiologists 
were employing core models to aid in their understanding of the properties of nerve 
[cf. Taylor (77) and Weinberg (81)]. S ome of the simplest of these models were de- 
vised by Hering (36). H e simply filled hollow grass stems or the exoskeletons of 
crayfish antennae with saline solution. These models exhibited electrotonic spread 
even without the central metallic conductor and its progressive polarization. This 
electrotonus was not analogous to that of nerve, however, in that the polarity 
gradients within the cylinder were not radially symmetrical, but rather changed 
sign across the axis of the cylinder. 

Most nerve physiologists of the period 1870-1900 were well aware of the 
Kernleiter models. Bernstein (4) and Biedermann (294) both discussed Kernleiter in 
detail in their texts; more modern reviews are to be found in Clark and Plonsey 
(296) and Taylor (77). Between r goo and 1910, however, the membrane theory 
began to command the attention of physiologists [see Nernst (57)]j and the popu- 
larity of core conductors began to wane. Kernleiter models were applicable to elec- 
trotonic spread, but the newly postulated mechanisms of action-potential propaga- 
tion were much more exciting. One of the explanations was Bernstein’s ionic 
hypothesis [see Offner et al. (5g)]. Along with it came a new electrochemical model, 
the iron-wire model. 

Not long after Bernstein proposed the ionic hypothesis, Lillie (48-52) became 
a proponent and introduced into his arguments the first of a long series of discus- 
sions of electrochemical models. In I 915 he developed an analog of the injury po- 
tential, using a galvanized iron wire immersed in dilute sulfuric acid (49). When 
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the zinc surface was intact, no chemical or electrical effect was seen. When the outer 
layer of zinc was removed at some point, a continuous current would flow from the 
iron to the zinc, and one could observe an “injury potential” that diminished with 
distance from the point of damage. Lillie drew an analogy between the zinc coat 
of the wire and the plasma membrane of the nerve fiber. 

Lillie’s first mention of the analogy between neural propagation and the 
spread of excitation over “passivated” (oxidized) iron appeared in I 916 (50), al- 
though Ostwald had pointed it out in I 900 [Bonhoeffer (7)], and Heathcote (35) 
had subsequently explored it in detail. I f  an iron wire is immersed in concentrated 
nitric acid, its surface is oxidized and becomes insensitive to further attack, even 
when the wire is transferred to dilute nitric acid. If  part of the wire is artificially 
activated (e.g., if the oxide surface is broken by scratching) the activation spreads, 
and the wire eventually dissolves in the dilute acid. In nitric acid of the proper 
concentration, however, a local reaction accompanied by bubbles and a darkening 
of the metal surface propagates over the wire and is followed by complete recovery 
(return to passivation) of the wire surface. Immediately after repassivation the 
wire is resistant to activation, recovering its excitability gradually over a period of 
about I min. The passive wire can be activated (stimulated) mechanically, elec- 
trically, or chemically. Subthreshold stimuli may be temporally summed to pro- 
duce activation, but a slowly rising electrical stimulus is not nearly so effective 
as one suddenly applied. Lillie showed that in these and many other ways the iron 
wire behaves like the nerve fiber, and he concluded from this that the basic mech- 
anisms of response were the same. 

One of the strongest objections to Lillie’s model came from Hill (39), who 
felt that complete reduction of a passive oxide film was too drastic to be a direct 
analog of nerve transmission. I-pill pointed out that the energy released per square 
centimeter of iron wire during propagation had to be orders of magnitude greater 
than the energy released during propagation in nerve. Hill did believe, though, 
that the iron wire was a good nerve model in many other respects and that much 
could be learned from it-providing its limitations were realized. 

Despite the objections raised by Hill, by Rosenblueth and Wiener (see p. 515), 

and others, there was very considerable continued development of Lillie’s electro- 
chemical analogs. Bishop (5) and Bonhoeffer and his colleagues (6-9) were re- 

sponsible for many new experiments and analyses; Franck (28, 298) modeled salta- 
tory conduction; Yamagiwa (82-84), attempting to model synaptic activity, 
examined interactions among contiguous iron-wire models. In a sustained program 
at Gunma University in Japan, many variants of the iron-wire model were ex- 
plored (e.g. 2, 3, 44, 86). 

Further diversity is found in the voltage-clamp experiments of Tasaki and 
Bak (76) and in the relaxation-oscillation studies of Carricaburu (I 3). Other elec- 
trochemical systems have provided analogs similar to the iron-nitric acid one; the 
mercury-hydrogen peroxide model [Vis (78)] and the cobalt-chromic acid model 
[Tasaki (75)] are representative. 

Electrochemical models represent only one of many classes of neural models to 
appear since the time of du Bois-Reymond. Some of these models were pedagogical, 
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used by their designers to clarify concepts for students or readers of papers. Pfhiger 
[60, p. 480; cf. Biedermann (2g4)], Hill (40), and Franck (298) used complicated 
hydraulic models to illustrate their ideas about excitation. Later authors such as 
Rushton (69, 70), Katz (301), Hodgkin and Huxley (41), and Grundfest (34) used 
electrical circuit analogs for this purpose. Rushton (69) also developed an interest- 
ing device that was essentially a mechanical neural analog. 

Other models were used for exploring or predicting consequences of specific 
theories of excitation or conduction. Sutherland (73, 74), for example, proposed a 
gyroscopic model to test his theory that nervous conduction was due to torsional 
vibrations traveling along a fiber. A row of gyroscopes, fastened to a flexible bar, 
permitted a mechanical disturbance (twist) at one end to be propagated along the 
bar; each gyroscope in turn was deflected by the propagating disturbance, passed 
the deflection on to the next gyroscope, and through its restoring force ultimately 
recovered its resting position. A traveling wave was thus propagated along the line. 

Fabre (2 I, 22) and Schmitt (71, 72) constructed electronic models in the late 
1930% to explore theories of excitation. (As part of his model, in fact, Schmitt in- 
vented the electronic circuit now commonly used for many applications and uni- 
versally known as the “Schmitt Trigger.“) These neuron models probably were the 
first to be made with electronic circuits, and they demonstrated a new kind of 
flexibility and simplicity in model making. 

During the 1930% another type of neural model appeared, the mathematical 
model [Katz (301), Rashevsky (304)]. Th e earliest of these, proposed by Rashevsky 
(67), was based on the proposition that processes of excitation in nerve could be 
described completely by two time factors (parameters). Monnier (55) and Hill 
(40) followed with similar, independently constructed theories. The two time fac- 
tors are time constants in two ordinary, first-order, linear differential equations. 
The dependent variables of the equations either are membrane potential and 
threshold potential (Hill) or excitation and inhibition (Rashevsky). The time factor 
for each variable relates its rate of change to its displacement from equilibrium. 
The two-time-factor models were all similar; Young (85) showed that Rashevsky’s 
and Hill’s models were equivalent. 

In addition to mathematical models of excitation there appeared several 
mathematical models of conduction. In this case they were based on linear partial 
differential equations. Rashevsky (67, 68) and Rushton (70) both proposed such 
models. Weinberg (80) later demonstrated their equivalence. 

Encouraged by the success of differential equations as representations of nerv- 
ous activity, Rashevsky (I 73), Householder (14g), and Landahl (155) attempted 
to extend this form of mathematics to large systems of nerves, treating (without 
much success) problems of perception and discrimination. 

Then in I 943 McCulloch and Pitts (160) published a revolutionary concept 
in mathematical neural modeling. Viewing the all-or-none behavior of neurons as 

of first-order importance, they proposed to treat neural systems with discrete 

rather than continuous mathematics. McCulloch and Pitts applied Boolean algebra 
and set theory rather than differential equations. They were able to prove that the 
behavior of all networks of nerve-like threshold elements (now known as ‘Lformal 
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neurons”) can be treated by the propositional calculus, and that given any logical 
expression a net of such elements having corresponding function can be found. 

The impact of the McCulloch-Pitts theory was stated. well by von Neumann 
(I 94) : “It has been attempted to show that such specific functions, logically, com- 
pletely described, are per se unable of mechanical, neural realization. The 
McCulloch-Pitts result puts an end to this. It proves that anything that can be ex- 
haustively and unambiguously described, anything that can be completely and 
and unambiguously put into words, is $so facto realizable by a suitable finite neural 

. . . 
network. IJ 

Modeling studies with the formal neuron expanded in several directions. 
Minsky (163, 164) used the McCulloch-Pitts model to examine learning; whereas 
McCulloch and Pitts had been interested in deterministically connected nets, 
Minsky examined the properties of random nets. Kleene (154) went on to build a 
theory of finite automata around the McCulloch-Pitts model, showing the restric- 
tions on classes of events that could be represented by states in a net of formal neu- 
rons. Von Neumann (I 95) examined the role of error in such finite-state automata, 
studying the problem of constructing reliable systems from unreliable elements. 
This prompted McCulloch (I 58, I 59) to look into this problem in more detail, and 
Verbeek (rg3), Cowan and Winograd (I 33), and others have since studied ex- 
tensively the theoretical stability aspects of networks of formal neurons, analyzing 
those properties leading to reliable operation despite threshold and connection 
changes. A survey by Pierce (167) of reliability in networks of computing elements, 
though primarily related to digital computers, discusses a number of topics that 
bear on the stability and reliability of neural networks. 

A new kind of mathematical model appeared in 1952 ; it provided analysis 
rather than mere description of excitation in nerve. Hodgkin and Huxley (261- 
263) had placed microelectrodes inside the giant axon of the squid and measured 
changes in axon membrane current in response to stepwise changes in membrane 
voltage. They were able to distinguish two important components of change in the 
current: I) a rapidly rising component that immediately passes through maximum 
and declines to a low level (and which thev associated with sodium ions flowing 
into the axon), and 2) a component that exhibits slower, delayed rise and a very 
slow subsequent decline (and which they associated with potassium flowing out of 
the axon). 

From their data Hodgkin and Huxley derived four simultaneous differential 
equations. They showed that the solutions to these equations accounted accurately 
for the spike potential as well as for its aftereffects. 

These four equations constitute the most well known of all neural models. 
Owing to this fact we have not described the model in detail, but chose instead to 
emphasize its importance by showing (in following sections) how it underlies many 
of the subsequently developed models. 

This work of Hodgkin and Huxley caused a resurgence of interest in the use of 
continuous mathematics to describe and analyze excitation in nerve. The studies by 
Mueller (56) and Hoyt (43) exemplify the continuing development of such tech- 
niques. This trend, intensified by continuing discovery of many continuously vari- 
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able (graded) subthreshold properties, led, in subsequent models of many kinds, to 
the inclusion of continuous properties as well as the discrete ones that the formal 
neurons had employed. 

The advent of digital- and analog-computer concepts and technology, well 
established by the mid-1950’s, added new dimensions to the foundations on which 
neurophysiological research is based. Nervous systems began to be considered more 
and more explicitly as processors of information, literally as biological computers. 
Also, increasingly more conceptual and technical tools became available to meet 
the accelerating demands of neurophysiological study. So, too, models of many 
kinds began to come of age. Let us examine some of them. 

III. CONTEMPORARY NEURAL MODELS 

A. Excitation and Conduction 

r> Passive dendritic trees [Rail (6r-66>]. F rom published histological data on 
dendritic trees Rall (61) concluded that the contributions of the dendrites to the 
electrical properties of whole neurons had been greatly underestimated. In de- 
fending this thesis he used two mathematical models of dendritic trees. The first, 
an “equivalent-cylinder” model (63-66), was used in cases where excitation was 
assumed to arise in the soma and spread into symmetrical dendritic trees. In these 
cases the entire tree structure could be reduced to a single, mathematically equiva- 
lent cylinder that had distributed electrical properties (see Fig. 4). 

An early version of the equivalent-cylinder model was applied in an examina- 
tion of the “standard motoneurone” of Eccles. Basing his arguments on anatomical 
evidence as well as on this plausible model of dendrites, Rall (62) showed that 
Eccles’s estimates of dendritic contributions to whole-neuron conductance were 
too small, perhaps by as much as a factor of ten. Rall’s dendritic model as an im- 
provement on the standard motoneuron led to consistency among anatomical data, 
membrane resistivity estimates, and whole-neuron conductance data. 

Rall (61, 63) also applied his dendrite model to the problem of estimating 
membrane time constants. Eccles and others (247) had postulated that excitatory 
synaptic activation resulted in a brief active phase of depolarization that was fol- 
lowed by passive repolarization of the membrane. From the observed passive decay 
of postsynaptic potentials, the membrane time constant had been taken to be from 
3 to 5 msec for cat motoneurons. However, in subsequent studies (247, 251), where 
steps of current were passed through the soma membrane, faster transients were ob- 
served. Time constants of 1-2.5 msec were estimated from the data. In an attempt 
to provide consistency between the time courses of synaptic potentials and the 
newly calculated membrane time constants, a prolonged residual phase of synaptic 
activity was postulated to follow the brief early phase. Thus the earlier concept of 

a single active phase was replaced by a two-phase active process. 
Rall’s model disclosed that electrotonic spread into the dendritic tree could 

account for the newly found rapid transients and that the older estimates of mem- 
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EQUIVALENT CYLINDER 

FIG. 4. A particular symmetric dendritic tree and its equivalent-cylinder representation. 
“Electrotonic distance” between two points is proportional to the time required for electrotonic 

conduction between them. Dashed lines connect points having the same electrotonic distance in 
both the tree and equivalent cylinder. [From Rall (SS)] 

brane time constant did not have to be abandoned. It was thus demonstrated that 
consistency between the observed synaptic potentials and the rapid transients did 
not have to depend on an assumption of a prolonged active phase of synaptic cur- 
rent so long as one took into account the distributed electrical properties of the 
dendritic tree. The model thus provided consistency among anatomical data, the 
transient response of the soma potential, and Eccles’s older, simpler model of 
synaptic activation; it made possible the subsequent reacceptance of the old single- 
active-phase concept. 

For asymmetric trees or for asymmetric disturbances arising in dendritic trees, 
Rall (66) used a second, more general model. Here the dendritic tree was repre- 
sented by a series of discrete elements, hence the model was lumped rather than 
distributed. Each of the elements or “compartments” represents a region of the 
tree. In applying the model Rall used the mathematics of compartmental systems 
analysis. 

This “compartmental model” can, in principle, be used to handle any speci- 
fied dendritic structure. One example is shown in Figure 5. 

Rall (66) used the compartmental model to study spatial and temporal sum- 
mation of synaptic potentials generated in various parts of a dendritic tree (see 
Fig. 5). In calculating the soma-membrane depolarizations resulting from excita- 
tory synaptic inputs at various locations in the dendritic tree, Rall found rather 
sharp differences between the effects of synapses close to the soma and those of more 
remote synapses. 
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FIG. 5. A sample of results from Rail’s compartmental model: time courses of soma poten- 

tials in response to excitatory stimuli at various positions on the dendritic tree. Circles (2-10) 

are compartments representing regions of the dendritic tree. The ascending numerical order of 
the compartments indicates increasing electrotonic distance from the soma. The scr@t E shows 
the location of the stimulus in each case; the heavy line along the time axis shows stimulus duration. 
[From Rail (66)] 

The variations in epsp time course found by Rall in his model are similar to 
those reported by Fadiga and Brookhart (249) for monosynaptic activation of 
different portions of a spinal motoneuron in the frog and to those reported by Fatt 

and Katz (250) for muscle end-plate potentials. 
2) Membrane excitation phenomena [Lewis (45, 4671. Although the ionic hypothe- 

sis, culminating with the Hodgkin-Huxley model, satisfactorily explained the axon 
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spike potential, no coherent view of subthreshold phenomena existed. Lewis (45, 
46) postulated that many of the subthreshold effects found in somatic and dendritic 
regions should be explicable in terms of the same ionic hypothesis used to explain 
suprathreshold phenomena. This postulate was based on the assumption that since 
the dendritic and somatic membranes presumably are continuous with the axon 
membrane, the basic electrical properties of all three should be similar. 

To test these ideas, Lewis developed an electronic analog that simulated the 
ionic currents of squid giant axon. The model was designed to reproduce the physio- 
logical data of Hodgkin and Huxley (26 1-263) with emphasis on the. subthreshold 
data (the emphasis of the Hodgkin-Huxley model having been primarily on supra- 
threshold phenomena). 

The model consists of a set of active, nonlinear electronic circuits connected in 
parallel. Each circuit is designed to match the data of Hodgkin and Huxley for the 
time- and voltage-dependence of a particular ionic conductance across the squid 
axon membrane. 

In addition to the voltage-dependent conductances, the model includes con- 
ductances that are synaptically controlled, so that the results of synaptic inputs may 
also be studied. Presynaptic spikes result in emission of a fixed quantity of simulated 
transmitter substance. The resulting transmitter concentration is then allowed to 
decay exponentially, corresponding to a diffusion process or to a first-order enzym- 
atic inactivation. Two synaptic parameters are thus available in the analog-the 
quantum of transmitter per presynaptic spike and the transmitter inactivation 
rate. The simulated transmitter concentrations are transformed into directly pro- 
portional conductance changes (potassium conductance or chloride conductance 
or both for inhibitory inputs and a general shunting conductance for excitatory in- 
puts). 

Bullock (238, 239) had observed that there are at least three degrees of freedom 
in synaptic response: a series of synaptic potentials may r) be excitatory or inhibi- 
tory, 2) be facilitatory, antifacilitatory, or neither, and 3) exhibit excitatory or in- 
hibitory aftereffects, or neither, or both. By varying two synaptic parameters (quan- 
tity of transmitter per presynaptic spike and transmitter inactivation rate), and by 
selecting a particular conductance (either potassium, chloride, or general shunt), 
Lewis obtained synaptic potentials that had precisely the degrees of freedom speci- 
fied by Bullock. 

