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LINEAR POPULATION MODELS WITH STOCHASTIC 
TIME DELAYS' 

E. R. LEWIS 
Department of Electrical Engineering and Computer Sciences and the Electronics Research 

Laboratory, University of California, Berkeley, California 94720 USA 

Abstract. Previously it was shown that reproductive-cycle parameters such as time to maturity, 
ovulation interval, gestation period, duration of regression, duration of nonreproductive lactation 
period, and the like, can be incorporated into population models rather easily through the use of a simple 
network approach. In this paper, the network approach is extended to include the same types of 
reproductive parameters when their values are not necessarily fixed, but may vary randomly from one 
member of a population to the next and/or for a given member from one time to the next. It is shown that 
linear transforms of the parameter distribution functions can be incorporated directly into the network 
models and that analysis of the resulting dynamics follows in a straightforward manner, the characteris- 
tic dynamical equation being obtainable by inspection with Mason's algorithm and the roots of the 
equation being obtainable by direct analysis in simple cases or by well-established numerical methods in 
complicated cases. The roots themselves can be interpreted directly in terms of dominant patterns of 
population growth and deduced propensity of the population to sustain oscillations triggered by external 
stimuli. In the case of a simple natality cycle with gamma, negative binomial, and binomial distributions 
of maturation times, it is shown that the dominant growth pattern approximates rather closely that 
expected for a nonrandom maturation time equal to the mean of the distribution, and that the propensity 
to sustain population oscillations decreases markedly both with increasing standard deviation and with 
increasing (positive) skewness in the distribution. 

INTRODUCTION 

In a previous paper (Lewis 1976), it was shown that 
network modeling and analysis methods, employing 
Laplace and z transforms and linear flow graph tech- 
niques, can be applied to a fairly wide variety of linear 
population models. The chief advantage of the network 
modeling format is the facility with which time can be 
initialized at specified moments other than birth (i.e., 
other time classes, in addition to age classes, could be 
managed easily). Key elements in the network models 
were fixed time delays, representing key processes 
such as maturation, ovulation cycles, lactation, regres- 
sion, and the like. Although the durations of many such 
processes are very close to being fixed and constant, 
there usually is some variability, so that to the ob- 
server, unaware of the underlying physiological, 
anatomical, or behavioral determinants the processes 
themselves appear to be somewhat stochastic in nature. 
A modeler may wish to include an estimate of the 
stochastic nature of such a process in his or her model, 
representing the process not as a fixed time delay but as 
a stochastic delay, capable of taking on any of several 
or many values. Indeed, this is done tacitly in a wide 
variety of lumped and distributed parameter models 
based on age classes (e.g., Feller 1941; Lewis 1942; 
Leslie 1945; von Foerster 1959). Two modelers have 
incorporated stochastic time delays explicitly. Keyfitz 
(1972) has examined the relationships between the dis- 
tribution parameters of a random age of offspring pro- 

1 Manuscript received 10 October 1975; accepted 4 Febru- 
ary 1977. 

duction and the theoretical persistence of oscillations in 
human populations; and Kendall (1948, 1949) has 
examined the effects of chi-square distributed fission 
time on the growth of organisms undergoing binary 
fission. 

There are two purposes of this paper. The first and 
more important is to demonstrate that one can 
capitalize on the equivalence between generating func- 
tions for continuous and discrete probability distribu- 
tions and the Laplace and z transforms of those distri- 
butions to employ the network construction and 
analysis methods previously described (Lewis 1976), 
and thus deal with a very wide variety of stochastic time 
delays coupled to linear population dynamics. In this 
manner, one can extend considerations such as those of 
Kendall (1948) and Keyfitz (1972) to other time-delay 
distributions and to population models based on sev- 
eral initialized time classes rather than simply on age 
classes. 

Conservative and nonconservative stochastic time 
delays can be represented by their respective Laplace 
or z transform functions, with the parameters of the 
hypothesized underlying probability distributions 
being represented explicitly. Those functions can be 
incorporated directly into network models; and with 
the aid of Mason's algorithm for signal flow graph 
analysis and commonly available numerical methods 
for root finding, one can develop characteristic equa- 
tions for the models and find the roots of those equa- 
tions (Mason 1956). Once found, the roots can be 
interpreted in terms of such aspects of population 
dynamics as dominant population growth patterns and 
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the propensity of the population to sustain oscillations 
(i.e., the questions of Kendall (1949) and Keyfitz (1972), 
which are in fact among the major questions that one 
might attempt to answer with a linear population model). 

The basic representations of a stochastic time delay 
presented here provide heuristic alternatives to the re- 
newal equation, the Leslie matrix, and von Foerster's 
(1959) equation, but alternatives that are especially 
compatible with the network modeling format. There- 
fore, in using them, one retains the flexibility to in- 
itialize time at moments other than birth. 

The second purpose of the paper is to present the 
results of a study employing the methods described 
herein to determine and compare the effects of three 
different reproductive maturation time distributions 
with each other and with the effects of a fixed matura- 
tion time in a simple natality cycle. It is shown that the 
conclusions of Keyfitz (1972) concerning a cosinusoidal 
distribution of maturation times in humans are applica- 
ble to general natality cycles with gamma, negative 
binomial, and binomial distributions of maturation 
times. For all of these distributions, the propensity of 
the system toward sustained oscillations (e.g., periodic 
fluctuations in the total population or in its age-class 
distribution) increases as the distribution of maturation 
times becomes either less variant or less skewed toward 
times greater than the mean (less skewed "to the 
right"). Furthermore, it is shown that the dominant 
exponential or geometric growth pattern is more or less 
independent of the maturation time distribution, but 
approximates that which would occur if the maturation 
time were fixed at its mean value (i.e., were not a 
random variable). 

