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APPLICATIONS OF DISCRETE AND CONTINUOUS NETWORK 
THEORY TO LINEAR POPULATION MODELS1 

E. R. LEWIS 

Department of Electrical Engineerinlg and Computer Sciences and thle 
Electr onics Resear clh Labor ato;y 

University of Califor nia, Ber-keley, Californsia 94720 USA 

Abstract. The well-established methods of network construction and analysis are adapted 
to the problem of modeling single populations. A major advantage of the resulting approach 
is that it allows explicit incorporation of key processes in the life cycle of the organism being 
modeled, with feedback loops providing economy of representation where they are allowed. 
Thus, network structures provide heuristic vehicles by which population models can be de- 
veloped and modified. When a model is linear and has parameters that do not vary with 
time, a characteristic dynamic function can be derived by inspection from a simple transform 
of the network representation. The zeros of the function can be found (analytically or by 
commonly available numerical methods) and used directly to deduce the modeled population's 
dominant growth pattern and its propensity to sustain oscillations. In addition, under certain 
conditions (i.e., that the network model not contain both time delays and integrators), a 
straightforward method (partial fraction expansion) is available for deduction of the modeled 
population's specific responses to a variety of perturbations. 

Key words: Life cycle nmodels; network analysis; network nmodels; population dynamics; 
population mnodels; population waves; time delays. 

INTRODUCTION 

From a population dynamics point of view, the 
two processes associated with the individual organism 
that are most important are survival and reproduc- 
tion; and state variables of the individual (e.g., 
physiological, anatomical and behavioral variables) 
often are considered important only to the extent 
that they affect those two processes. Since many of 
the variables that affect survival usually are very 
strongly correlated with age, many population models 
(e.g., the standard matrix model [Lewis 1942, Leslie 
1945], the renewal equation [Feller 1941], and the 
von Foerster [1959] model) are based on state spaces 
in which the states of the individual members are 
described entirely in terms of their ages. Because 
age simply is a measure of time, initialized at or 
close to the birth of the individual, and since the 
progression of time conventionally is taken to be 
deterministic, the description of states in terms of 
ages is especially convenient. However, if the state 
space based on age is the only one available to a 
modeler, then his hypothetical constructions and 
idealizations will be rather severely constrained. This 
paper is an attempt to broaden the modeler's horizons 
slightly by showing that time initialized by events 
other than birth can be used as the basis of a rather 
more adaptable state space. In this space, one may 
have explicit representations not only of time since 
birth, but also of such variables as time since the 
last ovulation, time since impregnation, and time 

1 Manuscript received 16 September 1974; accepted 
17 September. 1975. 

since parturition. Thus, observable parameters such 
as time to maturity, ovulation interval, and durations 
of postmating and postpartum regression or of non- 
reproductive lactation can be incorporated explicitly 
in the models and their consequences with respect 
to population dynamics deduced. The models them- 
selves can be formulated and modified through the 
extremely heuristic techniques of network construc- 
tion. 

Once the model is formulated in network form, 
the next step is to deduce the dynamic behavior 
implicit in it. This can be done on an ad hoc basis 
(e.g., for specific perturbations) through analog or 
digital simulation (not described herein) or a more 
general basis through a combination of the very 
powerful but simple methods of linear transforms 
and linear flow graph analysis, which are described 
in this paper. This combination of methods applies 
to linear systems whose parameters are lumped and 
constant (independent of time) and that are deter- 
ministic insofar as only the expected values of the 
population are carried (see Oster and Takahashi 
[1974] for applications of linear transforms to popu- 
lation models with distributed parameters). These 
same limitations also apply to the vast majority of 
the body of systems theory as it exists today. The 
usual rationale for the extensive development of 
that body to begin with and for its continued refine- 
ment and expansion, in spite of these limitations, is 
the fact that many real systems conform reasonably 
well to the limitations and many additional systems 
conform in the short-term or for small perturbations 
about specified points and thus have dynamic be- 
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haviors that can be deduced reasonably well by 
judicious piecewise or limited application of the 
theory. What can we attempt to deduce about a 
real population from a theory limited to lumped- 
parameter, time-invariant-parameter, linear systems? 
It certainly is well known that, among other things, 
we can use such a theory to deduce the tendency 
(under given hypothetical parameter values, perhaps 
innately determined, perhaps determined by ecolog- 
ical context) of a population to shift away from or 
toward a presumed stable value (Rosenzweig and 
MacArthur 1963). Similarly, we can use it to de- 
duce the tendency of a population, under given cir- 
cumstances, to sustain waves (Keyfitz 1972); and, 
we can use it to deduce the frequency of those waves 
(Oster and Takahashi 1974). We also can use it 
to deduce the responses of the modeled population 
to a wide variety of small perturbations. Finally, 
we can use it to deduce the sensitivities of these 
tendencies and responses to the various life-history 
parameters represented in the model. 