With the simulated membrane parameters adjusted to the values stipulated 

by Hodgkin and Huxley, and with a simulated synaptically induced shunt con- 
ductance imposed on it, the analog exhibited excitatory postsynaptic potentials 
(epsp’s) with either facilitation, antifacilitation, or neither. The particular mode of 
response depended on the magnitude of a single parameter-the time constant of 
inactivation of the transmitter substance. When the time constant was long, facili- 
tation resulted; when it was short, antifacilitation resulted; when it was intermedi- 
ate, neither occurred. 

The occurrence of facilitation in the analog was the result of the simulated re- 
generative electrical properties of the membrane. The amplitude of individual 
epsp’s was determined not only by the synaptic current but also by a limited, regen- 
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erative amplification of that current through the voltage-dependent sodium con- 

ductance. A regenerative process of this type can provide extremely nonlinear 
amplification. Thus a slight residual depolarization can greatly enhance the effects 
of synaptically induced current. Lewis (45) showed, in fact, that a residual de- 
polarization of 3 % of the peak amplitude of the first epsp could result in a 50 % in- 
crease in the peak amplitude of the second epsp. 

After an epsp, however, the regenerative effects are reduced by a residual in- 
activation of the sodium conductance. The occurrence of facilitation or antifacili- 
tation in the analog depends, therefore, on whether or not the residual depolariza- 
tion (resulting from residual transmitter substance) is sufficient to overcome the 
residual sodium inactivation. This in turn depends on the time constant of inacti- 
vation of the transmitter substance. A single variable thus determines the nature of 
the system, and if the synaptic transmitter is assumed to be inactivated chemically, 
that variable is equivalent to the concentration of inactivating enzyme available at 
the subsynaptic membrane. 

On the basis of these results Lewis (45, 46) postulated that facilitation may in 
some cases be the result of postsynaptic mechanisms. This is contrary to the gen- 
erally accepted belief that facilitation is presynaptic in origin [Grundfest (34)]. 
One consequence of the postulated postsynaptic mechanisms is the possibility of 
mutual facilitation or antifacilitation between completely separate presynaptic 
pathways. If  the residual depolarization from excitation at one synapse or synaptic 
region could spread to another, it would tend to enhance synaptic excitation there. 
Likewise, an epsp spreading to the other synaptic region would leave a temporary 
inactivation that would tend to diminish synaptic response there. Depending on 
which effect dominated, one would expect mutual facilitation or antifacilitation 
between the two regions. 

If  mutual facilitation of this type were observed, one would expect it to be ac- 
companied by a slight residual depolarization. If  it were a fairly long-lived effect 
it should be independent of the state of the postsynaptic membrane at the time of 
the initial (priming) excitation. Regardless of that state, the presynaptic spikes in 
the priming pathway would induce emission of transmitter substance, and the 
residue of that transmitter would induce residual depolarization. Furthermore, 

since this type of facilitation depends on the presence of transmitter substance, one 
would not expect antidromic spikes in the postsynaptic cell to produce long-term 
facilitation. 

Mutual facilitation of the type predicted by the model was found in Aplysziz by 
Kandel and Taut (270). They observed that a burst of presynaptic spikes in the 
priming fiber produces I) spikes in the postsynaptic cell and 2) long-lived facilita- 
tion of the postsynaptic response to inputs at a completely different synapse. In 
addition, Kandel and Taut observed a slight residual depolarization with maximal 
facilitation. In order to localize the facilitatory mechanism, they r) induced spikes 
by stimulating the postsynaptic cell directly and observed no facilitation and 2) 

hyperpolarized the postsynaptic cell during the priming stimulus so that the syn- 
aptically induced conductance changes could not produce spikes. This did not 
alter the facilitatory effect. 
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FIG. 6. Waveforms from Lewis’s electronic model. Trace a shows simulated spontaneous 

spikes that occurred at I oo-msec intervals (spikes are truncated at zero membrane potential). 
The remaining traces, which depict subthreshold events, are shown with the same time scale as 
trace a, but with the amplitude expanded by a factor of 5. Traces b and c show pacemaker poten- 

tials. Traces d and e show ipsp’s resulting from simulated synaptic activation of potassium con- 
ductance (e showing excitatory rebound developing into a spike on cessation of inhibitory input). 
In f, inverted ipsp’s appear; these result from activation of leakage conductance. Facilitating 
epsp’s are shown in g and h. Facilitation in h was sufficient to produce spikes (4th epsp in h is 

apparently obscured by refractoriness). 

Kandel and Taut believed that these results precluded the presence of post- 
synaptic facilitation, and they postulated heterosynaptic facilitation. That is, they 
assumed that a collateral of the priming fiber made synaptic connection to the 
presynaptic fiber of the facilitated pathway; excitation in the priming pathway 
would thus spread synaptically to the facilitated pathway, producing long-lived 
enhancement of transmission in the latter. There was no independent evidence to 
support this premise, however, and furthermore heterosynaptic facilitation does 

not account for the observed residual depolarization. 
Lewis’s model, on the other hand, showed that the results of Kandel and Taut 

did not preclude postsynaptic facilitation. Although the model did not rule out 
presynaptic facilitation, it predicted the physiologically observed mutual facilita- 
tion and the test results of Kandel and Taut, and it accounted for the observed 
residual depolarization as well, all on the basis of postsynaptic facilitation. 

In another class of experiments with the model, weak steady depolarizing 
currents produced subthreshold oscillations of the membrane potential. These 
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oscillations were nearly sinusoidal for very weak depolarizing currents and were 
nearly sawtooth in shape for stronger currents. Still stronger currents produced 
periodic spikes. These were the three possibilities mentioned by Bullock (238, 239) 
for spontaneous potentials in single cells; typical results from the model are shown 
in Figure 6. 

In another series of experiments Lewis varied slightly the simulated potassium- 
ion equilibrium potential. Depending on the value of that potential, he observed 
periodic pulse pairs or triplets (or even pulse bursts) similar to those observed in 
some spontaneous neurons. If  the simulated potassium potential was reduced to a 
value somewhat below the leakage-ion potential, periodic inverted spikes similar 
to those described by Hoyle (265) and Tasaki (289) were sometimes observed. 

In examining interval histograms for spontaneous spikes in the model, Lewis 
found a wide variety of distributions as the simulated ionic potentials and the steady 
depolarizing currents were varied. Of particular interest were multimodal histo- 
grams of the type derived by Bishop et al. (236) for cat lateral geniculate units. In 
the model, relationships of this sort resulted from a tendency for subthreshold oscil- 
lations of the membrane potential. 

Lewis showed mathematically how the oscillations can result from the 
Hodgkin-Huxley model. The spontaneous spikes tend to occur on the depolarizing 
phases of these oscillations, leading to multimodal histograms such as the one shown 
in Figure 7A. The basic form, the variety, and such quantitative measures as the 
ranges of mode intervals and the variances about mode peaks were all essentially 
identical to the results of Bishop et al, (2 36), as illustrated in Figure 7B. 

Problems of electrical excitability were also explored with this model. The 
membrane capacitance measured by Hodgkin and Huxley for the squid giant axon 
was I pf/cm2. However, capacitances of up to ten times that value have been meas- 
ured for neural somata that were electrically inexcitable [cf. Araki and Otani (231), 
Hagiwara and Saito (257), Coombs et al. (242)]. In the model, increasing the ca- 
pacitance greatly diminished excitability. In fact, totally graded, nonregenerative 
response was found over the range of physiologically measured capacitance values 
for electrically inexcitable membrane. Although moderate increases of capacitance 
in the model decreased excitability to the extent of producing only continuously 
variable (graded) response, the many varieties of subthreshold response were not 
altered. 

These results lead to two significant conclusions. I) It is not necessary to postu- 
late different membrane structure or function to account for electrical inexcita- 
bility. The differences between electrically excitable and inexcitable membrane 
may be viewed simply as arising from different values of capacitance in the same 
type of active membrane. 2) The entire gamut of subthreshold responses may be 
expected to arise independently of whether the membrane is electrically excitable 
or inexcitable. 

This model thus demonstrated that the Hodgkin-Huxley model could be ex- 
tended in a simple manner to provide consistency between the mechanisms postu- 
lated for axonal spike generation and the many diverse forms of subthreshold phe- 
nomena found in the often less excitable soma and dendrites. 
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3) Threshold phenomena in axons [Fitflugh (23-27)]. Analysis techniques analo- 
gous to those used in nonlinear mechanics were successfully applied by FitzHugh 
(24, 25) in order to elucidate some of the consequences of the Hodgkin-Huxley 
equations. In addition, he extracted from those equations a minimum-parameter 
analog (see p. 515) that he calls the Bonhoeffer-van der Pol model. This model was 
not intended to be a quantitatively accurate model of squid axon membrane but 
rather to represent in the simplest mathematical form those interactions responsible 
for basic axonal properties. 

FitzHugh and Antosiewicz (23, as), initially attempted to use a digital com- 
puter to solve the Hodgkin-Huxley equations but found this procedure too slow. 
They went on to solve the equations on an analog computer, which proved to be 
considerably more satisfactory. The basic method for evaluating the equation is 
what was called the “phase-space” technique. The phase-space coordinates are 
the dependent variables of the differential equations. Since Hodgkin and Huxley 
specified four simultaneous differential equations, one for each postulated state- 
variable in the axon membrane, the corresponding phase space is four-dimen- 
sional. Solutions to the set of equations are represented in FitzHugh’s model by 
paths through this space. The analog computer was used to find these paths. 

Each point on a path represents a specific set of values of the four state-vari- 
ables of the system. A given set of initial conditions (one for each of the four states) 
places the system on a particular solution path or (‘trajectory.” The system then 
follows this trajectory in time until it reaches either a position of equilibrium or a 
cyclic equilibrium path. 

In this treatment of differential equations the independent variable (time, in 
the Hodgkin-Huxley equations) is included only as a parameterization. For the 
Hodgkin-Huxley model each solution path has a direction associated with it repre- 
senting the direction of system change with time. 

Many characteristics of a system can be evaluated by phase-plane techniques, 
even though the time-dependent solution may not be obtained. These characteris- 
tics include stability and response maxima and minima. It should be noted that 
graphical representations of a four-dimensional phase plane must be two-dimen- 
sional projections. As will be seen later, FitzHugh was ultimately able to demon- 
strate adequate representation with only a two-dimensional model. 

FitzHugh’s examination of the Hodgkin-Huxley equations with phase-plane 
techniques led to several interesting new conclusions. First, implicit in these equa- 
tions is what FitzHugh (24) calls a “quasi-threshold phenomenon.” This means 
that the system is capable of apparent all-or-none response, but in principle any 
response between ‘call” and “none” can be observed if the stimulus magnitude is 
precisely controlled. 

A second implication of the equations is that the system is potentially unstable 
but has stable limit cycles in phase space. This means that rather than returning to 
an equilibrium position, the trajectory approaches a closed path, cycling around 
and around ever closer to that path. This represents oscillatory behavior or, more 
specifically, periodic pulse trains in the Hodgkin-Huxley model. FitzHugh used 
the analysis to show how such periodic pulse trains could result from a steady de- 
polarizing current. 
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Finally, FitzHugh used phase-plane methods to demonstrate the possibility 
of metastable plateaus in the Hodgkin-Huxley model. By varying two time con- 

stants in the model, for example, he found behavior very similar to that found in 
the squid axon by Tasaki and Hagiwara (290) after injection of tetraethylammo- 
nium chloride; on being stimulated the treated axon produces an action potential 
that is nearly normal up to the repolarization phase. Rather than subsequently re- 
turning through a hyperpolarizing phase to equilibrium, however, the membrane 
potential returns to a value intermediate between the full spike potential and the 
equilibrium potential. It remains at this plateau for 20 or 30 msec and then passes 
through a prolonged phase of hyperpolarization to equilibrium. While the mem- 
brane potential was at the plateau level, the recovery processes could be initiated 
by a brief anodal stimulus. To be effective, however, this stimulus had to be above a 
certain threshold. 

In the model the potentials computed for the modified Hodgkin-Huxley sys- 
tem exhibited the initial peak of depolarization, the intermediate plateau of 20-30 
msec, the prolonged phase of hyperpolarization, and the abolition of the plateau 
by anodal stimulation above a certain threshold. The quantitative results of the 
computations agreed well with the physiological measurements for the plateau 
potential, its abolition, and the time course and magnitude of the refractoriness 
that followed a plateau. 

The conductance values computed for the model during and after a plateau 
were considerably larger, however, than the physiologically measured values. 
Thus the Hodgkin-Huxley model did not completely fit Tasaki and Hagiwara’s 
data. Nonetheless, the geometrical properties of that model in phase space ac- 
counted for almost all of the measured behavior of the squid axon under the in- 
fluence of tetraethylammonium chloride. 

FitzHugh pointed out that many other models may exhibit geometrical prop- 
erties equivalent to those of the Hodgkin-Huxley model. He decided to represent 
this entire class of models with a single minimum-parameter model. This was de- 
rived by combining the equations of van der Pol (228) for nonlinear oscillators 
with those of Bonhoeffer (6, 7) for the iron wire in nitric acid. This “Bonhoeffer- 
van der Pol model” (BvP model) was expressed as two simultaneous differential 
equations and had two variables of state. The phase space was thus only two- 
dimensional and could be completely represented graphically (see Fig. 8). 
FitzHugh demonstrated the similarities between the BvP and the Hodgkin-Huxley 
models by comparing their phase-space geometries as well as their responses to 
various types of stimuli. He used the more tractable BvP model to examine both 
single-pulse and pulse-train activity and found the results to be qualitatively and 
quantitatively equivalent to those obtained with the more complicated Hodgkin- 
Huxley model. 

23. Pulse Processing in Single Neurons 

r).hhibitory driving of a pacemaker [Perkel et al. (rr4)]. Examining intracellular 
records from Aplysia, Moore and Segundo (108) noticed that certain pacemaker 
cells apparently make inhibitory or excitatory synaptic contact with other pace- 
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FIG. 8. “Phase-plane” representation of FitzHugh’s BvP model. Coordinates x and y are 

state variables and are analogous to excitation and refractoriness (or accommodation), respec- 
tively. Each dashed line represents positions of rest for one of the state variables, so the intersec- 
tion (P) of these lines is a point of equilibrium for the entire system. If a set of initial conditions 

(e.g., those after a stimulus) correspond to a set of coordinates other than those of P, the model 
follows the appropriate trajectory (shown as a directed path) until it reaches P. The various phases 
of the trajectories are labeled with the names of analogous physiological states. The large trajec- 

tory loops passing through the phase labeled “active” represent spikes. The smaller loops indicate 

graded or subthreshold potentials. prom FitzHugh (24)] 

maker cells, such that periodic ipsp’s or epsp’s are produced in those cells. An ipsp 
would lengthen the natural interval of the receiving cell, while an epsp would 
shorten it. Occasionally there was seen a receiving pacemaker cell whose spike in- 
terval was lengthened to the extent that the cell fired in a one-to-one ratio with the 
ipsp’s. Thus Moore and Segundo had observed stable interaction of two cells 
brought about by open-loop inhibitory coupling. Perkel (I IO-I I 2) studied this 
stable interaction by means of a digital computer simulation of a pacemaker neu- 
ron [see also Perkel et al. (I 13)]. 

It is interesting to note that Perkel’s model had an advantage not present in 
many other digital computer simulations of neural elements [e.g. Farley and Clark 

(qg), Josephson et al. (153)]. In this model, time was not quantized but was 
treated as a continuous variable. Rather than sampling at fixed time intervals for 
events in the model, the computer was programed to calculate, after each event, 
the time to the next “interesting” event. This was done by simultaneous solution of 
continuous equations for the state variables in the model. A similar technique had 
been employed by Reiss (I 75) in the simulation of a “neuromuscular organism.” 

Perkel’s model was a fairly simple minimum-parameter model. It included 
only those characteristics he believed to be essential. After a spike, the model had 
an absolute refractory period followed by hyperpolarization that decayed exponen- 
tially, the membrane potential returning toward equilibrium. If the threshold level 
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was below the equilibrium potential, the cell would fire again on its return toward 
equilibrium. If threshold was above the equilibrium potential, the cell would reach 
equilibrium and come to rest. For each presynaptic input, a potential was instan- 
taneously added to the membrane potential; the membrane potential then re- 
turned from this new value toward equilibrium with the same rate constant as that 
for recovery from a spike. The added potential was positive for epsp’s and negative 
for ipsp’s. 

Perkel adjusted the parameters of his model so that it simulated the spontane- 
ous activity of pacemaker cells in Aplysia. To induce spontaneity he set the threshold 
below the equilibrium potential. Applying periodic ipsp’s with an interval just 
slightly longer than the natural pacemaker interval, he observed the same sort of 
stable interaction that had been seen in Aplysia; the pacemaker spikes occurred in a 
one-to-one ratio with the ipsp’s. Other stable modes of synchronization in the 
model were discovered, and the range of stability was established for each case. 
The results are presented in Figure g in the form of a plot of mean pacemaker firing 
frequency as a function of inhibitory input frequency. 

These results brought to light two interesting implications. First, several stable 
modes of interaction were predicted by the model. These modes corresponded to 
“higher-order interactions” (such as one ipsp for every two pacemaker spikes), and 
“fractional-order interactions” (such as two ipsp’s for every spike). Second, in a 
region of stability, an apparently anomalous relationship occurs; the firing fre- 
quency of the pacemaker cell increases with increasing inhibitory input frequency. 
These findings were then confirmed independently with a more general mathe- 
matical model of the ipsp-pacemaker interaction. 

A further check of the Aplysia recordings was instigated as a result of the simu- 
lation studies. This revealed higher-order and fractional-order stability modes- 
just as predicted by the computer model. In addition, some predictions from the 
more general mathematical model were verified from the recordings. These were 
predictions of stability range boundaries and stable phase relationships between 
ipsp’s and pacemaker spikes. The latter were predicted with great accuracy (I 14). 

Because of incomplete data, a curve similar to that of Figure g could not be 
obtained for ApZ’sia. This type of curve had been obtained independently, how- 
ever, by Schulman for a monosynaptically inhibited stretch receptor cell in the 
crayfish and appears in the Perkel et al. report (I I 4). It is reproduced here as 
Figure I o. 