LINEAR TRANSFORMS OF STOCHASTIC 
TIME DELAYS 

Consider either in discrete time (r) or continuous 
time (t) a population flow variable, Ji, representing the 
flow of individuals (individuals per unit time) into a 
particular process, such as maturation, gestation, or the 
like. Let the duration, T, of the process be a random 
variable whose density function (Feller 1968, p. 179) is 
p(T), as depicted in Fig. la. Thus, in discrete time,JiJ(r) 
would be the number of individuals in the cohort enter- 
ing the process during the rth interval (e.g., the rth 
day); and p(T) would be the proportion of those indi- 
viduals expected to complete the process T intervals 
later (e.g., in the (r + T)th day). The flow, Jout(-), of 
individuals emerging from the process during the rth 
interval can be expressed as a simple sum of the cohorts 
that entered previously, each weighted by the propor- 
tion of its members expected to emerge during the rth 
interval. If we use the common network-theory con- 
venience of defining Jin(r) to be zero for all intervals 
prior to some initial interval (r = 0), then we have 

Jo.t(r) = J(O)p(r) + J(1)p(- - 1) + 

= Ji(7- - T)p(T). (1) 
T=O 

Jin Jout 
P (T) 

(a) 

Jin( Z) P(z)Jin(z) 
P( z) 

(b) 

Jijn( s) P(s) J in(s) 

P(s) 

(c) 
FIG. 1. (a) Network representations of a stochastic time 

delay. (b) The z-transform version. (c) The Laplace transform 
version. 

In continuous time, JiQ(t) would be the rate at which 
individuals are entering the process at time t; and 
Jin(t)dt would be the number of individuals entering 
during the interval from t to t + dt. p(T) is the propor- 
tion of those individuals expected to emerge in an inter- 
val of the same duration, T units of time later (i.e., the 
interval from t + T to t + T + dt). The sum represent- 
ing the output flow now is expressed as an integral: 

Jout(t) Jin(t - T)p(T)dT. (2) 
0 

It is well known that the processes of weighted sum- 
mation represented by Eqs. 1 and 2 are carried out most 
easily in terms of linear transforms, whereby they are 
reduced to simple multiplication: 

Jo.t(q) = Jin(q)P(q) (3) 

where, for discrete time, 

P(q) = I p(T)q+T, (4) 
T=O 

and, for continuous time 

P(q) = fp(T)e+qTdT. (5) 

With q replaced by s and with the plus sign retained in 
the exponent on the right, those familiar with probabil- 
ity theory immediately would recognize P(q) as the 
generating function of the probability density, p( ) 
(Bailey 1964, p. 5-15). With q in Eq. 4 replaced by z and 
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TABLE 1. The mean (Tm), variance (O-T2), and coefficient of skewness [y(T)] of discrete and continuous distributions in terms 
of the Laplace transforms [P(s)] and z transforms [P(z)] of their density functions. z and s are the complex variables 
of the z and Laplace transforms, respectively; cTT iS the standard deviation of the distribution; and r., is the unit of 
discrete time 

For discrete For continuous 
distributions* distributions 

dP(z)1 dP(S)1 
Mean (Tm) lim dim L ds ] 

Variance (0T 2) lim - z+d) P(Z)1rU2 - Tm2 limFd 2P(s) - Tm2 

lim[(-Z d) 3P(Z)]TU3 - 3T.0T2 -Tm3 limO - ds3 ] -3TmT2 - Tm3 
Coefficient of skewness (y(T)) )Z - 3 (TT3 

* In Table 1, r2 is the unit of discrete time. Thus, if the unit of discrete time were one day, then the mean would be given 
in days, the variance in days2, and the coefficient of skewness would be dimensionless. 

with the minus sign retained in the exponent on the 
right, those familiar with linear difference equations or 
with analysis of discrete-time systems immediately 
would recognize the z transform. With q replaced by s 
and with the minus sign retained on the right in Eq. 5, 
those familiar with linear differential equations or with 
continuous-time systems analysis immediately would 
recognize the Laplace transform. For consistency with 
the previous paper (Lewis 1976), the z- and Laplace- 
transform notation will be used here. The transformed 
versions of the stochastic time delay of Fig. la are 
depicted in Figs. lb and lc. 

If p(T) is the probability density of delay times for 
those individuals entering the process under consider- 
ation, then the mortality of those undergoing the process 
will prevent p(T) from being conservative: 

E p(T) < 1 for discrete time, (6) 
T=O 

J(T)dT < 1 for continuous time. (7) 

In that case the mean and the various moments of the 
delay time will be infinite (since some of those that enter 
the process never leave it). On the other hand, ifp(T) is 
the density function of delay times having been under- 
gone by those emerging from the process, then the 
effects of mortality are set aside andp(T) is a conserva- 
tive probability density function: 

E p(T) = 1 for discrete time, (8) 
T=O 

fp(T)dT = 1 for continuous time. (9) 

In that case, the mean and various moments of the 
stochastic time delay may be finite and computable by 
means of standard procedures from generator-function 
theory or fromz- and Laplace-transform theory. Table 1 
gives three commonly cited distribution parameters in 
terms of the transformed density functions. The coeffi- 
cient of skewness (sometimes called the obliquity) is 

defined to be the third central moment divided by the 
cube of the standard deviation. 