NETWORK MODELS BASED ON CONTINUOUS TIME 

When models are constructed on state spaces based 
on initialized time, it often is convenient to lump 
certain sets of contiguous states together into time 
delays of various lengths. When this is done, the con- 
cept of flow is especially useful for bookkeeping of 
the conservation relationships (Lewis 1972). An 
individual might be considered to have entered such 
a set at the time of birth, on reaching a certain age, 
on becoming pregnant, at the time of ovulation, on 
giving birth, or at any other specified event. Cor- 
respondingly, an individual would be considered to 
have left the set on reaching a certain age (e.g., the 
age of sexual maturity), on termination of pregnancy, 
at the time of subsequent ovulation, on completion 
of lactation or regression, or at any other appro- 
priate time. When such lumped states are used, the 
modeler is concerned with the rate at which indi- 
viduals are entering a given process (such as matura- 
tion, gestation, lactation, regression, and the like), 
idealized to be of fixed duration, and the rate at 
which they are emerging from it on completion; but 
he is not concerned with the total number of indi- 
viduals involved in the various stages of the process. 
Therefore, he is interested in the flow of individuals 
into the process and the flow of individuals out of 
the process. If entry into the process and emergence 
from it are signaled by discrete events, the input and 
output flows are discrete functions of time, com- 
prising series of delta functions. For the idealized 
process of fixed duration, the salient conservation 
relationship is 

Jolw t t(t) = K J flo (t-sT) ( 1 
where Ji,,(t) is the flow into the process at time t, 
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FIG. 1A. Network symbols for (a) a pure time delay, 
T, with a scalar, K; (b) an adder; and (c) a branch 
point, which is conservative if a + - = 1, nonconserva- 
tive otherwise. 

FIG. 1B. Linear flow graph symbols for the corre- 
sponding network elements of Fig. 1A. 

J00(t) is the flow out of the process at time t, T 
is the duration of the process, and K is the proportion 
of those entering the process at t-T that survive to 
emerge at t. Note that the distribution of expected 
mortality over the interval T is not necessarily 
specified; therefore, one does not necessarily know 
the actual number of individuals represented as being 
involved in the total process or any of its various 
stages. 

The conventional network representation of such 
a set of lumped states is shown in Fig. lAa and 
consists simply of a pure time delay element (labeled 
T in the figure) drawn in series with a scalar element 
(labeled K) (Cadzow 1973). Continuing with this 
pattern, where flows are indicated by directed paths 
and operations on those flows (such as delaying or 
scaling) are indicated by elements connected by 
those paths, one needs an adder for the conservative 
convergence of two or more paths (Fig. lAb) and 
a simple branch point for the conservative or non- 
conservative divergence of paths (Fig. lAc). With 
these five structures, one can construct a very large 
number of interesting population models (Lewis 
1972). For the purposes of this paper, however, 
the discussion will be limited to models in which 
the proportionality factors in all of the scalars are 
constant, in which case the models are linear, with 
time-invariant parameters. 

The development and analysis of models employ- 
ing these and other, subsequently introduced struc- 
tures will be illustrated through a series of idealized 
examples embodying many of the life-history pa- 
rameters commonly observed and recorded for vari- 
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ous animal sp&cies (e.g., Lack 1954, Clark et al. 
1967, Bent 1968, Sadleir 1973). 

Example 1 

A population consists of identical protozoans that 
reproduce solely by binary fission and require no 
conjugation. The culture medium is sufficiently 
well regulated that the time between successive 
fissions is constant, TF. Death is a nonselective, 
Poisson process, with the probability of survival of 
an individual over any interval T being given by 
a-mT 

A network embodying the dynamics of this pop- 
ulation is shown in Fig. 2A a, where Jo is the flow of 
newly formed fission products into the population 
and J, is the flow of surviving adults into fission. 

Example 2 

The female members of a population of idealized 
mammals exhibit the following life cycle. Each new- 
born female requires 300 days to reach sexual ma- 
turity, signaled by her first ovulation. Subsequently, 
she ovulates once every 20 days and at each ovula- 
tion she faces the same, fixed probability, K1, of 
becoming pregnant. Gestation requires 38 days and 
the expected number of female offspring per success- 
fully completed pregnancy is 3.7. Fifteen days after 
parturition, the first postpartum ovulation occurs, 
signaling the return of the 20-day ovulation cycle. 
The expected proportion of newborn females sur- 
viving to sexual maturity is K.; having reached ma- 
turity, the females face a nonselective death process, 
with probability e-mT than any given individual sur- 
vives an interval of duration T. 