Under the influence of stretch, the crayfish cell acts like a pacemaker, pro- 
ducing regular periodic spikes. This fact, together with the accessibility of a pre- 
synaptic inhibiting fiber, provided an experimental advantage not present in 
A$‘ysia. Schulman was able to partially control the average spike frequency by 
varying the degree of stretch, and he had complete control over timing of the ipsp’s. 
It can be seen that the curve of Figure IO is almost identical to that predicted by 
Perkel (Fig. g) and that the results include verification of the predicted 
“anomalous” increase in pacemaker frequency with increasing inhibitory input 
frequency. 

2) Input-output relations in motoneurons [Jenik and Ktipfmiiller (ror-103, rag)]. 
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FIG. g. Data from simulated inhibitory firing of a pacemaker neuron. Dashed lines are drawn 
from the origin to segments of the data showing stable interaction between pacemaker spikes 
and incoming ipsp’s. Increased inhibitory input over these segments results in increased output 
spike frequency. In the other segments of data, stable interaction is absent, and increased in- 

hibitory input results in reduced output frequency. [From Perkel et al. (I x4)] 

Kiipfmiiller and Jenik developed electronic neuron models specifically designed to 
be analogs of mammalian motoneurons. These models were intended primarily for 
studies of pulse processing in single cells and small nerve nets. 

Preliminary explorations employed a digital computer simulation that ex- 
tended the Hodgkin-Huxley model to include synaptically induced currents (I 03). 
It was found that this extended system behaved very much like the giant synapse of 
the squid Loligo. Both the squid giant synapse and the model exhibited very similar 
nonlinear relationships between input intensity and epsp amplitude; also, epsp’s in 
both had hyperpolarizing overshoot before returning to the resting potential. 

Nonlinearity and overshoot are not normally found in the epsp’s of mamma- 
lian motoneurons, so Kiipfmiiller and Jenik (102, 103) modified the extended 
Hodgkin-Huxley model in designing their subsequent electronic analog. Above 
threshold it behaves very much like the Hodgkin-Huxley model. However, two 
important distinctions must be noted: I) the Kiipfmiiller-Jenik model responds 
linearly to most subthreshold stimuli or synaptic inputs (as in motoneurons, epsp’s 
are proportional in magnitude to the intensity of the presynaptic input, while ipsp’s 
are proportional to input intensity for low-intensity values, saturating at the po- 
tassium potential as input intensities become high), and 2) the time constants and 
other parameters were chosen to simulate mammalian motoneurons. Consequently 
the model exhibits epsp’s, ipsp’s, and action potentials essentially identical to those 
found in many motoneurons. 
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FIG. IO. Data showing inhibitory driving of a crayfish stretch receptor. Two regions of 
stable interaction are apparent at ipsp frequencies greater than 5 pps. Other regions of stability 
were inferred from single points of data. Data on right exhibit wide segments over which in- 

creased inhibitory input results in increased output spike frequency, as predicted by Perkel’s 
model. [From Perkel et al. (I 14)] 

As a result of their early modeling studies, Kiipfmiiller and Jenik (105) pro- 
posed a new graphical method for characterizing neurons with regard to their 
pulse-processing characteristics. They call this the ‘$-Diagram,” which is based on 
the response of a neuron or a neural model to a periodic input-pulse train (a train 
of evenly spaced pulses). It is basically a map showing areas of constant ratio be- 
tween average output-pulse frequency and input-pulse frequency. This map is 
drawn with log input frequency as the abscissa and relative input intensity as the 
ordinate. Figure I I shows a typical P-Diagram for Jenik’s electronic model. 
Kiipfmiiller and Jenik (102, 103, 105) interpret these diagrams in terms of neu- 
ronal pulse processing. 

Jenik developed a detailed classification scheme for pulse trains. In addition, 
he defined two ranges of operation according to the ratio of pulse duration to pulse 
interval in a given train of input pulses. The region where pulse interval is com- 
parable to pulse duration is the “integrating range,” where the effect of any single 
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INPUT FREQUENCY fe (pps) 

FIG. I I. A v-diagram for one of Jenik’s model neurons. The bounded regions have con- 

stant ratio (v) of output spike frequency to input stimulus frequency. Ordinate is the ratio of input 
pulse amplitude to the resting threshold. Contours are plotted for periodic stimulus-pulse trains. 

[From Jenik (103)] 

pulse is lost. In the other range, called the “switching range,” the pulse interval is 
long, and individual pulses are important. 

Jenik was primarily concerned with the switching range. He was able to dem- 
onstrate mathematically as well as with the electronic model that neurons in the 
switching range should be able to perform not only the basic arithmetic operations 
of addition and subtraction but also that of multiplication. This is particularly sig- 
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nificant, since many investigators of biological control systems have postulated the 
need for some sort of multiplication [e.g., Fender (208), Reichardt (218), Stark et 
al. (224)]. The multiplication that Jenik found was between two noncoherent, 
periodic, subthreshold pulse trains converging on and exciting a single model 
neuron. The average output frequency is proportional to the product of the two 
input frequencies. 

age 
Rapoport (I I 5) had also dem .onstrated 

frequencies for two pulse-train inputs to 
a 

a 
.ddition and multiplication of aver- 
single mathematical neuron model. 

His treatment was very similar to that of Jenik, but he considered the case of 
Poisson spike-interval distributions in the two input channels. Jenik’s treatment 
took into account noncoherent periodic pulse trains. 

In addition to multiplication and v-Diagrams, Jenik examined several other 
forms of pulse processing with his models. In two cases he confirmed results of other 
modelers working essentially simultaneously and independently with other types 
of models. He found, for example, that his model could act as a coincidence filter 
with a very narrow (temporal) bandwidth and that the bandwidth was very 
strongly dependent on input intensity. These results are similar to those of Reiss 
and of Schief (see p. 570). 

In another instance Jenik attempted to store temporal pulse patterns in loops 
of model neurons. He found, as did Crane with his neuristor lines (see following 
section), that the original pulse patterns vanish in a relatively short time. 

Jenik’s model lies between a minimum-parameter analog and a complete 
membrane simulation, being somewhat closer to the latter. Jenik (102) pointed 
out, however, that many of the experiments performed on his models could be re- 
peated with qualitatively equivalent results on minimum-parameter models. He 
shows, for example, that one can obtain addition, subtraction, and multiplication 
with Harmon’s neuromime [electronic analog of a single neuron; see van Bergeijk 
(I 20)]. In addition, Reiss’s model (see p. 56g), which yielded equivalent results for 
coincidence-filter experiments, is a minimum-parameter model. The important 

point here is the demonstration that additional complexity did not fundamentally 
alter the basic results obtainable from minimum-parameter models. 

3) Idealized 
cables, and iron 

axon 
-wire 

models [Crane w-94 I* For many years axons, submarine 
models were classified under the general heading of “core 

conductors” or “Kernleiter,” and much was learned about axonal conduction 
simply by analogy with conduction in the other two. Core conductors were clas- 
sified as such by virtue of their structure. A core conductor was any cylindrical 
conductor surrounded by an insulating or semi-insulating sheath and immersed 
in a conducting medium. 

More recently a new class of devices appeared that may also be useful in 
studying the axon by model or analogy. First proposed by Crane (88, 89)’ neu- 
ristors are identified by their properties of conduction rather than by their struc- 

ture. A neuristor is any device in which a one-dimensional channel propagates 
signals in the form of discharges and exhibits I) a stimulus threshold, z) attenua- 
tionless propagation, 3) uniform velocity of propagation (assuming uniform geom- 
etry), and 4) an absolute refractory period at any point after passage of a discharge. 
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Neuristors are thus characterized by a functional rather a physical descrip- 
tion. 

Two basic types of junctions are defined for neuristors: T-junctions, where 
coupling is excitatory through the trigger mechanisms, and R-junctions, where 
coupling is inhibitory through the inactivation or refractory mechanism. 

Crane (88, 89) has shown how a large family of logical functions may .be de- 
rived using combinations of T-junctions and R-junctions. In addition, with dif- 
ferent experimental neuristor models built with electric relays and tunnel diodes, 
Crane and Green (go, 95) observed several quite interesting transmission phenom- 
ena. If, for example, two pulses are traveling on the same neuristor line, one of 
three things can happen. First, the trailing pulse may be repelled by the leading 
pulse, regardless of the magnitude of separation. This results from a monotonic 
recovery from refractoriness after the first pulse. Second, the pulses may assume a 
fixed, stable spacing owing to an oscillatory recovery process. Crane calls this effect 
“pulse locking.” Finally, the pulses may coalesce owing, for example, to structural 
discontinuities in the line. This effect is called Year-end collision.” 

Another phenomenon, “pulse trapping,” occurs when two neuristor lines are 
connected side by side in a manner allowing sharing of refractoriness. If  the two 
lines have different propagation velocities, a pulse in the faster line, upon catching 
up with a pulse in the slower line, may be trapped slightly behind it so that the 
two pulses travel together at the lower velocity. This phenomenon has been ob- 
served in axons [Katz and Schmitt (271)]. 

Although he does not intend the neuristor as a neural model, Crane has doc- 
umented many similarities between neuristors and axons. He shows how various 
neural phenomena (such as accommodation and pacemaking) can be simulated 
with neuristor lines (95). He also compares various neuristor lines with the Hodg- 
kin-Huxley model, showing where analogies exist. Considering the analogous 
properties of neuristors and axons, along with the fact that logically complete sys- 

tems can be constructed from neuristors, Crane has postulated that axon interac- 
tions themselves may provide powerful information-processing capabilities, even 
without complicated synaptic interactions or other integrative processes. Some of 
the evidence for axonal interaction such as that adduced by Arvanitaki (233), 
Bullock (238), and Grundfest (254) gives support to Crane’s conjectures and sug- 
gests the possible neurophysiological utility of neuristor concepts. 

A similar technique for obtaining axon-like signal generation and propagation 
was developed by Hamilton (97). He explored gas-ion axon models based on 
analogies between the discharges of low-pressure gases in electric fields and the ac- 
tion potentials of neurons. 

Hamilton (97) and Vinetz (I 24) examined two basic classes of gas-ion models, 
two-electrode arrays and three-electrode arrays. Only the two-electrode array is 
considered here. Electrical energy is stored along the array in the capacitances 
that exist between the electrode pairs. The space between the electrodes is filled 
with a gas, such as argon, at low pressure. The electric field strength is set at a 
value just below that required to break down the gas. 

A stimulus in the form of a slight increase in field strength at one end of the 
array will cause a discharge between the electrodes at that end. The resulting gas 
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ions and the distortion of the local field lines will cause a breakdown at the neigh- 
boring electrode pair, and the discharge ,will propagate in an all-or-none manner 
along the array, leaving a wake of refractoriness. In addition to all-or-none activity, 
graded responses have been obtained at individual electrode pairs. Subthreshold 
stimuli can be linearly or nonlinearly summed in time, and an array may also be 
adjusted to produce spontaneous or pacemaker activity. 

4) Nonintegral frequency division [Harmon (gg) 1. D uring the course of cataloguing 
the input-output properties of a neuromime, it was of interest to investigate the 
variations in firing pattern of a single unit as a function of excitation amplitude 
for a constant-frequency train of stimulus pulses. It is well known, of course, that 
in some preparations frequency division occurs for diminished excitation amplitude. 
In such cases every nth stimulus pulse succeeds in evoking a response spike, owing 
presumably to temporal summation of postsynaptic membrane responses, each of 
which alone is insufficient to exceed threshold. The ratio of input to output fre- 
quencies for such action will always be integral (i.e., I : I, 2 : I, 3: I . . .) over the 
effective range of temporal summation. 

In the modeling experiments (gg) a single neuromime was stimulated with 
pulses whose frequency was constant and whose amplitudes were progressively re- 
duced (as in the case of presynaptic inhibition or, equivalently, with increasing 
threshold). Besides the anticipated integral ratios of input/output frequencies, a 
surprising class of nonintegral ratios was observed (e.g., 5: 4, 3 : 2, 14: 3, etc.). 

These nonintegral ratios were not explicable simply on the basis of temporal 
summation or of recovery from refractoriness alone. It was found that this behavior 
depends on the relative time courses of excitation and of threshold recovery and 

on the phase relationships between the stimulus-induced excitatory pulses and the 

response spikes. Since the time course of recovery of threshold is not necessarily 

phase-locked to the stimulus pulses, the recovering threshold may intersect the 
stimulus-induced excitatory potential at progressively later phases until it misses 

altogether, and there is no response. Recovery from refractoriness is complete by 

the time the next stimulus pulse arrives so that intersection occurs quite early. 

Phase recession starts again and continues until another pulse is missed. Thus single 
stimuli are repetitively and regularly missed, resulting in nonintegral input-output 

ratios. 
Of course, in the presence of noise in threshold or in prespike amplitude, 

missing can occur. In general, however, that missing will be irregular, and the ratio 

of pulse-stimulation frequency to spike-response frequency will be on the average 
nonintegral [see, for example, Bullock and Chichibu (240)]. In contrast the phe- 

nomenon examined in the modeling study was for the noise-free case where missing 

is perfectly regular. 

A neurophysiological study prompted by the modeling results disclosed that 
nonintegral firing ratios, previously unknown, do in fact exist. Wilson (291) iden- 

tified the phenomenon in the locust flight motor system, finding 3 : 2 and 8: 5 firing 

ratios. An example of one of the nonintegral ratios found in the locust is shown 

in Figure I 2. 

In concurrent experiments using the models, Wilson demonstrated a second 
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FIG. 11. Nonintegral frequency division predicted by Harmon’s modeling experiments and 

found by Wilson in locust flight motor neurons. Five thoracic ganglion responses occur for every 
eight evenly spaced stimuli. This series of three 8: 5 stimulus-response ratios arises from repeti- 
tively missed spikes owing to accumulating refractoriness. A regular progression in phase of re- 

sponse spikes with respect to stimulus artifacts can be seen. [From Wilson (29x)] 

mechanism that produces equivalent results. This alternative process depends on 
accumulating refractoriness, and Wilson concluded that both mechanisms may 
operate together in locust nervous systems. 

5) Reverberation in cortical neurons [Burns (87)]. Though the many important 
questions regarding long-lasting facilitation and elementary learning phenomena 
remain largely unanswered, several studies have suggested some interesting possi- 
bilities for underlying mechanism. Some of these studies are intended to elucidate 
the nature of normal synchronized activity in neural tissue and of abnormal massive 
discharge such as epileptiform behavior. In each case the mechanisms by which 
single units or cell ensembles can be triggered into self-synchrony are of great in- 
terest. 

Burns (241) showed that a few strong stimuli applied to the cortex of cat can 
produce a repetitive burst response that considerably outlasts the stimulus. These 
so-called “afterbursts,” observed in neurologically isolated cortex, may persist for 
as long as an hour. Local radially directed current flow can either enhance or 

eliminate afterbursts, depending on the direction of the flow. It was proposed that 
the mechanism underlying the triggered, sustained afterburst activity had to do 
with differential repolarization of neurons, the deep somatic ends repolarizing 
more slowly than the superficial ends. Burns supposed that the consequent current 
flow between the two ends during postfiring recovery led to re-excitation. Thus, 
once started, such activity could be cyclic and self-supporting. 

Burns (87) used electronic analogs of type--B cortical neurons in order to test 
quantitatively the consequence of the mechanism he had assumed responsible for 
afterbursts. The major assumption on which the model rests is that, after firing, a 
neuron recovers its resting membrane potential in two phases; the first is rapid, 
the second is relatively slow. The slow phase is assumed to have different time 
courses for the two ends of a given cortical neuron; the recovery of the deep end 
lags that of the superficial end. When a sufficient number of properly spaced con- 

ditioning stimuli are applied, the potential difference between these two recovering 
ends can accumulate to the point where the resultant current flow is suprathresh- 
old. 
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The results obtained with the electronic model having the appropriate tem- 
poral parameters closely approximated the physiological observations. In response 
to a single stimulus, a pair of linked units produced a prolonged burst resembling 
the actual cortical response in great detail, including afterpositivity, which in- 
creased with burst length. For multiple stimuli, the relationships among their num- 
ber, their frequency, and the number of afterbursts produced were qualitatively 
and quantitatively similar in model and prototype. Analytical consideration of the 
model also permitted estimates of two time constants that were postulated for the 
physiological system, but experimental confirmation of these time constants has 
not yet been made. 

An interesting result of this model is that simple mechanisms are proposed 
that permit relatively long-lasting, reverberating, and patterned activity in cell 
assemblies that can be abolished by transient interruptions caused by extrinsic 
neural signals. Similar studies, relating to dynamic stability in large nets, are dis- 
cussed in section C, Networks. 

6) Temporal resolution in sensory systems [Harmon et al. (100, ro7)]. The actions 
implicit in perceptual or behavioral data often raise important questions concerning 
the neurophysiological substrates that may in turn lead to explicit, testable models 
of nervous action. 

It seems important to concentrate on problems such as these where behavior 
and underlying mechanism can readily be studied in common. As Jung (269) 
cogently put it “. . . the coordination of psychophysiological and neurophysio- 
logical experiments will lead us further than either of these approaches alone. The 
combination of the two may indicate a via regia to the exploration of human sensory 
information. The unilateral pursuit of only one method without regard to the 
other risks either blind neurophysiological recording or fancy psychological hy- 
potheses, and either of them may lead to minor sidetracks and end in a jungle of 
barren facts or luxuriantly growing speculations.” 

Two examples of models designed to integrate physiological and psychophys- 
ical knowledge are given in this section. Both were prompted by psychophysical 
findings, and both relate to temporal discrimination properties of sensory systems; 
one concerns audition, the other pertains to vision. 