EXAMPLES OF STOCHASTIC TIME DELAYS AND 
THEIR TRANSFORMS 

Probably the simplest continuous stochastic time 
delay is that exhibited by an ideal Poisson process, the 
distribution of passage times (or time delays) through 
which is exponential: 

p(T) = CaceaT (10) 

Furry first considered a time delay of this type in the 
growth of a nonbiological population, namely a cascade 
shower of cosmic rays (Kendall 1949). Kendall later 
gave it an admittedly questionable biological interpreta- 
tion as a first step in his consideration of stochastic 
delays. The problem with it is the lack of a finite initial 
latency (Fig. 2a). Many processes that one might wish 
to represent with stochastic time delays exhibit appar- 
ently irreducible minimum times of completion. Thus, 
once an individual has entered such a process, its prob- 
ability of completing the process in a time less than the 
minimum should be represented as zero; if the process 
is represented as a stochastic time delay, then that 
delay should have a finite initial latency, preferably one 
equal to the minimum completion time. A sequence of 
Poisson processes, each with the exponential distribu- 
tion of Eq. 10, can exhibit a very good approximation to 
a minimum completion time (finite initial latency). 
Kendall (1948) found that a sequence of 20 such pro- 
cesses provided a very good match to the distribution of 
intervals between binary fissions (including the finite 
initial latency) observed by Kelly and Rahn (1932) in 
Bacterium aerogenes (see Fig. 2b). 

The distribution of delay times provided by the 
elementary Poisson process and described by Eq. 10 
can be represented by its Laplace transform, ac(s + a). 
A sequence of k such processes provides a gamma 
distribution of delay times (Karlin 1969, p. 8), 

P(T) = ocT7-k1e-aT/k!, (1 1) 
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1.0 

p (T) 

0- 
0 5 10 15 20 25 30 35 40 

a) TIME FROM ENTRY TO EMERGENCE FROM ELEMENTARY POISSON PROCESS 

0.00456 - 

p(T) 

0-~ 
O 5 10 15 20 25 30 35 40 

(b) TIME FROM ENTRY TO EMERGENCE FROM 20 CASCADED POISSON PROCESSES 

FIG. 2. Time-delay distributions used by Kendall (1948) in 
his model of binary fission. 

the Laplace transform of which is 

p (s) = [a/(s + a) (12) 

Letting k equal 20, we very easily can depict Kendall's 
deathless binary fission model in network form, as 
shown in Fig. 3. Here Jin represents the flow of new 
fission products (newly formed bacteria per unit time) 
into the process of maturation and Jout represents the 
flow of mature bacteria out of the process into the final 
moment of division. 

The discrete-time analog of the gamma distribution is 
the negative binomial distribution (Karlin 1969, p. 9). 
The corresponding elementary process (i.e., the analog 
of the Poisson process) and its transform are depicted in 
Fig. 4. In the version of Fig. 4a, individuals are depicted 
as flowing into the process from the left. 1 - 8 of them 
emerge immediately, and the rest pass through a fixed 
time delay of duration one to merge with the new incom- 
ing flow. A single process of this type leads to a geomet- 
ric distribution of time delays. k such processes in se- 
quence would provide a negative binomial distribution 
of delays, 

p(T) T(T k 1)(1 - 
pkpT, (13) 

the z transform of which is 

p(z) = [(1 - O3Z/(Z - 8)]k (14) 

Both the gamma and the negative binomial distribu- 
tions exhibit positive skewness (i.e., both are skewed 
toward delay times greater than the mean). The bino- 
mial distribution, on the other hand, offers the possibil- 
ity of being skewed in either direction or of being sym- 
metric about the mean. The elementary process and its 
z transform are depicted in Fig. 5. In the version of Fig. 
5a, individuals are depicted as flowing in from the left, 
with ,B of them entering the time delay of duration one 
and 1 - /8 of them bypassing it to merge with those that 
entered it one unit of time earlier. A binomial distribu- 
tion of time delays is generated by k such processes: 

J ot(t) 
p(T) 

(a) 

J in(s) c( 20 J out (s) 

I~ ~~~~~~ ( 

(b) 

FIG. 3. A network representation of Kendall's (1948) model. 
(a) Deathless binary fission with the distribution of fission 
intervals given by p(T). (b) The Laplace-transform version, 
with the fission intervals distributed according to a 20th-order 
gamma distribution. 

p (T) () (1 - f)k T3T- (15) 

The z transform of this density function is 

p(Z) = (,1Z-1 + 1 - 8)k (16) 

Of course there are many other distributions that one 
might select for a stochastic time delay. However, by 
adding the fixed time delay, which can provide an abso- 
lute initial latency, and one additional distribution, the 
continuous-time beta distribution, along with its special 
case, the uniform distribution, we have a reasonably 
large and versatile repertoire at hand. These various 
distributions are listed in Table 2, along with their trans- 
forms, their means, and their standard deviations. In 
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Jin(-r) A Jout (T) 

? 13 ~~~~~~ ~~ ~ ~~~~J in(T) Ij00t(T) 
(a) 

(a) 

~~~~~~~~~~~~~~~~~J in(Z) Jout (z) 

13z-'+ -1 

(b) 
FIG. 4. (a) Network representation of the elementary pro- 

cess of the negative binomial distribution. (b) z-transform ver- 
sion. (b) 

several of the discrete distributions, the time dimension 
is not carried explicitly in the parameters. In those 
cases, time has been incorporated explicitly in the 
means and standard deviations by the inclusion of the 
factor m, the unit of discrete time. 

CONSTRUCTION OF NETWORK MODELS OF 

NATALITY CYCLES WITH STOCHASTIC 

TIME DELAYS 

As an example of a natality cycle in which delay times 
might be random variables and in which time classes 
other than age are important, consider the following, 
highly idealized population of mammals. From the time 
of birth, each female requires time T1 to reach sexual 
maturity, which is signalled by her first ovulation. The 
proportion of female offspring that survive to maturity 
is Y,* Ovulation is a periodic phenomenon, recurring 
with interval T2 until the female becomes pregnant. Her 
probability of surviving an ovulation interval is 72, and 
her probability of becoming pregnant at the time of 
ovulation is (1 - 8I). Once pregnant, the female faces a 
gestation period of duration T3, with a probability Y3 of 
surviving. The expected number of female offspring per 
litter is n. Immediately following parturition, the female 
returns to the ovulation cycle, once again facing the 
same probabilities of impregnation and survival. Al- 
though this hypothetical life cycle admittedly is over- 
simplified, it nonetheless includes phenomena that are 
not represented in the usual Leslie-type model or its 

FIG. 5. (a) Network representation of the elementary pro- 
cess of the binomial distribution. (b) z-transform version. 

continuous-time counterparts, the renewal and von 
Foerster equations. They are easily represented in the 
network construct, however; and the resulting network 
model is easy to modify to incorporate more realistic 
complications (e.g., see the sequential modification of 
the finback whale model in Lewis 1972). At this point, 
we are interested in one particular type of complication, 
namely the possibility that the time to maturity, the 
ovulation interval, and the gestation period might not 
be precisely fixed, but might exhibit some random vari- 
ations. 

Figure 6a shows a network realization of the life cycle 
with fixed time delays. Using Laplace or z transforms, 
one can represent this network model very simply with 
linear flow graphs (Mason 1956; Lewis 1976), such as 
those in Figs. 6b and 6c. To convert the model from one 
with fixed time delays to one with stochastic time de- 
lays, one simply replaces each esT or Z-T in the flow 
graph with the Laplace or z transform of the 
hypothesized time-delay density function, as shown in 
Figs. 6d and 6e. 

A characteristic equation for the resulting model can 
be found by inspection from Mason's algorithm 

(1 - L)(l - L2)( - L3) . . (1 - Lm)** = 0, (17) 

where Li is the product of all factors around the ith loop 

FIG. 6. Network model of a simple natality cycle. (a) Version with fixed time delays for maturation, ovulation, and gestation. 
(b) and (c) z- and Laplace-transform versions of (a). (d) and (e) z- and Laplace-transform versions in which the three time delays 
are random variables with distributions pi, P2 and p3. 
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MATU/RATON 

; FLOW OF l PREGNANCYF FS 
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THROUGH PARTURITION N 

(a) 

,, y2zT2 s2eT2 

z -Tj I n r,e-sTj 

(I~/)y3T3 (I/i)3sT3 ( d1) 3 Z ( y: 3e 
(b) (c ) 
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p \Tl (a) 

(b) 
FIG. 7. (a) A simple network generalization of the models of 

Keyfitz (1972) and Kendall (1948). (b) z- and Laplace-trans- 
form versions. 

in the network (a loop being defined as a closed path 
passing only once through any node along its course); 
and all terms involving products of touching loops are 
dropped (Lewis 1976). In each of the flow diagrams of 
Fig. 6 there are three closed loops, the factor products 

of which are /1y2P2, (1 - 31)y3P3, and ny1y3(1 - A8)P 
P3, respectively. Since all of these loops touch one 
another, all of the cross-product terms in Eq. 17 are 
dropped; and we have the following characteristic equ- 
ation: 

1 - f1y2P2 - (1 - 1)Y3P3 - ny1y3(l - f1)PlP3 = 0, 

(18) 

which can be solved for z or s with the aid of commonly 
available computer algorithms to yield the roots of the 
system. 

Because we have employed Laplace and z trans- 
forms, these roots can be interpreted directly in terms 
of dynamic patterns of growth and oscillation of the 
modeled population (Oster and Takahashi 1974; Lewis 
1976). For example, the largest real root will represent 
the dominant exponential or geometric growth pattern 
predicted by the model; and many of the other roots will 
represent periodic population oscillations predicted by 
the model. The latter roots can be examined for their 
implications with respect to the predicted propensity of 
the modeled population to sustain the oscillations. 
Specific examples of such considerations are presented 
in the following section. 

THE EFFECTS OF DELAY-TIME DISTRIBUTIONS 

ON PREDICTED POPULATION GROWTH AND WAVE 

ACTIVITY IN A SIMPLE NATALITY CYCLE 

Consider the simple natality cycle depicted in Fig. 7. 
Individual, newly formed organisms enter a maturation 
process of duration T. At the end of the process, each 
emerging mature organism immediately produces some 

TABLE 2. z and Laplace transforms of various stochoastic time delay distributions. z and s are the complex variables 