An experiment performed by Guttman et al. (256) showed that human bin- 
aural resolution of separate clicks in closely spaced pairs improves as repetition 
rate is increased. In this experiment click pairs are presented to one ear while a 
single “probe” click is delivered to the other ear. This triad is repetitively pre- 
sented, and the subject, having control over the relative timing of the probe click, 
is required to adjust it until he perceives a “fused” binaural image. If  the two 
clicks of the pair presented to one ear are widely separated in time, the subject 
has no difficulty in aligning the probe click with either member of the click pair, 
thus obtaining two separate fused images. However, if the two clicks of the pair 
are very closely spaced, temporal resolution is lost, and only one fused image can 
be found. Now if the repetition rate of the click triads is increased, separate resolution 
of the two clicks is again obtained. Thus the curious result is that the minimum 
resolution interval is inversely related to the repetition rate. 
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Guttman, van Bergeijk, and David proposed a model based on the statistical 
behavior of a population of neurons. Although that model provided a qualitative 
fit to the data, no attempt was made to obtain a quantitative fit, and owing to its 
statistical nature, physiological verification would be difficult. 

An alternative hypothetical model to account for the phenomenon, based on 
cochlear-nucleus action, was proposed by Harmon et al. (I oo), and experimental 
data were derived from an electronic analog arranged to simulate single units of 
the cochlear nucleus. This model related more directly to the available neuro- 
physiological evidence, and it was made to fit the psychophysical data quantita- 

tively. It emphasized the information-processing power implicit in the action of a 
single neuron. 

The central postulate of the model is that neural responses of the auditory 
nerve to single clicks are transformed into burst responses by cochlear nucleus 
neurons and that burst length varies inversely with repetition rate. The changes 
in burst length are assumed to be accomplished by recurrent collateral inhibition, 
which acts to quench bursts. Increasing repetition rate serves to increase inhibition 
level, which progressively shortens burst length; thus two sequential bursts that at 
a lower repetition rate would have merged together can be separately resolved. 

The presumed properties of cochlear nuclear units were based on previously 
observed firing characteristics for neurons in which bursts are found for single click 
stimuli (286) and where burst length varies with stimulus repetition rate (28 I). 

The configuration of the model is schematized in Figure 13A. Its basic action, 
depicted in Figure 13& is as follows. In the fused case, excitatory potential is in- 
creased in response to the first stimulus pulse (Sl), decays until the arrival of the 
second pulse (SJ when it again is increased, and then it decays back to resting 
level. Meanwhile, when the excitatory potential crosses threshold, an output burst 
is initiated. Threshold is changed during this burst, owing to self-inhibition; .it in- 
creases until it crosses the excitatory potential. Firing then ceases, and the threshold 
slowly decays to resting by the time the next stimulus pulse pair arrives. Since the 
excitatory potential exceeds threshold over the entire period between pulses (at), 
the two output bursts due to S1 and S2 are effectively fused into a single, protracted 
burst. 

In the unfused case 6t is held constant, and the pulse-pair repetition rate is 
higher than in the fused case (thus in Fig. r3B, P2 < PI). The threshold decay time 
is now relatively long compared to the shortened repetition period. Consequently 
threshold has not yet returned to its resting value by the time a new pulse pair 
arrives. In thus starting from an increased level, threshold attains a greater maxi- 

mum value than in the fused case. It becomes sufficiently great to intersect the 
decaying excitatory potential in the E&-S2 interval, whereupon firing ceases; as a 
result the output bursts are sufficiently shortened to separate clearly the Sl and 
S2 responses. 

The electronic model produced temporal discrimination effects that quanti- 
tatively replicated the significant aspects of the psychophysical data; as stimulus 
repetition rate was increased by a factor of 16, the minimum detectable interval 
between two input pulses diminished by a factor of 2. 

The model’s action also fitted the results of another series of psychoacoustic 
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FIG. 13. A: configuration of neuromime with self-inhibition. Output burst is used to provide 

quenching inhibitory feedback. 23: schematically represented action of self-inhibiting neural 
model to obtain burst-length variation as a fitnction of pulse-pair repetition rate. Left: pulse pairs 

S& repeating with period PI are not separately resolved in resultant output bursts. Right: 
shortening the repetition period to P2 results in each pulse in pair S& being separately repre- 
sented in output bursts. See text for details. [From Harmon et al. ( IOO)] 

experiments in which the addition of a small amount of noise enhanced temporal 
resolution. Hall (259) had found that at a click-pair repetition rate of 20 pps the 
effect of adding a small amount of white noise was to reduce the minimum interval 
for 50 % detection of the second clicks by 0.5 msec. This behavior was also observed 
in the model. 

Another result of these experiments is that the model predicts one time con- 
stant associated with excitatory decay in a cochlear nucleus single unit and another 



552 L. D. HARMON AND E. R. LEWIS Volume 46 

time constant associated with recurrent inhibitory feedback. Both provide explicit 
bases for subsequent physiological verification. Further, the precise nature of burst 
responses to specified classes of stimuli is predicted. 

In another modeling study of sensory processing, problems relating to visual 
flicker-fusion were explored. The inability of visual systems to follow the changes 
in intensity of a flickering light has been voluminously documented for over 200 
years. Yet as Landis (272) pointed out ‘<. . . there is no comprehensive theory of 
flicker. Even such a simple point as whether the flicker-fusion threshold is depend- 
ent on retinal function limitations or on limitations imposed by the central nervous 

system has never been clearly answered.” 
Here is a prime example of an area where both physiological and psycho- 

physical knowledge not only are incomplete but are almost totally unrelated. 
Intriguingly, however, the phenomena of flicker-fusion seem to be well suited to a 
combined attack using both disciplines. 

In flicker-fusion, problems pertaining to frequency-dependent characteristics 
are paramount. The fundamental aspect of flicker-fusion is that when a light of 
constant maximum intensity is turned on and off with increasingly greater fre- 
quency, a critical frequency is found above which the illumination no longer ap- 
pears to flicker but seems to be steady. It thus seems that the visual system in effect 
attenuates high frequencies. 

As long ago as 1922, Ives (150) pointed out that high-frequency attenuation 
might be distributed among successive stages in the visual system. It has since be- 
come clear that there are at least two fundamental questions: I) which stages are 
linear, and 2) how many decibels-per-octave attenuation does each stage contribute 
to the over-all high-frequency loss? 

Experiments by de Lange (244, 245) show that as the frequency of a sinusoid- 
ally-modulated light is increased, the amplitude of modulation must be increased 
in a disproportionate manner for a human to perceive flicker. That is, the slope of 
the curve relating flicker intensity to the minimum frequency required for fusion 
grows steeper with frequency. At the highest perceptible flicker frequencies, de 
Lange’s results indicate that response falls at 50-60 db/octave. 

Enroth (248) measured the responses of cat retinal ganglion cells to light whose 
intensity was modulated by a square wave of variable frequency and constant 
maximum amplitude. She found that the ganglion cells fire with bursts in response 
to half of each cycle of the square wave, the number of spikes per burst decreasing 
with increasing square-wave frequency. Enroth measured the latency of the first 
spike of the ganglion cell burst as a function of frequency; its constancy with in- 
creasing frequency implied an increasing phase lag (on a per-cycle-of-stimulus 
basis). 

Kelly (104) used a model neuron as a nonlinear element to provide the high- 
frequency attenuation observed by de Lange, but he did not consider the latency 
data of Enroth. 

Levinson and Harmon (107) postulated that the psychophysical results of de 
Lange and the physiological results of Enroth were complementary. The high- 
frequency attenuation measured by de Lange closely resembles that of a low-pass 
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filter. The ganglion cell phase-lag characteristics found by Enroth closely resemble 
the phase relationships in low-pass filters. Levinson and Harmon constructed a 
model consisting of a generator-potential source, a five-stage low-pass filter, and a 
neuromime. The latter was intended to simulate a retinal ganglion cell. 

The criterion for fusion in the model was the spacing and regularity of the 
neuromime’s spikes; flicker response was taken to be present as long as the spikes 
followed individual cycles of the input stimulus. Fusion was said to occur when the 
spike response became irregular. With this criterion, Levinson and Harmon were 
able to reproduce the essential features of de Lange’s psychophysical results. In 
addition, responses similar to the physiological data of Enroth were obtained, in- 
cluding the decreasing numbers of spikes per cycle of flicker and the increasing 
phase lag as fusion was approached. 

The model provided quantitative demonstration of the possible relationships 
between physiological and psychophysical flicker-fusion phenomena. It was further 
tested against other psychophysical results relating to the nonlinearity of visual 
response. Levinson (273) had presented a human subject with light modulated by 
the sum of two sinusoids, a fundamental and its second harmonic. The subject was 
required to set the amplitude of each modulation component separately to the 
fusion threshold. When the two signals were added, flicker was again apparent. 
Fusion was re-established by a simultaneous reduction of both amplitudes. It was 
found that with different relative phases between the fundamental and the har- 
monic modulation components, different amplitude reductions were required to 
re-establish fusion. 

In subsequent modeling experiments Levinson and Harmon found excellent 
agreement between results from the analog and those from the two-component 
psychophysical experiments. 

Investigating a problem similar to flicker-fusion, Fuortes and Hodgkin (252) 
analyzed generator potentials that had been measured in Limulus ommatidial 
receptor cells. They proposed a model requiring ten stages of low-pass filtering in 
order to account for the measured phase and frequency response. They used a mul- 
tiple resistive-capacitive filter analog (as did Levinson and Harmon) but added 
the feature of variable resistance dependent on filter output. This kind of nonlin- 
earity is difficult, though not impossible, to model electronically; in this case the 
action of the model for various inputs was found by digital computation, that is, 
by employing a computer-simulation model. 

Levinson (106) has recently proposed an alternative model in which a single 
process rather than a many-stage filter can account for all of the observed temporal 
response characteristics. It is based on the statistical behavior of particles passing 
through a permeable membrane, and it is consistent with the Fuortes and Hodgkin 
results, which imply that all of the low-pass filtering may occur within a single 
receptor cell. 

7) Stochastic processes [Viernstein and Grossman (123); Get-stein and Mandetbrot (93, 
94); ten Hoopen et al. (I 18, I rg)]. Spikes and spike trains observed in individual 
axons invariably exhibit some probabilistic aspects. The most commonly described 
are fluctuations in the temporal relationship between a spike and some other event. 
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Verveen et al. (I I g, I 22), for example, examined the distributions ofspike latencies 
in an isolated axon after essentially identical stimuli. Viernstein and Grossman 
(I 23) discussed a similar problem in neurons in the intact auditory system of the 
cat, where irregular discharge patterns in response to constant stimuli were ob- 
served. In order to explain these and other fluctuating neuronal responses, a num- 
ber of investigators have constructed neural models that include hypothetical noise. 
These stochastic unit models are distinguished from the probabilistic nerve-net 
models (see pp. 571-577) by the fact that they are concerned with random prop- 
erties of single neurons and not with the properties of randomly connected net- 
works. 

One of the first stochastic unit models was proposed by Hagiwara (96) to ac- 
count for fluctuations in motor unit discharges. In his model, Hagiwara introduced 
noise in the form of Gaussian-distributed fluctuations of the membrane potential. 
This model, along with many others, is discussed in a review of statistical spike- 
data-analysis techniques by Moore et al. (302). Since these authors have included 
an extensive discussion of stochastic unit models in their review, the discussion here 
is limited to brief descriptions and comparisons of four models that are representa- 
tive of the entire class. 

Viernstein and Grossman ( I 23) examined spike-interval histograms for single 
neurons in various sensory pathways in the cat. They found that in general the 
spike-interval distribution exhibited a prolonged tail on the long-interval side of 
the mode; so the mean interval was greater than the mode. As excitation was in- 
creased, however, the tail was reduced, the mean moving closer to the mode, and 
the distribution exhibited less variance. 

In order to explain these statistical characteristics, Viernstein and Grossman 
proposed a simple stochastic model of a neuron. In it they assumed a constant 
threshold and a noisy membrane potential. After a spike, the membrane was as- 
sumed to be hyperpolarized, the potential then falling with an exponential mean 
back toward an asymptote that is a level determined by the steady stimulus. 
CCNoise” was introduced as step changes in membrane potential at fixed frequency, 
with Gaussian amplitude distribution. 

The model was simulated by means of two tables. One contained the values 
of membrane potential at fixed increments of time for smooth exponential recovery; 
the other table represented the noise and consisted of numbers randomly selected 
from a Gaussian distribution with a mean of zero. A number was taken from each 
table, and the two were added. When the sum exceeded the threshold, a spike was 
assumed to occur. The preceding interval was simply the number of pairs selected 
from the tables before threshold was reached. After a spike, the procedure was re- 
peated from the beginning of the smooth recovery table but with a new sequence 
from the noise table. 

Viernstein and Grossman found qualitative agreement between the results 
from the model and those from the cat. The spike-interval histograms in the model 
exhibited a tail in the long-interval region, and the variance decreased with in- 
creasing excitation. As an interesting sidelight they observed that increasing the 
frequency of the noise signal had an effect similar to increasing excitation; it re- 
duced both the modal interval and the variance. 
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In an earlier investigation of stochastic neural events, Pecher (rag) had found 
that an axon stimulated at a low rate with identical, short electrical pulses of about 
threshold intensity responds with an action potential only in a fraction of all trials. 
Apparently the axon’s excitability varies from moment to moment in an irregular 
way. This fluctuation in excitability is accompanied by a fluctuation in latency; 
that is, for those stimuli that manage to elicit response, the interval between stim- 
ulus onset and subsequent action potential is variable. Pecher’s statistical investi- 
gation showed these fluctuations to be inherent properties of nerve fiber and that 
the sequence of spike responses to low-frequency equal-energy pulse stimulation is 
randomly distributed; the relationship of the probability of response to stimulus 
intensity is described by a symmetrical sigmoid curve. The source of fluctuation 
is apparently Gaussian, and the firing-latency distribution is highly skewed. 

A number of mathematical models were developed to account for these fluc- 
tuations in response. Those of Rashevsky (I 16) and Verveen (I 2 I) provided quite 
accurate approximations to Pecher’s data but were not completely satisfactory. 

Verveen found that in axons the standard deviation of the probability-of- 
response distribution depends on stimulus duration but that the coefficient of vari- 
ation (i.e., the relative spread of the deviation) is independent of stimulus duration. 
He suggested that the underlying causes of the statistical parameters that cause 
excitability fluctuations are threefold : I) the nature of stimulus-induced depolari- 
zation, 2) the presence of a threshold potential difference, and 3) a Gaussian dis- 
tribution of fluctuations of this threshold potential difference. 

One of the principal inadequacies of the early mathematical models was 
brought about by the assumption that excitability did not fluctuate during the 
time over which a stimulus was applied. Though reasonable for stimuli of quite 
short duration, this assumption is inappropriate for relatively long-lasting stimuli. 
Excitability fluctuations that occur whether or not a stimulus is present are difficult 
to model mathematically, so ten Hoopen and Verveen (I I g) used an electronic 
model of a single unit [an early version of the neuromime-see Harmon (g8)] to 
investigate the phenomena more thoroughly. The model made possible the elimi- 
nation of the earlier constraints on stimulus rate and duration. It was assumed that 
the fluctuations were comparable to band-limited white noise, and a number of 
parametric variations of such noise were employed to test the model. 

These modeling studies produced firing statistics in close agreement with 
physiological data. The parametric constraints in the model under which that 
agreement could be obtained disclosed two conditions that must hold in the phys- 
iological case. It was shown that for membrane fluctuations to be effective, the 
equivalent band-limited white noise must have a maximum upper limit of 2000 

cycles/set and a likely upper limit of about 500 cycles/set. Although the lower 
limit of fluctuation frequency in the model was held to 20 cycles/set, slow long- 
term threshold instabilities were also found. This drift arose from fortuitous thermal 
variations, but its presence accounted for effects in the model that paralleled effects 
observed in the physiological preparations. 

The model satisfactorily accounted for intensity- and duration-dependent 
properties of single-fiber firing fluctuations. Latency distributions obtained from 
the analog also fitted the physiological data well. 
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Whereas the modeling results implied that the effective noise spectrum in axon 
membrane should extend to somewhat less than 2000 cycles/set, a calculation 
based on the membrane 
plied that the spectrum 

time constant 
should extend 

of single nodes of Ranvier in frog axon im- 
to about 2800 cycles/set. This discrepancy 

prompted Verveen and Derksen3 (I 22) to examine more closely the nature of the 
physiological excitability fluctuations and the underlying noise processes. In doing 
so they developed a new and productive approach to the measurement and analy- 
sis of voltage fluctuations that in turn is leading to a better comprehension of mem- 
brane ionic conductance mechanisms. 

In subsequent studies, ten Hoopen et al. (I 18)- developed mathematical models 
to explain further the isolated axon data of Pecher ( I og) and Verveen ( I 2 I ). They 
proposed two models, one suited to direct solution of the equations and the other 
suited to solution by Monte Carlo techniques. Both models had noise in the thresh- 
old rather than in the membrane potential, and both included the two-time-factor 
theory of Rashevsky (see p. 528). After a near-threshold stimulus, a quantity labeled 
Cc activation” first increased, then passed through a maximum, and finally de- 
creased toward zero. The time course of activation was described by the difference 
between two negative exponentials with different time constants (the two time 
factors). 

While the activation proceeds through its course, the threshold varies about 
a mean value close to the peak of activation. If  the activation curve crosses the 
threshold, a spike is assumed to occur. Two types of threshold fluctuation were 
considered. In one case, the threshold was assumed to vary from one value to 
another in stepwise manner, the magnitudes of the steps having a Gaussian dis- 
tribution and the times of occurrence having a Poisson distribution. This model 
was studied by direct solution of the equations. The second model was identical to 
the first in all but one detail; the stepwise changes in threshold occurred at equal 
time intervals. This model was simulated by Monte Carlo techniques similar to 
those used by Viernstein and Grossman with their tables of values. 

Results from the two mathematical models were very similar, agreeing quan- 
titatively with results obtained from isolated frog axon [Verveen (12 I)] as well as 
with results obtained with the earlier electronic model studies of ten Hoopen and 
Verveen. Poststimulus latency distributions from both models exhibited prolonged 
tails in the long-latency region as well as variance that decreased with increasing 
stimulus magnitude. These distributions were thus qualitatively similar to the 
spike-interval distributions obtained by Viernstein and Grossman. 