of the z and Laplace transforms, respectively; and .,, is the unit of discrete time. 

Distribution Transform Mean Standard deviation 

Fixed delay of 
duration To eSTO or zTO 

Continuous uniform e-sTl - e-sT2 T1 + T2 2 -T 
from T1 to T2 (T2-T1)s 2 23 

Discrete uniform from z-T- Z -T2 T, + T2 (T2 - T, + 1)2- 11 
T, to T2 inclusive (1- -T1 +1) 2 \ 12 J 

*~ ~ ~ ~~~( z1(T2 -z T, + )21 
Geometric ( - 13)z __1__U 

Negative binomial (Iz ')Z-k k_3 kf3 

a 
Exponential a + 1/a 1/a 

Gamma (s +) kla k/a 

Binomial (Z1 I kk(s,r-l)) (1- e-) a+f a+ ) a+3+ l 

Binomial (Pz-' + 1 _ ps)k kf3u j kf3(1 - $3 ru 
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number of offspring and then becomes reproductively 
inactive or dies. 

The parameter b includes two factors, the expected 
proportion of individuals that survive to maturity and 
the expected number of offspring per surviving mature 
individual. If b were equal to two, this model could 
represent a deathless population undergoing binary fis- 
sion. The model also could represent an approximation 
to certain populations with sexual reproduction (e.g., 
populations in which adults survive only long enough to 
produce one batch of offspring, as in the case of sal- 
mon), in which case the individuals represented in the 
network would be the females. Clearly, such a system 
could be represented rather easily by a Leslie-type 
model or its equivalent. However, if one wishes to 
consider the possibility that the duration of the matura- 
tion process is a random variable, then it is convenient 
to use the linear transform methods presented in this 
paper, retaining explicitly the parameters of the 
hypothetical distributions of that random variable. 

Here, we shall consider and compare the effects of 
four different distributions on the predicted dynamics 
of the population. Those four are: (1) fixed time delay; 
(2) gamma-distributed time delay; (3) negative binomial 
distributed time delay; and (4) binomial distributed time 
delay. The analysis is facilitated by the fact that, in this 
very simple case, the roots of the characteristic equa- 
tions can be obtained without the aid of a computer. 
The general form of the characteristic equation is 

I - bP = 0, (19) 

where P is a function of z or s, depending on whether 
the distribution is continuous or discrete, and repre- 
sents a conservative stochastic time delay. The form of 
this equation for each of the distributions under con- 
sideration is as follows: 

1) Fixed time delay 

1 - bz-To = 0, (20) 

2) Gamma-distributed time delay 

1 - ba kl(S + a)k = 0 (21) 

3) Negative binomial-distributed time delay 

1 - b [(1 - 3)ZI(z - o)]k = 0, (22) 

4) Binomial-distributed time delay 

1 - b(3z-l + 1- _8)k = 0. (23) 

The roots of these equations are easy to obtain; and 
the method of interpretation of the roots can be found in 
virtually any elementary text on linear differential 
equations, linear difference equations, theory of com- 
plex variables, or linear systems theory (Lewis 1976). 
In each case, one root (zo or so will represent the ul- 
timately dominant pattern of geometric growth (zo0) or 
exponential growth (esot); and most of the remaining 
roots will represent periodic oscillations of the popu- 
lations. Such oscillations would be triggered by a tran- 

sient disturbance of the population; and, following that 
disturbance, their magnitude relative to the magnitude 
of the population itself either would remain constant or 
would die away geometrically or exponentially. This 
tendency to die away can be expressed quantitatively 
as a damping coefficient, w for continuous time and r 
for discrete time. Thus, following a transient disturb- 
ance at time to or ro, a particular periodic oscilla- 
tion would die away as 

e-"(-to), 

in a continuous-time model, or as 

( I /r )(T-TO) 

in a discrete-time model. The oscillation would tend 
to persist if r or w were small (i.e., r close to one, 
w close to zero); and it would be increasingly less per- 
sistent as r or w increased. In addition to its damping 
coefficient, each periodic oscillation will have a cor- 
responding period, T. These various parameters can be 
extracted very easily from the roots of the charac- 
teristic equations and are presented in the following 
arrays for each of the four models: 

Fixed time delay 

Zo= Ib IToI (24) 
To odd... (To - 1)/2 distinct periodic oscillations, 

T = To, TO 2, Tol3, - * 2Tol(To - 1), (25) 

To even ... TJ2 distinct periodic oscillations, 

T = To, To/2, T013, -2, 

r = 1 for all oscillations; 

Gamma-distributed time delay 

so= a(lbk I-1). (26) 

The period of the jth distinct oscillation is 

Ti = { 2 1T1 [a lb llk I sin (2 lTjlk) ]} ' (27) 

j = 1,2,3, ,(k - 1)/2 for k odd, 
j = 1,2,3, .,(k - 2)/2 for k even. 

The corresponding damping coefficient is 

wi = a blIk | [1 - cos(2TrjIk)]. (28) 

Negative binomial-distributed time delay 

ZO = 8/[1 - (1 - 13) I blk I]. (29) 

The period of the jth distinct oscillation is 

Tj = 2ir/tan-I{(1 - B)| bllk I cos(2TrjIk)I 

[1- (1 -,p)IblkIcos(27rj/k)]}ru, (30) 

j = 1,2,3, ,(k - 1)/2 for k odd, 
j = 1,2,3, ,kl2 for k even. 

The corresponding damping coefficient is 

rj = [1 - 2(1 -8)| b Ilk I cos(2iTj/k) 
+ (1 - )2 1 bl/k 12]1/2/[1 - (1 - O) |bIlk |]. (31) 
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Binomial-distributed delays 

zo= =|blIk j/[1 - (1 - f)l bIlk I] (32) 

The period of thejth distinct oscillation is 

T= (2/tan-1 
{sin(2rrj/k)/[1 - (1 - I) blk I cos(2Trj/k] })Tu, 

(33) 
j = 1,2,3, ,(k - 1)/2 for k odd, 

i = 1,2,3,, k2 for k even. 

The corresponding damping coefficient is given by 
Eq. 31. 

In the case of the discrete-time model with a fixed 
time delay, a transitory external stimulus would trigger 
oscillatory activity comprising a combination of 
(To - 1)/2 component oscillations, each with its own 
period and each persisting indefinitely (since the 
discrete-time damping coefficient, r, equals 1 for each 
component). In the cases of the models with stochastic 
time delays, transitory external stimuli also will trigger 
oscillatory activity, but the relative amplitudes of the 
component oscillations will die away (since the damp- 
ing coefficient is greater than one for each component 
oscillation in the discrete-time models and greater than 
zero for each component oscillation in the continuous- 
time model). This result follows from well-known prop- 
erties of equations, which have appeared many times in 
the population biology literature (e.g., Parlett 1970). 
What interests us here, however, is not the fact that the 
oscillatory activity dies away when stochastic time de- 
lays are present, but rather how the rate of that dying 
away depends upon the parameters of the stochastic 
time delay distribution (or the parameters of the density 
function). In this way, we can determine how the pro- 
pensity of the system toward sustained oscillations de- 
pends upon the parameters of the stochastic time delay. 
This question was attacked explicitly by Keyfitz (1972) 
for an assumed cosinusoidal distribution of time delays 
between birth and offspring production in a human 
population. Here, we can attack it for three other distri- 
butions. Examination of Eqs. 28 and 31 reveals that the 
more persistent oscillations in each case will be those 
for which j is small (the most persistent being those 
corresponding toj = 1). These also happen to be the 
oscillations of longest period. In order that the 
hypothetical time-delay distributions provide good ap- 
proximations to a finite initial latency, k should be 
relatively large in each case (e.g., 20, as in the case of 
Kendall's (1948) model of binary fission). Therefore, in 
order to attack the question at hand, we should concern 
ourselves with situations corresponding to large values 
of k and small values ofj. In such situations, Eqs. 27, 
30, and 33 all are approximated quite well by 

Tm/j, (34) 

where Tm is the mean delay time (see Table 2); 
Eq. 28 is approximated quite well by 

W ' 21T2j2(a/k2) = 21T2j2(O-T2/Tm3) (35) 
= (1jT2j2y2Tm) (36) 
= (r J2y2 3/4oST) (37) 

y = 2/Ak (Table 1), 

and Eq. 31 is approximated quite well by 

r 3 1/(1 - 2'T2j2(j- f)/k2f2) = 1/(1-2T2J2OrT2u/ T m3). 

(38) 
For the binomial and negative binomial distributions, 

the effects of skewness (y) on the persistence of waves 
can be deduced (for large k and smallj) by elementary 
sensitivity analysis. 
For negative binomial distributed delays: 

y = (1 + 01/ kf3, (39) 

drjldyT = 4X2j 2(oUT3/TM3), (40) 
Tm = constant 

drjldy T- constant =- 6T2j2(OcT3/Tm3). (41) 

For binomial distributed delays: 

y = (1 - 2X8)/ k13(1 - 3), (42) 

drj Idy TM constant = - [41T2ji2OT3/Tm3(l + 2OUT2/TmTu)], 

(43) 

drj /dy |T constant = -(3i72j2oUTT/ Tm2). (44) 

Eqs. 34 through 44 can be interpreted as follows. 
For large values of k and small values ofj, the simple 
natality cycle with any of the three distributions 
possesses an oscillatory component whose period is 
directly proportional to the mean maturation time 
and whose persistence exhibits the following rela- 
tionships to the parameters of the distribution of 
maturation times: with a fixed mean, the persistence of 
the oscillation decreases markedly both with increasing 
standard deviation and with increasing coefficient of 
skewness (i.e., increasing skewness toward times 
greater than the mean); with fixed standard deviation, 
the persistence increases markedly with increasing 
mean and decreases markedly with increasing coeffi- 
cient of skewness. Although the details of the relation- 
ships differ, the conclusions reached by Keyfitz (1972) 
for the cosinusoidal distribution were essentially the 
same; the system should exhibit less propensity toward 
sustained oscillatory activity for maturation time dis- 
tributions with larger standard deviations and for 
maturation-time distributions that are more skewed 
toward times greater than the mean. 

Returning to Eqs. 24, 26, 29 and 32, we can examine 
and compare the dominant growth patterns in the four 
models. Considering the case (Eq. 24) in which the 
maturation time is fixed, one finds that the dominant 
growth pattern simply is that of b-fold increase or de- 
crease every To units of time. Thus, in that special case, 
the b-folding time (i.e., the time required for the popula- 
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TABLE 3. Dominant growth patterns in a simple natality cycle with various stochastic time delays. In each case, 
k is the number of elementary processes (e.g., the number of coupled Poisson processes underlying the gamma dis- 
tribution); Tb is the time required for a b-fold increase in population size (b = 2 in each case); Tm is the mean time delay; o0T is 
the standard deviation of the time-delay distribution; and /3 is the parameter of the elementary process 

Binomial distribution Negative binomial distribution Gamma 

Value /3 = 0.1 ,8 =0.5 3= 0.9 3 = 0.1 /8= 0.5 3= 0.9 distribution 

of k Tb/Tm 0YTITm Tb/Tm 0OTITm Tb/Tm 0OTITm Tb/Tm 0OTITm Tb/Tm 0OTITm Tb/Tm 0OTITm Tb/Tm 0-TITm 

1 ... ... ... ... 0.654 1.054 ... ... ... 0.950 0.333 0.693 1.000 
2 ... ... 0.648 1.000 0.817 0.745 ... 0.786 0.707 0.978 0.236 0.837 0.707 
4 ... ... 0.826 0.707 0.906 0.527 ... 0.905 0.500 0.990 0.167 0.916 0.500 
8 0.463 1.118 0.913 0.500 0.953 0.373 0.489 1.061 0.955 0.354 0.995 0.118 0.957 0.354 

16 0.767 0.791 0.957 0.354 0.976 0.264 0.785 0.750 0.978 0.250 0.998 0.083 0.979 0.250 