Rodieck et al. (285), like Viernstein and Grossman, were interested in spike 
patterns in the mammalian auditory system. Their approach to the problem was 
somewhat different, however. They began by developing a set of statistical meas- 
urements that were applied to the data. In addition to the spike-interval histogram 
and the poststimulus-time histogram, this set included the joint-interval histogram 
and the scaled-interval histogram. 

The joint-intervai histogram provides information about the statistical rela- 

3 Though Derksen 
periments (122, 246), he 
unit models (g I). 

has been predominantly concerned with direct neurophysiological ex- 

has also made excellent contributions to the design of electronic single- 
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tionship between two successive spike intervals in a train produced by a single unit. 
This type of histogram is generated by plotting, for every pair of intervals, a point 
whose abscissa is proportional to the first interval and whose ordinate is propor- 
tional to the second interval. The results are usually displayed either as a scatter 
diagram or as a set of contours of constant occurrence density. 

The scaled-interval histogram shows the distribution of specific sums of suc- 
cessive spike intervals. The number of intervals in each sum is an integral power 
of two, and that power is denoted as the “order” of the histogram. The second- 
order-scaled-interval histogram is thus a histogram of the sums of four successive 
intervals. The scaled intervals are mutually exclusive, so that any single interval 
is a member of only one sequence. Note that the zero-order-scaled-interval histo- 
gram is identical to the simple spike-interval histogram. 

Applying these measurements to their data, Rodieck, Kiang, and Gerstein 
were able to classify spike trains according to their statistical properties. Gerstein 
(93) was then able to propose plausible limits on the classes of generating mecha- 

nisms. From these limits Gerstein and Mandelbrot (94) went on to develop a series 
of stochastic unit models based on “random-walk” statistics. They used these in 
an attempt to relate spike-train statistics to fluctuations in membrane potential. 

In a specific class of spike trains considered by Gerstein, all of the lower orders 
of scaled-interval histograms had the same shape. From the fact that there was 
only one known distribution function that had this stability propert) and at the 
same time was readily interpreted in physiological terms, Gerstein used that func- 
tion in particularizing his model. 

The applicable probability density function happens to describe the distribu- 
tion of first passage times in a particular random walk toward an absorbing barrier, 
and Gerstein adapted his model to that random walk. The membrane potential 
was assumed to change onZ’ on the occurrence of a postsynaptic potential (no decay 
was assumed in these models). An epsp was assumed to move the membrane po- 
tential one unit toward the threshold, and an ipsp moved it one unit away from 
threshold. When threshold was reached, a spike was assumed to occur, and the 
potential was reset to zero level, from which the process of accumulation or “walk- 
ing” was repeated. The probabilities of occurrence were assumed equal for both 
excitatory and inhibitory postsynaptic potentials. 

Applying this model and several modifications of it, Gerstein and Mandelbrot 
were able to account for many quantitative details of both single-interval histo- 
grams and scaled-interval histograms of spike trains from single units. They were 
able, for example, to reproduce the stability properties exhibited in the scaled- 
interval histograms. Consistency with experimental data was once again obtained 
with a minimum-parameter model. The basic random-walk model has one pa- 
rameter, the number of steps between the zero level (reset potential) and the 
threshold; and it has one state variable, the membrane potential. In a slightly more 
complicated version, Gerstein and Mandelbrot added one additional parameter, 
the ratio of the number of excitatory inputs to the number of inhibitory inputs. 
With two parameters the model accounted for an even wider variety of spike-train 
observations in cat cochlear nucleus neurons. 

Fetz and Gerstein (92) expanded the model further by including exponential 
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decay of the membrane potential toward equilibrium. This new version was diffi- 
cult to handle mathematically, so they employed a resistor-capacitor network sim- 
ulation. 

By varying the ratio of the number of incoming epsp’s to the number of in- 
coming ipsp’s as well as the threshold, Fetz and Gerstein were then able to simulate 
almost all the spontaneous spike trains found in the neurons of the cat cochlear 
nucleus. 

Stevens (I I 7) subsequently showed that a different model, based on a diffusion 
process, leads to precisely the same spike-interval statistics as those in the random- 
walk models and can thus account for the same variety of spike trains. 

Ambiguities of this kind in which analogs are nonunique present a problem 
in all areas of neural modeling, particularly in the modeling of stochastic action. 
Continuing physiological measurements on noise in axons [e.g., Verveen and Derk- 
sen (122, 246)], h owever, are rapidly leading to more constraints. The stochastic 
models are constantly being re-evaluated and revised, and they have been useful 
in suggesting new and more meaningful statistical measures for spike trains [see 
Moore et al. (302) and Poggio and Viernstein (282)]. 

C. Networks 

r) Input-output relations in a motoneuron pool @all and Hunt (169, 170, 283)]. In 
the monosynaptic reflex pathway of the gastrocnemius nerve of the cat, a single 
shock stimulus induces a nearly synchronous volley of spikes in a fraction of the 
afferent fibers. Some proportion of those fibers have synaptic terminations directly 
on the motoneurons of the pathway. 

The intensity of excitation delivered to a given motoneuron in response to the 
single shock stimulus has been thought to depend not only on the number of ac- 
tivated synaptic knobs but also on the distribution of these knobs over the moto- 
neuron surface (274, 2 75). The complex geometric dependencies were, in fact, 
thought to preclude any simple definition of threshold in such a system. In addi- 
tion, simply defined thresholds seemed insufficient to explain the observed input- 
output relations in these systems. 

With a simple statistical model, however, Rall (169) was able to demonstrate 
the adequacy of a threshold defined just in terms of the number of active synaptic 
knobs required to trigger a given motoneuron. In his basic model, Rall assumed 
that the effective input intensity to the motoneuron pool in the reflex pathway was 
proportional to the number of synchronously activated knobs (which were assumed 
to be randomly distributed over the pool). The resting thresholds for individual 
motoneurons were assumed to be randomly distributed and independent of acti- 
vated knobs. The distributions of thresholds and knobs were taken to be normal. 

Developing his model from these assumptions, Rall showed that regardless of 
the values of the important model parameters, the fraction of motoneurons in the 
model firing in response to a given stimulus was given by the area under the por- 
tion of a normal distribution curve that exceeded a certain cccritical” value. The 
firing fraction was thus completely determined by the critical value. 
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Further, the model predicted that the critical value would be linearly related 
to the fraction of afferent synaptic knobs activated by the stimulus. From the results 
of subsequent experiments on the gastrocnemius reflex in cat, Rall (169, 283) esti- 
mated the effective number of activated synaptic knobs and the firing fraction of 
the motoneuron pool. These estimates supported the prediction of linearity. 

Rall’s model, together with his experimental results, thus showed that a sim- 
ple definition of threshold in terms of the numbers of activated synaptic knobs was 
sufficient for the prediction of relations previously assumed to be incompatible with 
such a simple definition. In addition, the model produced excellent quantitative 
consistency with other aspects of the data from the cat and predicted many of the 
observed relationships among sets of data. This included the effects of posttetanic 
potentiation as well as the input-output relations for various combinations of inputs 

to synergic svstems. 
These studies were extended by Rail and Hunt (I 70) to include uncorrelated 

fluctuations in excitability (which affected only individual neurons) and correlated 
fluctuations (which affected the entire motoneuron pool). By separating the fluc- 
tuations into these two independent classes, Rall and Hunt were able to predict 
accurately the probability of spikes in individual neurons during discharges of the 
pool. 

2) Coelenterate nerve net [Josephson et al. (152, 153)]. Current physiological evi- 
dence indicates that although coelenterates have the most simply organized of all 
nervous systems, their neurons operate very much like those of higher animals. The 
neurons conduct impulses in an all-or-nothing manner, they usually interact syn- 
aptically exhibiting both inhibition and excitation, and they are sometimes spon- 
taneously active. In spite of the fact that coelenterate nerve nets appear to be ran- 
domly connected, they are often capable of integrative activity. This is particularly 
apparent in the case of repetitive stimuli in so-called CClocal conducting” nets. In 
these nets the response to a single stimulus does not spread to the boundaries of 

the system but is limited to a local area. If  a second stimulus is applied shortly after 
the first, the response area increases. The distance to which excitation spreads in 
a local system is thus usually a function of the frequency and total number of stim- 

uli (264). 
Horridge (264) distinguished three types of increases in response area during 

repetitive stimulation at constant frequency. In some species the radius of the re- 
sponse area would increase with approximately equal increments; in other species 
the increments would be progressively smaller; in still other species the increments 
would increase, resulting in an acceleration of the spread of excitation. 

Horridge used two models in attempts to explain his observations. The first 
was a mechanical model, but the results from it were not consistent, so he discarded 
it in favor of a mathematical model. With this model he was able to explain many 
of the characteristics of spread in a coelenterate nerve net, but he had to make a 
number of assumptions that could not be justified. 

Josephson et al. (153) designed a flexible digital-simulation model and with 
it were able to relate many of the integrative properties of coelenterate nerve nets 
to the known or suspected properties of coelenterate neurons. The nerve-net ge- 



L. D. HARMON AND E. R. LEWIS Volume 46 

A B 
FIG. 14. Comparison of geometries of real and modeled coelenterate nerve nets. A; drawing 

of nerve net in mesentery of the anemone, Metridium. For clarity some neurons are shown as 
dushed lines. [From Batham et al. (235)] B; schematic representation of a coelenterate nerve-net 
model. Circles represent possible junctions between fibers. [From Josephson et al. (153)] 

ometry was represented by a two-dimensional array of idealized fibers. Figure 14 

shows a comparison of such an array with a portion of a nerve net from the co- 
elenterate Metridium. 

The model may be viewed as a grid of horizontal and vertical lines with ran- 
domly selected segments missing. The remaining line segments represent fibers of 
various lengths intersecting with one another at right angles. Each intersection 
forms two unidirectional synaptic junctions, and each of those may be either 
through-conducting (T-type) or facilitating (F-type) junctions. A pulse arriving at 
a T-junction is transmitted to the intersecting fiber. A pulse arriving at an F-junc- 
tion facilitates the intersecting fiber so that a second pulse arriving soon after the 
first will be transmitted. The first pulse, however, is not transmitted. Facilitation 
decays linearly with time and may accumulate. 

Their proportion having been specified, the T-junctions in the model are dis- 
tributed randomly; the remainder of the crossings are F-junctions. A mixture of 
junctions of these types was first proposed by Horridge and is consistent with phys- 
iological evidence. Each time a net was formulated in the computer, the experi- 
menter would specify the proportion of T-junctions, the mean fiber length (in grid 
units), and the facilitation decay-time distributions. The computer would then 
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construct a simulated net with random distributions of fiber lengths and of T-junc- 
tion locations. 

Conduction was assumed to be all-or-nothing in a givenfiber, and the conduc- 
tion velocity was assumed constant. In contrast to the model of Perkel (described 
on p. 53g), time in the present model was quantized, with basic increments equal 
to the assumed time of travel for an impulse over one unit of grid length. 

Josephson (152) performed a number of experiments with the simulation 
model, but he was most interested in the effects of repetitive stimulation. He 
found that by varying the proportion of T-junctions and the ratio of the number of 
facilitated F-junctions to the number of unfacilitated F-junctions, the spread of 
excitation could be changed from that of decreasing increment to that of equal 
increment or even increasing increment- all the types found by Horridge. When 
the proportion of T-junctions was high and the fraction of F-junctions remaining 
sufficiently facilitated to pass the next pulse was low, the spread increased in de- 
creasing increments. When the proportion of T-junctions was low and the fraction 
of F-junctions remaining facilitated was high, the increase was in equal increments. 
Finally, when the proportion of T-junctions and the fraction of facilitated F- 
junctions both were high, the increase was in increasing increments. . 

The modeling results showing spread in decreasing increments and equal in- 
crements were consistent with results from coelenterate nerve nets, but two prob- 
lems existed with respect to increasing increments. First, Josephson did not believe 
that the simulation data showing increasing increments were sufficient to be 
statistically significant. Second, the increase in size of successive increments was 
small in the model, and such increases would not readily be noticed in physiologi- 
cal experiments. Liu (156) resolved the first problem by showing that spread in 
increasing increments occurs consistently over statistically significant samples; 
but the problem of the size of increment increase remains. 

A second observation of Josephson and his colleagues is worth noting. With 
higher proportions of T-junctions, the response of the model net to a single pulse 
propagates over large areas, but the extent of this propagation becomes increasingly 
variable. Thus there must be a compromise between distance of conduction in the 
net and the uniformity of response to a given stimulus. One way to avoid this com- 
promise in the model is to allow a single stimulus to evoke a train of pulses. A net 
with a low proportion of T-junctions can thus have a large but consistent area of 
response to a single stimulus. Josephson, Reiss, and Worthy point out that repeti- 
tive firing is quite normal in coelenterates in response to a mechanical stimulus. 

Liu (156) recently revived the model studies begun by Josephson, Reiss, and 
Worthy and improved the digital program in several ways. He included manual 
input and visual output (oscilloscope) so that the experimenter can easily interrupt 
the program at will in order to change parameters. In addition to demonstrating 
the statistical significance of increasing increments of response in the model, Liu 
also performed a number of other experiments that verify and extend the earlier 
results. He has, for example, included electrotonic spread in the model and per- 
formed experiments with various cuts or blocks simulated in the net. 

These coelenterate nerve-net studies provide another example of minimum- 
parameter modeling. Both the individual neuron model and the modes of inter- 
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FIG. 15. Reciprocal inhibition for control of antagonistic muscles. According to McDou- 
gall’s 1903 theory, this configuration allowed alternation of flexion and extension for steady, 
nearly equal activity in both afferent neurons (al and b I). During flexion, “resistance” of synapse 

a 2-a 3 is low, and excitation passes from afferent a 1 through central neuron a2 to efferent a 3 and 
onto the flexor, The low resistance of synapse as-as is transferred to its “cosynapse” b2-a3 (formed 
by the collateral of bz terminating on a a), and excitation from b 1 is diverted to a 3. This diversion 

of excitation “inhibits” extension and “enhances” flexion. Fatigue soon increases the resistances 
of synapse a 2-a 3 and its cosynapse b2-a 3, so excitation fkom b 1 is no longer completely diverted. 
Increased excitation is thus available to lower the resistance of synapse bt-b 3 and its cosynapse 

at-b 3. Extension becomes dominant, and flexion is inhibited. The cycle repeats, and alternation 
results. [Redrawn from McDougall ( ISI)] 

connection are extremely simple. In spite of this the results are neither simple nor 
obvious. 

3) Two-unit recz$rocal inhibition [Reiss (r76), Harmon (146)]. It has long been 
conjectured that the alternating rhythmic behavior of muscular antagonists may 
arise from reciprocally inhibiting neurons. More than half a century ago Mc- 
Dougall ( 16 I) postulated a system for nervous control of muscular alternation 
(shown in Fig. 15). Though inaccurate in the light of subsequent knowledge, it 
was a notable first attempt to explain antagonism and alternating dominance in 
terms of relatively modern neurophysiology. 

Aside from the reciprocal innervation, recurrent axonal collaterals, and in- 
hibitory interneurons now well known in neuromuscular systems, the ubiquity of 
crossed inhibition in visual and auditory peripheral sensory systems suggests that 
reciprocal inhibition may play an important and widespread role in neural in- 
formation processing. 

Reiss (I 76) studied a number of models of two-neuron interaction using both 
digital computer simulation and electronic analogs. He showed that a relatively 
constant-frequency stream of impulses exciting in common a pair of mutually 
inhibiting units can produce rhythmic, alternating bursts of pulses. Although the 
input pulse train provides common excitation to both units, if the units’ temporal 
parameters are properly adjusted only one fires at a time; the other unit is inhibited 
by the one firing. As the active unit fatigues, however, its output rate declines, and 

the silent unit is released from inhibition. The second unit begins to fire and be- 
comes dominant, inhibiting the first. 
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In this alternating dominance of one unit over the other, which produces 
alternating bursts of pulses in the two units, Reiss found that the rate of alternation 
is an almost monotonic function of the input, or driving frequency. At very low 
input frequencies, one unit dominated completely. As the frequency was increased, 
low-frequency alternations occurred. The frequency of alternation would then 
increase with increasing drive frequency until, at very high rates, one unit would 
again dominate. 

This dominance was often not complete, however; while the dominant unit 
remained on, the other fired in rapidly recurring bursts. These patterns of response 
are identical to those observed by Hoyle (266) in reciprocally innervated flexor 
and extensor muscles in the legs of locusts. As the locust walks faster and faster, the 
alternation rate increases. Finally, when the walking becomes quite rapid, the 
extensor is continuously excited (dominant neural control) and provides an elastic 
band against which the flexor can work differentially (via rhythmic burst input). 
Reiss thus demonstrated a simple mechanism that not only provides this apparently 
complicated behavior but does so with an extremely simple driving source.4 

These studies were completed with experimental determinations and analyses 
of the effects of threshold and recovery asymmetry in the two units, extents of 
reciprocal firing periods, mean frequencies, limits of input-controllable stable 
activity, and noise immunity. 

In a related study Harmon (146) explored the modes of action available to a 
pair of reciprocally inhibited electronic single-unit analogs excited in common by 
a constant-frequency pulse train. The model was initially arranged to replicate 
spike patterns observed by Wilson (291) in locust flight motor systems; it accounted 
in a simple way for alternating spike-pair patterns seen in the locust’s thoracic 
ganglion. The model’s time courses of excitatory and inhibitory potentials and of 
accommodation were very much shorter than those employed by Reiss, resulting 
in quite different modes of action. 

Extended experimentation with this model led to a disclosure of several novel 
phenomena. With variation of stimulus frequency, the output firing patterns of 

the two units changed in discrete steps, progressing through a number of different 
patterns, some quite intricate. The effect of increasing stimulus frequency over a 

large range was to change the output firing activity in the dominant unit from 
patterned and phasic to tonic, while the nondominant unit changed from patterned 
and phasic firing to ultimate quiescence. Typical examples of the patterned response 
are shown in Figure 16. 

4 A similar study by Szekely (184) used electronic single-unit analogs to replicate pro- 
longed-discharge alternating bursts of the kind presumed to be responsible for coordinated limb 

movements in salamanders. Szekely’s network of 8 units simulated 4 motoneurons and 4 in- 
hibitory (Renshaw) interneurons in spinal cord segments. The model produced rhythmic out- 
puts for nonrhythmic inputs with an arrangement suggested by neurohistological and neuro- 
physiological data. A simpler, mathematical model of Q-unit interaction developed by Pavlidis 

(I 66) permitted detailed analysis and was tested by analog computer simulation. Two units, 
connected by crossed excitation, produced alternating bursts of the kind often seen in insect 
flight motor systems. The model was also used to show how spontaneous and seemingly random 

fYi.ring can arise from excitatory cross-coupling rather than from internal noise as is generally 
considered to be the case (see p. 554). 
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FIG. 16. Family of firing patterns obtained by reciprocally inhibiting neuromime pair as 

common stimulus frequency is increased. Each pattern, which repeats indefinitely, is stable 
over a range of frequencies, discontinuously changing at the extremes of the range. The notation 
for the patterns represents sequential firing in the two units; each ratio represents the response to a 

single stimulus pulse. For example, I /o: I /o: I /I indicates unit A fires once and unit B is silent 
for the 1st pulse in the input train; this repeats for the 2nd pulse; both units fire simultaneously 
in response to the 3rd, and then the entire pattern repeats. The patterns range from I /I, in 

which both units fire synchronously with the input, through a series of more intricate patterns, 
to a set of responses in which unit A, following synchronously, increases its dominance as unit 
B, firing less and less frequently, is finally suppressed completely. For example, in the last pattern 

shown, unit A repeats 22 times before B responds once. [From Harmon (146)] 

A rather surprising phenomenon arising from the direction of stimulus fre- 

quency change was found. Patterns exhibited hysteresis. That is, the pattern 
elicited by a given stimulus frequency depends on whether that frequency is ap- 
proached from above or below. For example, suppose a particular patterned out- 
put from the two reciprocally inhibited units is observed for a given driving fre- 
quency. While that frequency is increased the pattern remains stable until a critical 
frequency is reached, at which time there is an abrupt change to a new pattern, as 
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illustrated in any one of the steps shown in Figure 16. However, if the drive fre- 

quency is now decreased, the original path is not retraced. Instead, the new pattern 
persists, quite stably, over the range of drive frequencies that before had elicited 
the old pattern. The “captured” pattern continues until the stimulus frequency is 
lowered to the point where the original pattern had first appeared with increas- 
ing drive frequency. At that time the original pattern reappears, and a complete 
hysteresis loop has been traced. This is illustrated in Figure I 7. 

A concomitant of this hysteretic action is that output pattern selection can 
be controlled by the injection or deletion of a single pulse in the stimulus pulse 
train. That is, in order for a given driving frequency to produce one or the other 
of the two patterns traced by the hysteresis loop, smooth frequency change is 
unessential; a single control pulse will suffice. 

Aside from the alternating patterns described for locust flight control by Wil- 
son (2gr), no clear physiological demonstration yet exists for the actions or mech- 
anisms documented in this study. There are, however, several suggestive bits of 
evidence. Blaschko et al. (237) described a trigger (hysteresis) effect in crustacean 
claw where a given muscular tension produced by a background stimulus of con- 
stant frequency applied to a single nerve fiber can be triggered into a sustained 
state of increased tension simply by intercalating a single extra shock. Further, 
Pantin (280) was able to abolish this state by injection of inhibitory spikes. 

The action of the model to produce alternate firing of a mutually inhibitory 
pair of units excited by a common stimulus of constant frequency appears similar to 
that of cicada motoneurons. Hagiwara and Watanabe (258) found that alternating 
activation of the two main sound-producing muscles typically may occur at a I oo- 

pulse/set rate for each while a preceding internuncial unit fires at a 2oo-pulse/set 
rate. Interestingly, this pattern corresponds to one of the simplest found in the 
model’s family of patterns. Hagiwara and Watanabe postulated the possibility of 
mutual inhibitory interaction of the motor centers. The model not only demon- 
strates the feasibility of that suggestion, but it also indicates the anatomical and 
temporal parametric conditions under which the phenomenon may be expected to 
occur. 

4) Dynamic-range extension in the cochlea [van Bergezj’k (r8g)]. In 1 g6 1 van Bergeijk 
initiated a modeling study of the properties of the external spiral nerves of the coch- 
lea. The morphology and connections of these nerve fibers were reasonably well 
known, but no observations or theory of their function existed. 

Although primate audition extends over a stimulus sound-pressure range of 
more than IOO db, a single neuron typically exhibits a dynamic range (threshold 
stimulus to that required for maximum firing rate) of little more than 25 db. The 
question arises as to how a system of neurons may achieve a far greater dynamic 
response range than that of a single unit. 

Van Bergeijk postulated that the convergent arborization of the cochlea’s 
spiral innervation could account for at least part of the discrepancy in the following 
way. At low stimulus intensities thedensityof signals traversing the fibers is low, and 
thus the probability that two signals will simultaneously reach a junction of two 
converging fibers is also low. However, as stimulus intensity is increased, the likeli- 
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FIG. I 7. Hysteresis of patterned response. Consider one of the steps in Fig. 16. If pattern Pr 
is present (for example I /I), and the stimulus frequency is increased to fHI, there is a discontinu- 
ous jump to a new pattern Ps (in this case 2/o: o/2, double alternate firings). If the stimulus 

frequency is then decreased, the new pattern remains, and it persists, say, at P2*, for which stim- 
ulus frequency the old pattern Pr had originally been elicted. The new pattern remains “cap- 
tured” even though the frequency is lowered almost to fLo. At f Lo there is an abrupt switch to the 

original pattern. A separate hysteresis loop of this kind exists for each pattern step shown in 
Fig. 16. [From Harmon (146)] 

hood of destructive interference of signals arriving at a node via different branches 
increases owing to the increased temporal density of the signals. That is, as more 
and more signals converge on a single node, it becomes increasingly likely either 
that several of them arrive simultaneously and cause only a single output, or that 

several arrive nearly simultaneously and, running into a refractory zone, are in- 
effective. The postnodal fiber thus saturates slowly. With very high stimulus inten- 
sities there is, of course, saturation of the prenodal fibers located at the place of max- 
imum basilar membrane displacement, but other neighboring fibers now come 
more and more into play. Thus the postnodal fiber responds to a continual build- 
up of activity from the family of prenodal fibers serving it until it ultimately satu- 
rates. 

By driving a convergent branched network of neuromimes by an electrical 
analog of the cochlea, van Bergeijk demonstrated that the more branches his arti- 
ficial fibers had, the larger was the dynamic range of the system. That is, while a 
single neuromime might respond over a stimulus intensity range of only 20 db, a 
simulated spiral fiber array with 19 side branches was able to respond to a range of 
more than 40 db. 

On the strength of these observations van Bergeijk proposed that the function 
of the spiral arrangement in the auditory nerve is to extend the dynamic range of 
the ear. To test this hypothesis it would be necessary to record from the nerve fibers 
of the cochlea under conditions where side branches of the spiral nerves are progres- 



July rg66 NEURAL MODELING 567 

sively eliminated. Van Bergeijk suggested that, since the location of maximum dis- 
placement on the basilar membrane is a function of input acoustic frequency, a 
frequency can be found such that a maximal portion of a particular convergent 
arbor is exposed to stimulation. Changing the frequency of stimulation then would 
effectively eliminate side branches from the nerve as the displacement envelope on 
the basilar membrane retreats to either end of the cochlea, thus leaving more and 
more branches unexcited. When the stimulus pattern exerts its maximum influence, 
the slope of the curve relating output response (in impulses/set) to input intensity 
should be rather low, increasing in steepness as more and more branches are de- 
activated at frequencies other than this maximally effective one. 

The test of this hypothesis was carried out by Nomoto et al. in I 964 (2Tg), and 
van Bergeijk’s prediction was effectively confirmed. The test consisted of measuring 
the thresholds and firing frequencies of eighth-nerve fibers as auditory stimuli were 
varied in intensity and frequency. Slopes of input intensity versus output frequency 
were established. Nomoto et al. found one class of units that exhibited low slopes at 
their “best frequencies” but showed steeper slopes at other frequencies of stimula- 
tion. On the basis of this theoretically expected behavior, together with the low 
threshold expected from nerve fibers emanating from the outer hair cells, they took 
such “‘crossed-ramp” units (as they term them) to be external spiral fibers. Two 
other classes of units, “parallel ramp with low threshold” and “parallel ramp with 

high threshold,” show rather steep slopes; thus on the basis of van Bergeijk’s theory 

they may be inferred to be unbranched nerves. They would correspond to the radial 
nerve fibers. 

On the basis of this inference and, again, on the threshold difference expected 
between inner and outer hair cells, these two classes of units are classified by No- 
moto et al. as external radial and internal radial fibers, respectively.5 This marks 
the first instance in which neurophysiological measurements suggest a plausible 
distinction between external spiral, external radial, and internal radial fibers, a 

distinction long known anatomically, but never seen physiologically. 
On the basis of the same modeling experiments, van Bergeijk (192) also pro- 

posed a new theory to account for the pathological phenomenon of “loudness re- 
cruitment.” This phenomenon is diagnostic for damage to the sensory elements in 
the cochlea; it is characterized by a markedly reduced dynamic range caused by an 
elevated threshold and, above threshold, an accelerated increase of loudness. Ran- 
dom elimination of sensory cells would result in spiral fibers with less than the 
normal complement of side branches and thus in decreased dynamic range. 

5) Auditory binaural interaction [van Bergeijk (Igo, rgr)]. The model described 
here evolved in successive stages on the basis of results from related physiological 
and psychophysical experiments. 

In the auditory phenomenon of time-intensity trade, if a given signal arrives 
slightly earlier at one ear than at the other, the perceived spatial location of the 

5 Through an unfortunate printing error, the summary of Nomoto et al. (279) indicates 

the reverse of what is discussed on pp. 782-783 of their paper; in the last 2 lines of paragraph 
3 of the summary, the words CCradialy’ and “spiral” should be interchanged. 
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signal is toward the early ear l increasing the intensity of the 9 lagging signal at the 
other ear can offset the effect and center the image; i.e., time and intensity can be 
traded in binaural spatial perception. 

Psychophysical studies of this phenomenon in humans had led David et al. 

(243) 
detail 

to an ad hoc 

the neural 
black-box model, although it was not intended to represent in any 
pathways along which binaural interactions take place. The gross 

anatomy of these pathways is 
the superior olivary complex 

known, 
consists 

however. Each of the two accessory nuclei of 
of neurons that receive inputs from both ears 

via the respective cochlear nuclei. Moreover, each accessory nucleus neuron is 
known to receive bilateral innervation from the cochlear nuclei (288). Further, 
Galambos et al. (253) have described binaural interactions at the single-unit level in 
the accessory nucleus. 

Van Bergeijk (190) put the various pieces together into a neurophysiological 
model designed to account for the psychophysical data without violating the known 
anatomical and physiological constraints. 

There are three essential propositions in the model. First, each accessory nu- 
cleus receives inhibitory afferents from the ipsilateral cochlear nucleus and excita- 
tory afferents from the contralateral one, and each neuron in the accessory nucleus 
receives contralateral excitatory together with ipsilateral inhibitory inputs. Second, 
the first-arriving input to a neuron determines its state; i.e., if an excitatory input 
arrives first, the neuron becomes excited, and subsequent inhibitory inputs are in- 
effective, or if an inhibitory input arrives first, the neuron remains unexcited despite 
later excitatory inputs. Thus if one ear receives the stimulus earlier than the other, 
it produces a dominantly inhibitory state in the ispsilateral accessory nucleus and a 
dominantly excitatory state in the contralateral one; the resultant excess of excited 
neurons in the contralateral accessory nucleus then forms the basis of the spatial 
perception. The third proposition holds that if one ear is more intensely stimulated, 
more afferents from that ear are active, producing an excess of excited units in the 
contralateral accessory nucleus (this fact, by itself, would again form the basis for a 
spatial percept). Thus temporal advantage of one ear can be cancelled by an inten- 
sity advantage of the other, resulting in time-intensity trade. 

The major objection to the model from a neurophysiological point of view is 
the assumption of an exclusive response of the acdessory neurons with respect to the 
first-arriving input; in the light of what is known of neuronal behavior, this hy- 
pothesis is unlikely. This, indeed, turnec out to be the first modification of the model 
required by new data resulting from a physiological test. The test was carried out 
almost immediately by Hall (260) in a microelectrode study of the accessory nucleus 
in cat. Hall found that every neuron he tested would do a certain amount of time- 
intensity trading; that is to say, the pro6ability that the neuron will fire in response to 
a binaural stimulus pair can be affected by changes in interaural time difference as 
well as by changes in interaural intensity difference. This interaction is, moreover, 
affected to some extent by the over-all level of stimulation. 

With his data and van Bergeijk’s hypothesis, Hall was able to derive neural 
time-intensity trading ratios that, after allowance for the cat’s smaller head size, 
quantitatively match the human psychophysical data. The conditions of time and 
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intensity differences that produce centered images in human perception produce 
equal numbers of excited units in the twoaccessory nuclei of the cat; this is just what 
would be expected on the basis of the model. 

In his most recent paper on the subject, van Bergeijk (I 91) modified his model 
to accommodate Hall’s data on continuous (probabilistic) trading by each neuron; 
the innervation diagram of the accessory nucleus that he deduced from the new 
data (I 91, fig. 4B) begins to bear a striking resemblance to Rambn y  Cajal’s classic 
picture (284, fig. 344). 

An important criticism of van Bergeijk’s model was made by Moushegian et al. 
(278). They found, as had Galambos et al. (253) earlier, that there are a number of 
accessory-nucleus units that appear to have ipsilateral excitation and contralateral 
inhibition. The behavior of these units with respect to time and intensity differences 
between the ears seems to be indistinguishable from the ipsi-inhibited, contra- 
excited units that van Bergeijk assumed and Hall investigated. However, as 
Moushegian et al. pointed out, the model is incomplete if it does not account for 
them. Evolution, both of the model and experiment, is continuing. 

6) Spike-pattern detection [Reiss ( I 791. 0 ne of the most important problems one 
encounters in attempting to understand the information-processing capabilities of 
nervous systems concerns the repertoire of behavior available to small groups of 
neurons. The accumulating physiological evidence for great functional complexity, 
even at the single-unit level, makes it imperative to examine, both experimentally 
and theoretically, the range of activity available to one or a few interconnected 
neurons. The evidence already developed showing considerable sensitivity to simple 
spatio-temporal patterns of excitation and inhibition suggests that the characteriza- 
tion of a single neuron as a simple logical element may be insufficient. Very likely 
the signal-processing capabilities of small nerve networks go far beyond transmis- 
sion, integration, or elementary logical operations. 

The idea that small neural nets could act as “property filters,” responding 
uniquely to well-specified input patterns, is not new. As early as 1947, Pitts and 
McCulloch (168) hypothesized neural mechanisms that could lead to Gestalt per- 
ception. They proposed networks that could provide invariant detection of visual 
and auditory forms despite changes in operating conditions of individual neurons. 
The theoretical networks developed to explain recognition of chords regardless of 
pitch, and of shapes regardless of size, were plausibly defined on the basis of known 
neuroanatomy. Though the detailed propositions have been neither proved nor dis- 
proved, the fundamental idea that neural nets having quite regular structure can 
classify input signals underlies all of the later models for peripheral sensory infor- 
mation processing. 

Motivated similarly, Uttley (187, I 88) attempted to derive from perceptual 
behavior a hypothesis of signal classification and to deduce from it mechanisms that 
could underlie that behavior. Uttley’s discussion of the geometry and action of 
small nets to extract invariances in spatio-temporal patterns was one of the first to 
demonstrate how arbitrarily long sequences of stimulus tones or temporal intervals 
could be recognized by neuron-like networks. 

Babcock et al. (I 27, I 28) contributed theoretical studies of how small assem- 
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blies and multiple-layered networks might be arranged to produce unique response 
to patterns of visual or auditory information. Sutherland’s review of stimulus-analyz- 
ing mechanisms (183) examines similar problems in the light of physiologically 
relevant evidence. In extensive studies by Martin et al. (I 57), using electronic 
models, it was shown how structured arrays of minimum-parameter neurons could 
extract significant features of speech. 

The plausibility and predictive significance of models such as these are sup- 
ported by recent physiological observation of similar kinds of property filters. For 
example, the work of Maturana et al. (277), Hubel and Wiesel (267), Barlow and 
Hill (234), Arden (232), Maturana and Frenck (276), Griisser-Cornehls et al. 
(255), and Schipperheyn (287) shows related types of property filtering in frog, 
rabbit, cat, and pigeon. In each case there is reason to believe that the invariances 
may be extracted by rather simple network configurations of single units whose 

essential properties for these operations are just those of the minimum-parameter 
units employed by the modelers. 

A provocative example of neural network pattern detection is found in the con- 
ceptual experiments of Reiss (I 77). Using paper-and-pencil analysis only, he stud- 
ied the behavior of “resonant networks.” The idea was to examine the actions of 
small networks of neuron-like elements (minimum parameter) using variable- 
frequency stimulus pulses, temporal summation, threshold, and axon delay to pro- 
duce frequency-selective responsiveness. The question of what constitutes the lan- 
guage of neural action is, of course, totallyunsettled; it is likely that nervous systems 
employ spike interval, average frequency, frequency modulation, and intensity 
coding separately and in combination. Reiss’s aim was to investigate the kinds of 
simple neural network detectors that may conceivably operate to decode some of 
these messages. 