32 0.888 0.559 0.978 0.250 0.988 0.186 0.898 0.530 0.989 0.177 0.999 0.059 0.989 0.177 
64 0.945 0.395 0.989 0.177 0.994 0.132 0.950 0.375 0.995 0.125 0.999 0.042 0.995 0.125 

128 0.973 0.280 0.995 0.125 0.997 0.093 0.975 0.265 0.997 0.088 1.000 0.029 0.997 0.088 
256 0.986 0.198 0.997 0.088 0.998 0.066 0.988 0.188 0.999 0.063 1.000 0.021 0.999 0.063 
512 0.993 0.140 0.999 0.063 0.999 0.047 0.994 0.133 0.999 0.044 1.000 0.015 0.999 0.044 

tion to change by a factor of b) is precisely equal to the 
mean maturation time. Using this as a basis of compari- 
son, we can calculate directly from s0 or zo the ratio, 
Tb/Tm, of the b-folding time to the mean maturation 
time. Results for b equal to 2 are presented in 
Table 3 for the three distributions over 10 values of the 
parameter k (which represents the number of elemen- 
tary processes in each case). Along with these results 
are presented the corresponding values of the ratio, 
OrT/Tm, of the standard deviation to the mean of the 
maturation time. 

It is interesting to note from the table that for all 
moderate values of standard deviation, the b-folding 
time approximates the mean maturation time, the 
former in each case being slightly less than the latter. 
For all seven distributions represented, the b-folding 
time is within 10o of the mean maturation time for all 
values of standard deviation less than or equal to half 
the mean maturation time. Thus, even if the distribution 
of time delays is not especially narrow, as far as the 
dominant pattern of growth is concerned the stochastic 
time delay appears to behave very much like a simple, 
single-valued delay of duration Tm- 

Entries are absent for low values of k under four of 
the distributions represented in Table 3. This simply 
points up the lack of finite initial latency in the discrete- 
time models when k is small, leading to a non-zero 
probability that new offspring will produce a second 
generation of offspring immediately. For large values of 
k, this probability is extremely small and quite rea- 
sonably can be ignored. For small values of k, however, 
it can be quite significant. In fact, it can lead to a 
predicted instantaneous population explosion (the 
modeled population instantaneously going to infinity). 
This occurs when the instantaneous multiplication 
around the natality cycle is equal to or greater than one. 
To determine the instantaneous multiplication around 
any cycle in a Laplace- orz-transformed network mod- 
el, one simply invokes the initial-value theorem and 
takes the limit of the product of all factors around the 

cycle as I z I goes to infinity or s times the product of all 
factors around the cycle as s goes to infinity (Cadzrow, 
1973). 

In the cases of cycles with continuously distributed 
time delays, the instantaneous multiplication usually 
will be zero. In the model of Fig. 7 with gamma- 
distributed delay, for example, the instantaneous mul- 
tiplication around the cycle is 

lim [sba k/s + a)k] = 0. (45) 
S -4 

In the models of Fig. 7 with binomial- and negative 
binomial-distributed delays, on the other hand, the in- 
stantaneous multiplications are nonzero. In the case of 
the negative binomial distribution we have 

lim{b [(1 - /3)z/(z - 38)]k} = b(1 - /8)k, (46) 
Z 00 

and in the case of the binomial distribution 

lim{b[3z-1 + (1 - ,l)]k} = b(1 - O3k) (47) 
Z -4 

Thus, the model of a simple natality cycle with bino- 
mial- or negative binomial-distributed maturation times 
will predict an instantaneous population explosion 
when b(1 - 83)y is greater than or equal to one; the 
corresponding entries in Table 3 are left blank. If these 
same distributions were coupled with fixed time delays, 
so that a term of the form z-TF appeared in each of the 
resulting transforms, then finite initial latency would be 
guaranteed and the instantaneous multiplication of the 
cycle would be zero. 

DISCUSSION 

The analytical methods presented in this paper share 
the limitations of most of the rest of network and sys- 
tems theory, that they apply to linear models with 
lumped, time-invariant parameters, which carry only 
the expected values of state variables. In spite of these 
limitations, network and systems theory has been ex- 
tremely useful for deducing or predicting dynamic be- 
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havior when 4pplied judiciously to real systems. In the 
cases of populations, the theory has been used to de- 
duce, among other things, the tendencies (under given 
hypothetical circumstances) to shift away from or to- 
ward presumed stable values (e.g., Rosenzweig and 
MacArthur 1963), the tendencies of populations (under 
given hypothetical circumstances) to sustain oscilla- 
tions (Keyfitz 1972), and the periods of those oscilla- 
tions (Oster and Takahashi 1974). In each case, the key 
qualifying phrase is "under given circumstances," i.e., 
within the given ecological context under which the 
model parameters of the population were estimated. 

It is true of systems models in general, whether they 
are linear or nonlinear, lumped-parameter or dis- 
tributed-parameter, stochastic or deterministic, that the 
dynamic properties one deduces from them are whole- 
system properties, generally not attributable to a 
single element or a single subsystem within the system 
as a whole. In any linear systems model, the dynamics 
can be characterized completely in terms of the roots of 
the characteristic equation derived for the model. 
However, one commonly finds that the roots of a sub- 
system are obscured completely in the operation of the 
whole system in which it is embedded. Thus, for exam- 