Schief (I 80) had previously shown how neuron-like elements could be made to 
behave as ‘Ccoincidence filters” that possess sharp frequency discrimination. His 
models demonstrated possible mechanisms for cochlear pitch discrimination that 

suggested how a neurological narrow-band filter could be achieved that is free of 
the concomitant long build-up times encountered in conventional electrical cir- 
cuits. The essential feature of this approach was to use transmission delay and co- 
incidental arrival of two signals at a single unit to sense particular intervals in a 
pulse train. This is in contrast to other proposals to achieve sharply tuned fre- 
quency-selective response from the action of mutually inhibiting units, briefly men- 
tioned by Rapoport (I 7 I), Tarjan (I 85), and Heydemann (I 48). More extensive 
analysis of mutual-inhibition sharpening was made by Huggins and Licklider (268), 
Zwicker (I g7), and Furman and Frishkopf (142), though only in the last two cases 
was there an explicit attempt to show how the model can be tested by physiological 
experiment. 

Reiss extended Schief’s work to include a variety of frequency- and interval- 
discriminating filters that, while entirely hypothetical at present, conceivably may 
be physiologically valid. 

The basic CCresonant” network analyzed by Reiss is responsive to specific peri- 
odic regularities in an incoming train of pulses. It consists of three neurons; an input 
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unit delivers pulses both to an interneuron and to an output unit. When the in- 

coming train contains pulses whose spacing corresponds to the delay introduced by 
the interneuron, the output unit coincidentally receives both the direct and the 
delayed pulses. The output neuron fires if and only if two stimuli arrive within a 
small, critical summation time; hence, response occurs whenever the input train 
contains properly spaced pulses. For an input train of constant frequency, the net- 
work responds continuously when the frequency is appropriate; that is, it acts as a 
sharply tuned filter. (Since such a network responds both to the fundamental fre- 
quency and to all harmonics, it acts as a Cccomb” filter.) 

Reiss examined the consequences of regular and irregular (noisy) input trains 
and of changing network characteristics owing to facilitation and accommodation. 
Interesting symmetries were found in which, for example, the effect of substituting 
inhibition for excitation by the interneuron is to change period or frequency-band 
response from detection to suppression. Other relatively simple network elabora- 
tions permit band detection with harmonic suppression, phase detection, and har- 
monic analysis. 

Reiss concluded his analysis with an examination of what neural temporal 
parameters would be required that are realistically possible and what spatial con- 
figurations might be expected. Explicit guides for relevant neurophysiological ex- 
perimentation and data analysis were suggested. 

An important framework is provided by this study for the formal description of 
temporal-pattern behavior in nervous systems. As Reiss put it, “There is an urgent 

theoretical need for a rich and flexible classification scheme that can be applied to 
pulse trains, a ‘taxonomy of pulse patterns’ as it were. It seems reasonable to sup- 

pose that such a taxonomy would not only facilitate the development of nerve-net 
theory, but would also sharpen the observational powers of the experimental biolo- 
gist. Even if it turns out that the types of resonant networks discussed here do not 
exist in nature, they will have served a useful purpose if they stimulate biologists to 
take some steps toward developing a pulse-pattern taxonomy.” 

In a continuation of this work, Jenik and Adolphs (I 5 I) analyzed extensively 
the characteristics of coincidence filters using nonrectangular impulses. Employing 
waveforms that more closely approximate motoneuron epsp signals, they developed 
relationships among realizable functional bandwidth (neurally realistic), varia- 
tional tolerances on that bandwidth, and the error-prod,ucing effects of amplitude 
and threshoid variations (noise) on performance. 

7) Discrete representations of nets [Rochester et al. (178); Farley and Clark (136, 137, 
13g)]. In sharp distinction to the matter of information processing by single units 
and explicitly arrayed networks are questions relating to the holistic behavior of 
large pools of neurons. Whether or not one believes that significant discrete infor- 
mation-processing actions can be taken by large masses of cells acting in some uni- 
fied way, interesting considerations of gross-signal propagation and of stability 

arise. 
Hebb (147) postulated that significant aspects of neural action could emerge 

from “cell assemblies.” These assemblies might be simultaneously aroused and, 

through selective synchronization, could be expected to play an important role 
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(albeit statistical) in perception and learning. A central idea in Hebb’s view of 

nervous action is that when one neuron succeeds in firing another neuron, synaptic 
efficiency is enhanced such that the subsequent probability of the firing sequence is 
increased. This hypothesized action, though still not demonstrated physiologically, 
plays a central role in many network models. 

With Milner’s observation (162) that inhibitory function would be vital to the 
successful operation of such a system, the stage was set for investigation of just which 
factors might be expected to influence the stability of large neural networks, for 
quite obviously sustained or even disruptive oscillation is possible. 

Burns’ earlier physiological modeling investigation of reverberatory after- 
bursts (see p. 548) treated oscillation and its control locally, assigning primary 
importance to the excitation and recovery functions of single neurons. However, 
some years before that Rapoport (I 72) analyzed the effects of neural threshold and 
of axon density on the ability of a large, randomly connected network to “ignite” 
(i.e., become active), and Trucco (1861, extending this work, developed additional 
constraints on ignition threshold. 

Allanson (I 25), in further mathematical analysis, showed how randomly con- 
nected neuron-like6 nets could oscillate continuously, remain quiescent, or exhibit 
damped oscillations as a function of the various network parameters. 

Frankel (I 40) contributed a thoughtful discussion of the significance of Hebb’s 
network proposals and briefly described exploratory computer-simulation experi- 
ments, the first so reported. 

The earliest constructed network to be explored and reported in detail was 
that of Rochester et al. (I 78). Computer-simulation experiments were run on a 
quasi-randomly connected net of 512 ccneurons” to test the postulates of Hebb and 
Milner. The network elements were simplified axon models that had both excita- 
tory and inhibitory synapses. Synaptic efficiency was continually changed as a func- 
tion of the firings of the neural elements they mediated, and adaptation of threshold 
under repeated stimulation was included. The network was connected in a many-to- 
many fashion. The firing of a particular neuron at each instant depended on the 
summated excitatory and inhibitory influences relative to the value of its refractory 
recovery function at that instant. 

Preliminary experiments were run with a simplified prototype network of 64 
units in which synaptic transmission could be both enhanced and diminished but, 
following Hebb’s postulate, no explicit inhibitory action was included. (In the 

Hebb model, the network, though lacking inhibition, can suppress reverberatory 
activity owing to relatively long refractory periods.) 

Two interesting results were obtained. First, the system exhibited what was 
called “diffuse reverberation”; aperiodic firing patterns persistently circulated 
through the net. Curiously, virtually undamped oscillations could persist for some 

6 It should be noted (as Allanson was careful to point out) that the representations of neu- 
rons in this study were extremely reduced. However, the parameters used, plus the fact that a 
given cell could be fired either by external stimuli or by other cells, or could be spontaneously 
active, constituted a much more realistic model than the earlier ones. 
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while, then all activity would cease abruptly. Rochester et al. believed that the 
phenomenon offers a plausible explanation for short-term memory. Second, with 
six units acting as receptors to which external stimuli were applied, no characteris- 
tic responses developed for particular classes of stimuli, and no “cell assemblies” 
developed. (Hebb had postulated that diffuse reverberation in cortical networks 
takes place in cell assemblies -specific active subsets of units that are developed and 
aroused by certain classes of stimulation and prior activity.) It was found, at least 
for the particular networks tried, that with a very slight change in the threshold of 
just one unit (introduced at an arbitrary time), subsequent firing patterns changed 
markedly, and the network activity diverged rapidly from its original behavior. 
That is, the system was acutely sensitive to small perturbations. 

It was concluded that although sustained reverberatory action that satisfied 
some requirements for short-term memory had been demonstrated, additional 
mechanisms or structure would be required to demonstrate the cell-assembly action 
that Hebb had postulated. 

In the second series of experiments run by Rochester and his colleagues, inhib- 
itory synapses were added, and the number of simulated neurons in the network 
was increased to 5 I 2. Owing to the limitations of the computer then available 
(IBM 704), it was necessary to abandon precise knowledge of when a unit fired and 
instead work with average-frequency-of-firing parameters. A further change was 
that interconnections were given more coherence; the probability of connection 
between two elements in the network diminished with the distance between them; 
i.e., near neighbors were more likely to be coupled than remote ones. Sixteen units, 
arranged in four separate blocks of four units each, were used to supply input 
stimuli. 

It is unfortunate that so many variables were simultaneously changed in going 
to the revised network since the effects of each could not be properly assessed. The 
new results, however, were rewarding. Cell assemblies formed around each of the 
receptor areas. The intercellular connections became largely excitatory while the 
interassembly connections became principally inhibitory. The Hebb-Milner re- 
quirements for Ccfractionation” and “recruitment” were seen. In time particular 
neurons changed allegiance from one cell assembly to another. There was some 
tendency, though quite weak, for one cell assembly to arouse another; the tendency 
was insufficiently strong for spontaneous network activity. 

These experiments represent an interesting start in a significant area of net- 
work modeling but, unfortunately, they were not continued. In contrast, the work 
of Farley and Clark, beginning along similar lines, has continued to develop over a 
period of years. 

In preliminary studies Farley and Clark (139) explored the activity of large 
planar nets (1296 elements) where the interconnections were specified by two- 
dimensional probability distributions; the probability of connection between two 
elements varied inversely with the distance between them. The neuron-like elements 
were defined by parameters that included spatial and temporal summation, thresh- 
old, all-or-none output, and absolute and relative refractoriness. Synaptic connec- 
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tions were excitatory only. These parameters were quasi-continuous (time was 
quantized into relatively small increments), hence the elements were effectively 
analog rather than digital, and firing was not forced to be synchronous. 

In typical experiments, momentary excitation was applied to a selected subset 
of cells, and the resultant activity was observed on a cathode-ray-tube display as 
patterns of bright spots propagating through the network. Patterns of firing activity 
would either pass ,through the entire net, saturating it (i.e., a propagating wave ac- 
tivated all cells it passed), or else the activity would decrease with distance and time, 
dying out prematurely. The network elements’ threshold settings determined which 
mode existed. External control over threshold setting could also be made to influence 
whether and when particular cells or sets of cells fired. The results were similar to 
those obtained by Beurle (see p. 576), who used a continuous rather than a 
discrete formulation of a network. 

Farley and Clark also observed that with low threshold settings and repetitive 
stimulation, sustained oscillatory patterns occurred. Further, patterns of activity 
from simultaneous excitation of several groups of cells propagated as waves that, on 
collision, interacted nonlinearly. 

These results were obtained from “tightly connected” nets, that is, nets where 
the network connectivity, delay times, and refractory time constants were such as to 
produce well-defined, dense wave fronts of activity. In a subsequent study of 
“loosely connected” nets, Farley (I 36) used connection and timing parameters such 
that backfiring occurred in cells lying in the refractory trough of a wave. In this 
case, wave fronts tended to become fuzzy, and scattered activity over the entire net 
was seen. Under some conditions the whole network would oscillate diffusely, either 
continuing indefinitely or else stopping spontaneously after a few cycles. 

Several different oscillatory modes were observed. In one, activity might 
spread evenly over the entire net so that large-amplitude, in-phase oscillation was 
everywhere present. In another mode, activity could transfer from one part of the 
net to another. In this case the total number of active units at any time would be 
approximately constant, but observation of a particular section might disclose ir- 
regular bursts of rhythmic oscillations. 

Farley also observed a ccresonance’y phenomenon in which the net could be 
driven by a repetitive external stimulus at or near the natural period of the net 
(synchronized oscillation). A related effect, “augmented” responses, occurred when 
the second external stimulus of a pair, properly timed, could enhance the network 
activity over a number of successive periods. 

All these effects were attributed primarily to the refractory characteristics of 
the network units. Farley (I 37) noted that some of the phenomena were at least 
qualitatively similar to slow-wave, augmenting, and recruiting responses of EEG, 
and in discussing possible relationships of the modeling studies to neurophysiology, 
he suggested some new interpretations of slow potentials. 

Smith and Davidson (I 81, I 82) modeled networks similar to those of Farley 
and Clark but took the additional step of providing inhibitory connections among 
elements. They complemented their computer-simulation studies with mathe- 
matical analysis, developing expressions for steady-state activity. Although the level 
of activity maintained in the simulated nets was generally higher than that pre- 
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dieted analytically, the mathematical treatment permitted the visualization of 
several interesting explicit relationships among network parameters. Both in stable 
steady-state activity and in oscillatory behavior it was shown that identical subsets 
of elements could fire periodically, despite widely differing element parameters. 
Smith and Davidson examined the effects of the proportion of inhibitory intercon- 
nections on oscillation stability and on the transient time required for the network 
to reach steady-state activity. Though little relevance to neurological behavior was 
demonstrated, the study is significant in its extended treatment of inhibitory as well 
as excitatory interconnections in modeling investigations of large networks. 

In concluding this section on discrete networks it is interesting to note that the 
influence of Hebb’s (147) speculations on cell assemblies had a strong effect in quite 
another direction. These ideas prompted not only the network propagation and 
stability modeling studies cited above, but they also were largely responsible for 
initiating interest in “self-organizing” systems, These are the quasi-neural models 
briefly mentioned in the INTRODUCTION. 

Several years before the work of Farley and Clark just described, the same 
authors (I 32, I 38) addressed themselves to the problem of how randomly connected 
networks of active, nonlinear threshold elements could “adapt” or “learn.” Al- 
though there had been some interest prior to 1954 in computer-programed learning 
and adaptive machines, this work of Farley and Clark was the first explicitly de- 
signed to represent neuron-like elements in self-organizing networks where the con- 
nections among the elements could be appropriately modified in the synaptic sense 
that Hebb had postulated. 

Though they obtained some measure of success in getting these computer- 
simulated networks to exhibit a kind of learning (network self-modification to 
classify simple input signals), Farley and Clark were diffident about claiming rele- 
vance to neurophysiological systems. They observed that their system bore some 
casual resemblance to actual nerve networks and pointed out that further study 
might reveal more germane relationships, but emphasized that the work was princi- 
pally of interest for further investigation of large complex systems in general. 

This modest beginning, however, marked the start of a new kind of Ccneural 
modeling.” In the ensuing decade tremendous interest was generated in the analysis 
and design of self-organizing systems. As fervor waxed, diligence in taking care to 
note lack of relevance to neurophysiological systems waned. Most if not all of the 
proposed systems employ elements that are simple, time stationary, formal neurons, 
that is, threshold elements that lack the many temporal dependencies of biological 
neurons. Terms like “neuron” and “synapse” are used loosely and irrelevantly. 
Further, in clear distinction to real nerve nets, these systems start with completely 
chaotic (random) connection patterns. Finally, the mechanisms for network change 
are based on Hebb’s still unproven postulate of synaptic change for memory and 
functional modification. 

It is not, as we have stated, within the province of this review to document this 

field of endeavor. A wealth of literature, easily found, is available to the interested 
reader. Perhaps the most representative work is that of Rosenblatt (I 79). Some 
interesting defenses and objections to the work may be found in the survey of Daly 
et al. (I 34), and a number of telling criticisms are made by Offner (I 65) and espe- 
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cially by White (I 96). The fundamental problems being addressed by self-organiz- 
ing systems research are certainly interesting, but appear to be neurophysiologically 
irrelevant. Perhaps in time neural modeling will be better served by such approaches, 
but their applicability for now at least is unclear. 

8) Continuous representations of networks [Bet&e (rzg-qv), Gr2$th (14p-145)]. 
Since the representation of large nerve nets by discrete models has often proven 
extremely difficult, many modelers have begun to rely on continuous representa- 
tions. One of the first to do this was Beurle, who used a continuous formulation to 
study propagation of activity in large cell masses. More recent applications have 
been those of Dewan (135), who has compared EEG data with the output of a non- 
linear oscillator, and Freeman (141), who derived a continuous control-theory 
model for portions of the cat prepyriform cortex, using the model to study stability. 

At approximately the same time that Rochester et al. (I 78) were conducting 
empirical studies on a large, simulated network of quasi-randomly connected dis- 
crete elements, Beurle (I 29) formulated a continuous mathematical representation 
of such a net. His primary aim was to determine whether or not organized activity 
could arise from a network of randomly connected cells. Beurle was not concerned 
with activity in individual cells, but rather with the proportion of cells becoming 
active in any given region per unit time. A basic simplification was achieved by 
statistical treatment of activity. An additional simplification, for mathematical con- 
venience, was that variation of activity in one dimension only was considered. 

The specifications for elements comprising the array, similar to those used in 
most of the network studies, were principally axonal; they included spatial and tem- 
poral summation, absolute refractoriness, delay, and all-or-none output. As in the 
case of the first of the discrete network simulations by Rochester and his colleagues, 
inhibition was excluded. Beurle’s network specifications included distributions of 
cell dimensions and packing densities, fiber counts, and dendrite and axon densities. 
Characteristically the analysis obtained quantitative measures of threshold distri- 
butions, proportions of active and inactive units, propagated wave pattern and 
velocity, wave interaction, and reverberatory behavior. 

Beurle examined the propagation of plane waves of activity through a mass of 
cells and found that one of three things happened. If a wave was of precisely the 
critical amplitude for the system, it would propagate without change throughout 
the entire network. If a wave was of less than the critical amplitude, it would be at- 
tenuated as it progressed and would eventually disappear. Alternatively, a wave 
having greater than critical amplitude would increase until all units in its path 
became active when it passed; the net would thus become saturated, and the wave 
amplitude would no longer increase. 

Beurle found that this was a general property of his model; it could not main- 
tain sustained activity at an intermediate level except under an unrealistically pre- 
cise set of initial conditions. In general, either activity died out or the net became 
saturated. Beurle later postulated (I 30, I 3 I) that inclusion of inhibition would al- 
low for sustained intermediate behavior [which was later proved by Griffith (I 43)]. 

In 1962 Ashby et al. (I 26) attempted to examine with another mathematical 
model the question of stability in a large net, again looking for stable, submaximal 



July rg66 NEURAL MODELING 577 

activity. In their model they represented the activity of the entire net by a single 
variable, the probability of firing of a unit in a given interval of time. As in the case 
of Beurle, Ashby and his colleagues did not include inhibition, and they were un- 
able to find sustained intermediate activity with their model. They concluded that 
natural brains, which normally operate at an intermediate level of activity, present 
a moderate “paradox.” 

Carrying on these studies, Griffith (143) added inhibition to the model. Using 
the same single-variable representation, he was a.ble to show sustained oscillations 
of the net through various degrees of activity. Griffith thus eliminated the apparent 
paradox (I 44, I 45) and went on to develop alternate representations of nets using 
continuous mathematics and the notation of field theory. He is continuing to ex- 
amine the problem of stability of nonsaturating activity. 

In the continuous models of nerve nets, the general underlying assumption is 
that of random connectivity among the units. In response to a recent paper by 
Beurle, Sperry pointed out that many examples of central-nervous-system cell masses 
have at first appeared random to observers but were subsequently found to be 
connected in a highly specific manner [see discussion following Beurle (I SO)]. The 
preponderance of evidence suggests, in fact, that above minute, local levels, few, if 
any, neural structures are randomly connected. Until the structure of some real net 
has been completely specified, however, the only tractable approach for modeling 
such nets may be the statistical one, and indeed the studies cited above have been 
very useful. 

D. Systems 

An economical and effective way to characterize systems is to define them in 
terms of functional operators. This treats a system as a collection of black boxes 
whose input-output (transfer) functions are specified together with the transmis- 
sion paths (generally including feedback) among the boxes. Control systems engi- 
neering developed for this purpose contains analysis and synthesis techniques for 
dealing with complex information-processing and control networks. It has pro- 
vided particularly useful tools for examination of some important aspects of living 
systems. 

The models described in this section reflect extensive use of control systems 
engineering. Postulates derived from behavioral experiments on organisms are used 
in the design of networks of functional black boxes, accounting for that behavior 
and predicting other (theretofore unobserved) behavior. The black boxes evolved 
in this process carry implications of certain internal neural functions (each box rep- 
resents an underlying neural network), and they suggest possible mechanisms 
responsible for certain classes of sensory-motor phenomena. Models of this kind, 
while not neural per se, can indicate with precision the information-processing na- 
ture of a nervous system; in so doing they help to establish very useful links between 
behavior and nervous system function. 

Mach [see Ratliff (I 74)] must certainly rank as one of the first to apply these 
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FIG. 18. Chloro#zanus beetle on a Y-maze globe. As the 
beetle walks he must continually choose between left and 
right turns. [From Reichardt (2 18)] 

techniques to a biological control system. Beginning in 1865, he developed a mathe- 
matical model to account for a psychophysical phenomenon he discovered and 
which now bears his name, A&h bands. This model included effects of reciprocal 
action of neighboring areas of the retina upon each other, and it was the forerunner 
of modern theories of lateral and reciprocal inhibition. The following discussion 
concerns some of the more modern examples of systems analysis applications. 

r> Optomotor responses and orientation [Hassenstein and Reichardt (212, 218)-j. Rei- 
chardt applied control systems engineering techniques to develop a model for the 
optomotor response in a beetle. Most of the elements of the model were linear, but 
it required two nonlinear elements in the form of multipliers. Once the model had 
been designed and its parameters specified, it was used to predict responses to 
classes of stimuli that had not yet been presented to the beetle. These predictions 
were then verified, supporting the validity of the model. 

The basic experiments with the beetle were performed with a device called the 
“Y-maze globe,” shown in Figure I 8. The beetle was held in position by a piece of 
cardboard glued to its back while it held the Y-maze globe with its feet. As the 
beetle walked it actually remained fixed while the globe moved. Every few steps the 
beetle had to choose between two alternative paths at a Y-junction. Hassenstein and 
Reichardt (2 I 2) observed the distribution of turning choices as various patterns of 
vertical lines were revolved around the beetle on a rotating cylinder. 

The first experiments used three concentric cylinders with the beetle and his 
Y-maze globe suspended at the center. The inner cylinder was fixed and had verti- 
cal slits cut in its surface. The outer cylinder, striped alternately white and black, 
was also fixed and provided either a black or a white background for each slit. The 
middle cylinder, consisting of separated gray screens (broad with respect to slit 

width and spacing), was rotated at various constant velocities. When the gray 
screen moved across a slit with a white background, it provided a moving change 
from light to dark; when the screen moved across a slit with a black background, 
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the change was from dark to light. From these experiments, Hassenstein and Rei- 
chardt concluded that a succession of light levels on adjacent ommatidia or on 
ommatidia once removed is required to elicit an optomotor response. 

To account for the observed stimulus-response characteristics, Hassenstein and 
Reichardt proposed what they called a minimum mathematical model. Since an 
optomotor response was elicited by stimuli on adjacent ommatidia, but not by stim- 
uli on a single ommatidium, the minimum model included information-process- 

ing channels for two adjacent ommatidia and took into account the effects of the 
nearest neighbors. It was assumed that the correlative effects between channels 
were due to multiplicative interconnections; these were included in the model along 
with linear filter functions equivalent to those found in control systems. Once the 
general mathematical operations had been specified for the model, it was necessary 
to fill in the parametric details (time constants, weighting factors, etc.). This was 
accomplished by means of additional experiments performed with sinusoidal light 
patterns on a single rotating cylinder; the turning response was observed as a func- 
tion of cylinder velocity. 

With the parameters specified, Hassenstein and Reichardt used the model to 
predict responses to previously untested patterns. The predictions proved to be 
extremely accurate. In addition to specific pattern-response predictions, an even 
more profound prediction was made from the model. The response of the model was 
determined by the amplitude of the Fourier components of the rotating pattern, not 
by the pattern itself. In addition, the model was insensitive to phase relations among 
the Fourier components. Hassenstein and Reichardt set out to test the beetle opto- 
motor response for this property. They constructed two seemingly different cyl- 
inder patterns, both having the same Fourier amplitude components, but with dif- 
ferent phase relations (see top and middle drawings in Fig. I 9). As predicted by the 
model, the beetle responded identically to both patterns. Its response to a similar 
pattern with different Fourier components (bottom of Fig. I g), on the other hand, 

was very different, both qualitatively and quantitatively. 
As a final test of their model, Hassenstein and Reichardt used it to predict the 

beetle optomotor response to a random pattern of gray and black vertical lines. 
Among other things, the model predicted that for low pattern velocities the response 
would be in the direction opposite to pattern motion. Not only was this prediction 
verified, but the beetle’s responses matched the predicted response curve for all low 
and mod.erate cylinder velocities. The predictions failed at higher velocities since 
the pattern was no longer effectively random, being repeated every 360 deg. 

Having successfully applied systems engineering concepts to the beetle opto- 
motor response, Reichardt (2 I 9) has gone on to similar studies of the compound eye 
in Limulus, and Fermi and Reichardt (2 I I) have analyzed optomotor response in the 
f ly 1Musca. In addition, Bliss (200, 201) and Thorson (226, 227) have extended the 
insect optomotor-response studies to include the beetle Lixus and the locust Schisto- 
cerca, and Kunze (2 I 3) has applied the same techniques to study eye-stalk reaction 
in the ghost crab Ocypode. Thorson has shown several interesting alternatives to 
Reichardt’s model. A number of other workers have used control systems engineer- 
ing techniques in the analysis of invertebrate systems. Mittelstaedt (2 I 5, 2 16), for 
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FIG. 19. Stripe patterns used to elicit turning responses in Chloropftanus. As predicted by 

Reichardt’s model, the beetle’s responses to the top two patterns were identical. The bottom pat- 
tern, with only two stripes interchanged, produced a completely different response, as predicted. 
From Reichardt (I 18)] 

example, applied them to orientation in insects, and Varju (229) has used them in 
studies of the eye of Limulus. 

2) Pupillary refix [Stark and Sherman (222, 223)]. Stark modeled the human 
pupillary reflex, viewing it as a servomechanism or error-actuated control device, 
and used the mathematics of control theory to predict conditions of instability in 
that reflex. Further experiments then verified the predicted instability. 

Stark began by assuming that in the presence of very small light-intensity 
variations the pupillary reflex system could be considered to be a linear, propor- 
tional-error control system. The error in this case was presumed to be the difference 
between the level of light energy actually reaching the retina and some preferred 
or reference energy level. If these assumptions are correct, one should be able to 
measure the changes in pupil area as a function of the frequency and magnitude of 
light energy fluctuations at the retina and to characterize the system completely 
from these data. In control theory such data provide the so-called open-loop gain 
characteristics (the feedback path has been removed, or “opened”). 

In order to obtain the open-loop characteristics of the pupil reflex, Stark had 
to bypass the effects of pupil size on retinal illumination level. He did this by using 
a short-focal-length lens to focus a broad beam of parallel light rays to a point at the 
center of the pupil; this prevented the iris from intercepting any of the light. Since 
the lens had a short focal length, the rays diverged rapidly inside the eye, and a 
large area of the retina was illuminated. 

Stark sinusoidally modulated the intensity of the light and measured the re- 
sulting fluctuations in pupil area. Both the amplitude and the phase of the response 
as a function of frequency of light modulation were measured. 

From these open-loop response data, Stark derived the mathematical form of 
the open-loop transfer function. Applying his assumption of a linear, proportional- 
error system, he then calculated the closed-loop or complete system transfer func- 
tion. From this he predicted the frequency dependence of the amplitude and phase 
response of the complete pupil-reflex system to sinusoidally modulated illumina- 
tion. 



hly rg66 NEURAL MODELING 581 

To test these predictions it was necessary to include effects of pupil size in the 
system. This was accomplished by presenting a light beam of uniform intensity that 
was broad enough in diameter always to cover the pupil a,s well as a portion of the 
adjacent iris. The light energy impinging on the retina in this case was directly 
proportional to pupil area. Repeating his phase and amplitude measurements with 
this system, Stark found that the data matched the predictions very well. 

Encouraged by the verification of his predictions for the closed-loop system, 

Stark went on to examine the question of stability. From the open-loop transfer 
function, he estimated that with considerably increased gain, the pupil-reflex sys- 
tem should become unstable and oscillate. He predicted that the frequency of os- 
cilia tion would be approximately I .5 cycles/set. By again applying a focused beam, 
but with the spot of light moved to the boundary between the pupil and the iris, 
Stark was able to increase artificially the system gain. With the spot in this position, . 
small changes in pupil diameter were much more effective in changing total light 
energy at the retina. Not only did a steady, unmodulated beam in this position pro- 
duce oscillations as predicted, but these oscillations were almost exactly at the pre- 
dicted frequency. 

Several years after Stark first published the results of his tests and modeling 
with sinusoidal light modulation, Clynes (205, 206) tested pupillary response to 
transient light changes. He found that the pupil diameter decreased, not only in 
response to a brief flash of increased light intensity, bLt also in response to a Ccflashs’ 
of decreased light intensity; in other words, the pupil area momentarily decreased in 
response to a dark flash. Clynes concluded that the transient pupillary response in 

each case was elicited by the positive rate of change of light intensity (i.e., the lead- 

ing edge of the light flash and the trailing edge of the dark flash). 
He proceeded to postulate a new model for the pupil reflex system. This model 

included two input channels for light intensity, one sensitive to the steady light 
level, the other sensitive to positive light changes but not to negative changes. He 
thus introduced an asymmetry in the transfer function and cautioned investigators 
that a linear model may not be adequate for such a system, even for small signals. 
Clynes (206, 207) then proceeded to study the more general properties of such “uni- 
directional rate sensitive” systems.7 

In further studies Sobel and Stark (221) found that the linearized model was 
indeed adequate for small-amplitude sinusoidal light changes, as one might judge 
from the fact that this model had accurately predicted pupillary response. Sand- 
berg and Stark (220, 222) subsequently included nonlinearites in the model, how- 
ever, to account for transients. In addition, Stark employed more sophisticated 
control-systems techniques to analyze the pupillary system, evaluating, for exam- 
ple, some of the noise mechanisms as well as the nonlinearities for large signal 
amplitudes. Applying these results along with his small-signal model, Stark deduced 
a very detailed model of the pupillary reflex. Stark and his colleagues (224, 225) 

7 An interesting analogy is found in membrane physiology. Lewis (46) compared stability 
criteria for unilateral and linear models in connection with the potassium conductance in nerve 
membrane. In that particular case, the inclusion of a discontinuity did indeed alter the conditions 

for stability as well as the frequency of oscillations in the case of instability. 
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used these modeling studies as a starting point for the investigation of several other 
classes of human tracking and coordination systems; one of these is discussed in the 
following section. 

3) Tracking control system [Mittelstaedt (214, 215), Fender and Nye (208-2210), 
Stark et al. (224)]. S everal biological tracking systems involving visual input 
and motor output have been studied in great detail. Recently, sophisticated 
systems analysis techniques have been extensively applied to the human 
manual control system and the eye-movement control system. In addition, studies 
of invertebrate systems have been illuminating, Some of the latter were discussed 
under Optomotor responses and orientation, but another, the prey-capture system of 
mantids, is analogous to the manual control system in humans and is therefore 
discussed in this section. 

Investigating prey tracking and capture by the mantid (Parastagmatoptera), 
Mittelstaedt (2 I 4) observed that the stroke of the forelegs during capture has, a time 
duration of 10-30 msec, indicating that, in this stage of capture, the system operates 
without visual feedback. Prior to the foreleg stroke, however, the mantid tracks the 
prey with apparent error control or visual feedback. Mittelstaedt pointed out the 
analogy between this method of prey capture and certain manual tasks performed 
by humans. If, for example, a person is shown the position of a pencil, then asked to 
shut his eyes and reach for it, he can readily perform the task; clearly he does so 
without visual feedback, using only the visual information obtained before begin- 
ning his arm motion. So it is with the mantid. 

Generally the mantid tends to bring its head and prothorax (which bears the 
forelegs) into one line with the prey; it can, however, strike a target that has con- 

siderable deviation from the median plane of the prothorax. In the latter case, the 
head, which tends to track the prey, is rotated relative to the prothorax, and so the 
strike must be based not only on visual information about the position of the 
prey relative to the head but also on proprioceptive information about the position 

of the head relative to the median plane of the prothorax. 
Prom his early experimental results, Mittelstaedt postulated a model for the 

prey-tracking and capture system. He assumed that the head movement during 
tracking was proportional to the difference between an optical error signal and the 
proprioceptor signal indicating the position of the head. In steady-state tracking, 
then, the optical error signal would be proportional to the deviation of the head 
from the median plane of the prothorax. The strike could be determined by that 
signal. 

To test this model, Mittelstaedt observed the deviation of the mantid’s optical 
axis from the prey. As predicted, he found the deviation to be proportional to the 
angle between the median plane of the prothorax and a line joining the prey to the 
head-prothorax joint. In addition, and as predicted, the deviation was diminished 
by proprioceptive deafferentation. 

In Mittelstaedt’s continuation of work on animal control systems (2 I 6), he has 
concentrated on orientation and navigation in bees and orientation in fish. His 
models, being more verbal than mathematical, offer an interesting contrast to those 
of the Reichardt school. They have, however, provided considerable insight into the 
systems they represent. 
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Fender and Nye (208,2 IO) and Stark et al. (224) have applied control systems 
theory to the human visual tracking system. Construction of satisfactory models 
for visual tracking has been difficult, however, owing to the complexity of the 
system. Typically, a subject is asked to follow a target (such as a spot of light) 
with his eye. The target is then moved, and the motion of the eye in attempting to 
follow the target is observed. The open-loop characteristics of the tracking system 
are studied by using either optical or optical and electronic systems to stabilize the 
target field with respect to the retina. The position of the target on the retina is 
therefore not changed by any movement of the eye. The feedback loop is open be- 
cause the subject cannot detect the effects of his corrective eye movements during 
tracking. Closed-loop tracking is studied with a system in which the target field is 
not stabilized with respect to the retina. 

In both cases sinusoidal target motion has been used. Comparison of the open- 
and closed-loop characteristics indicates that the visual feedback pathway has a 

gain of unity and essentially no phase shift (208). 
Up to this point the eve-movement system appears to be relatively simple, but 

this is deceptive. Discrepancies were found immediately in the experimentally de- 
termined curves of gain and phase shift of eye motion as functions of frequency of 
the sinusoidal target motion. The time lag for tracking was much less than it would 
be in any linear mechanical system having the same gain characteristics. 

The eye tracking system was soon found to be predictive; i.e., it anticipates 
target position (224). Stark et al. (224) isolated the nonpredictive aspects of the 
eye-movement system simply by presenting a target moving in an unpredictable 
manner (more complicated than simple sinusoidal). In addition, Rashbass (217) 

showed that two separate systems are involved in eye movement. One system con- 
trols smooth tracking, the other controls saccadic, or rapid corrective movements. 
Feedback loops other than the visual path were found, complicating matters even 
more (208). There is apparently proprioceptive feedback from the eye muscles, as 
well as several loops in the central nervous system. 

Besides eye-movement control studies, Stark and Young (225), Chase and his 
colleagues (202-204), Bekey (rgg), and others have applied control systems theory 
to the human manual-control system. Adolph (I 98) used similar techniques for 
analysis of the flexor-extensor system of the leg. A comprehensive review of this 
subject has recently been published [Young and Stark (230)]. 

IV. SUMMARY 

Overt neural modeling has proven valuable in neurophysiology, and it seems 
certain that it will continue to do so. The purposes of modeling that are significant 
to physiologists are threefold: facilitation of preliminary testing of pertinent hy- 
potheses, provision of tractable means of synthesizing disparate physiological data into 
unified consistent pictures, and generation of guidelines to crucial physiological 
experiments. In this review we have shown how numerous models have fulfilled one 
or more of these goals, contributing concrete knowledge to neurophysiology. 

Contemporary neural models are playing an important role in complementing 
direct neurophysiological investigation. While their accomplishments have been 
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substantial, their utility certainly has by no means been fully exploited. The in- 
creasingly close liaison between theoretical and experimental neurophysiology 
made possible by modeling presents an intriguing challenge for the future. 
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