ple, it is well known that a model comprising an ideal 
electrical capacitor in parallel with an ideal electrical 
inductor or an ideal mechanical spring in series with an 
ideal mass has roots that imply the presence of an 
undying oscillation of fixed period; yet when either of 
those same constructions is placed in the context of a 
larger systems model in such a way that it interacts, 
even to a very slight extent, with the other components 
of that model, then it no longer will exhibit the same 
roots or the same implied periodicity. Thus, the essen- 
tial dynamic properties of subsystems in general de- 
pend, usually markedly, on the whole-system context 
of the subsystem. Therefore, one can reasonably con- 
clude that if an actual subsystem (e.g., a population) is 
removed from the larger system (e.g., a community) of 
which it is part and attempts are made to determine the 
innate properties of that subsystem by studying it in 
isolation, what is learned may have very little to do with 
the operation of that same subsystem when it is re- 
placed in its original context. However, certain innate 
properties may be sufficiently persistent or dominant to 
transcend context to some extent. Thus, for example, 
under very special circumstances an inductor-capacitor 
circuit may be pretuned to a desired period in isolation, 
then placed in its intended context (e.g., a television 
set) and retuned by minor adjustment to that same 
period. 

In the cases of populations of organisms, there has 
been considerable concern over the relative importance 
of innate versus contextual factors in determining 
dynamic behavior. In the case of the pure growth com- 
ponent of dynamics (e.g., that corresponding to the 
dominant real root, s0 or z0, of a linear model), there is 
the possibility that modification of certain states inter- 

nal to the individual organism (e.g., the state of the 
endocrine system) may have an important limiting ef- 
fect. However, the modulation of those states that leads 
to growth limitation very likely is not innate but is 
produced by contextual factors (e.g., lack of space, 
leading to crowding) (Southwick 1958; Chitty 1960; 
Christian and Davis 1964). Thus it seems that the Dar- 
winian hypothesis prevails; the tendency of a popula- 
tion to move toward or away from a stable level (and, 
indeed, the magnitude of the stable level itself) will 
transcend to a great extent the innate growth potential 
of the population and be determined instead by the 
population's interactions with other components of its 
ecological context. In the model of Fig. 7, for example, 
one should expect the parameter b (which represents 
the probability of survival and the fecundity/fertility of 
individuals) to depend rather markedly on ecological 
context; and b in turn is an important factor in the 
deduced dominant growth pattern of the population. 

The matter does not seem so clearcut in the case of 
population oscillations. In the simple natality cycle rep- 
resented in Fig. 7, for example, the propensity toward 
sustained oscillations (as given by Eqs. 35 and 38) is 
independent of b as are the periods of those oscillations 
(Eq. 34), both depending instead upon the statistical 
distribution of the time to reproductive maturity. In 
more complicated natality cycles, the propensity to- 
ward, and period of, oscillations might depend also on 
the distributions of ovulation intervals, the distribu- 
tions of gestation periods, the distributions of nonre- 
productive lactation periods, the distributions of peri- 
ods of regression, and the like. Clearly, just as the 
endocrinological state of an individual can be modu- 
lated by ecological context, so can these various 
periods and their distributions (e.g., the mean time to 
first ovulation in East African elephants apparently 
varies from 11 to 20 yr, depending on habitat and popu- 
lation density [Laws 1969]). However, the extent to 
which they can be modulated by external influences 
may well be limited; and the oscillatory tendency and 
oscillation periods of a population, therefore, may well 
be principally innate and transcend to a considerable 
extent that population's ecological context. This pos- 
sibility has received considerable discussion in the 
literature (see Oster and Takahashi 1974 for a recent 
summary of arguments and evidence). 

Except in the extreme and unlikely case of fixed time 
delays, the waves predicted by linear models all are 
damped relative to the predicted dominant growth pat- 
tern of the population. When, on the average, the mod- 
eled population is neither growing nor declining (i.e., 
so = 0 or z0 = 1), then the predicted waves are damped 
in the absolute sense. Therefore, on the basis of deduc- 
tions from the linear models, one would not expect a 
population's innate propensity toward sustained wave 
activity to lead to undying oscillations modulating an 
otherwise steady background level. When persistent 
oscillations occur in this manner (e.g., those in lem- 
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mings or in,the Canadian fur cycle), the reasonable 
presumption therefore seems to be that ecological con- 
text is playing a very important role. Nevertheless, in 
some cases the innate properties of the population itself 
may be important influencing factors. For example, the 
period of the sustained, albeit irregular, large- 
amplitude oscillations in salmon populations generally 
is the same as the mean generation interval, which in 
turn appears to be a more-or-less fixed innate parame- 
ter (e.g., see Parker 1962; Killick and Clemens 1963; 
Oster and Takahashi 1974 for other examples). 
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