A network model embodying the dynamics of this 
population is shown in Fig. 2Ab, which depicts six 
components of flow. Jo is the flow of newborn fe- 
male offspring into the population. J2, the total flow 
of ovulating females, comprises the flow, J1, of 
those ovulating for the very first time, the flow, J0, 
of those ovulating for the first time since parturition, 
and the flow, J3, of those that failed to become 
pregnant during their last ovulation and simply have 
passed through the normal ovulation cycle. J4 is the 
flow of newly impregnated females into gestation; 
J5 is the flow of females emerging from gestation. 
The flow of newborn females is 3.7 times the flow 
of females completing gestation. 

Example 3 

The female members of a population of idealized 
sea birds exhibit the following life cycle. Nesting 
occurs in the fourth month of every year. A newly- 
fledged female faces probability K1 of surviving to 
age 36 mo, at which time she is sexually mature and 
capable of participating in nesting for the first time. 
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FIG. 2A. Network models of idealized animal popu- 
lations. 

(a) Binary fission with fixed interfission interval. 
(b) Periodic ovulation in an idealized mammal pop- 

ulation. 
(c) Annual nesting in an idealized seabird population. 
FIG. 2B. Linear flow graphs corresponding to the 

networks of Fig. 2A. 
(b) a = Kz-300; b = e-620(1 - K)z-20; c = K1; 

d-e-m38z-38; e = e`1455z 15; f = 3.7. 
(c) a= KLz-3; b = K4(1 - K2)z-12; c K2; d = K; 

e K4(1 - K3)z-'2; f = K4z12; g =0.5. 

The probability that she will do so is K2. Once she 
has participated in nesting, she will continue to do 
so every spring for the rest of her life. If she did 
not nest during her first adult season, the probability 
is K3 that she will do so in her second; failing this, 
she is virtually certain to nest in her third. All adult 
birds face probability K4 of surviving from the end 
of one nesting season to the end of the next. Each 
nesting female produces one fledged brood per sea- 
son, with 0.5 female fledglings expected per brood. 

A network model embodying these dynamics is 
shown in Fig. 2A c. Here Jo represents the flow of 
female fledglings into the population; J, represents 
the flow of newly emerging adult females; J6 is the 
flow of females through nesting and comprises J2 
(the flow of 3-yr-old nesters), J3 (the flow of first- 
time, 4-yr-old nesters), J4 (the flow of first-time, 
5-yr-old nesters), and J6 (the flow of returning birds 
that nested the previous year). The flow of fledged 
offspring is 0.9 times the flow of females through 
nesting. 

As one can see from the previous examples, the 

five network structures introduced so far allow con- 
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A B 

JAin N Jnln l/S N 

a a 

FIG. 3A. Network symbol for an integrator. 
FIG. 3B. Linear flow graph symbol for an integrator. 

struction of fairly complex and interesting models. 
The addition of a sixth structure, namely the inte- 
grating element shown in Fig. 3A, makes the linear 
modeling capabilities even broader. When individuals 
in different age or other initialized time classes are 
coinsidered to be equally subject to the same sto- 
chastic processes, such as becoming pregnant, being 
preyed upon, becoming infected, and the like, then 
it often is convenient to combine them into a single 
pool in the model. For models based on continuous 
time, the integrator provides the vehicle for such 
pooling. The conservation relationship represented 
is 

N(t) f r (t) dt (2) 

where N(t) is the number of members of the pool 
at time t, and Jai1n(t) is the net flow of individuals 
into the pool at t. 

Example 4 

The females of a population of idealized insects 
exhibit the following life cycle. The newly-hatched 
female requires 90 days to progress through the 
various immature stages and reach sexual maturity, 
at which time she joins a breeding pool and pro- 
duces an average of K., female eggs per day. Hatch- 
ing takes 30 days, and the proportion of female eggs 
expected to survive to adulthood is K1. Adults face 
a nonselective death process, with probability K3 
of surviving each day. 

A network model embodying these features is 
shown in Fig. 4Aa. Here JO is the flow of newly 
produced female eggs; J3 is the net flow of members 
into the breeding pool and comprises the difference 
between the flow (J1) of newly emerging adult 
females and the flow (J1) of females out of the 
pool as a result of death; N is the total membership 
of the pool. The death rate, 8, and egg-production 
rate, /B, are given by the following equations: 

8 = log K31,/Tday (3) 

3 ilog K2l/Tday (4) 

where Tday is the number of time units in 1 day. 
So far, the examples have been restricted to situa- 

tions in which the lumped states (initialized time 
classes) were based on single processes. In other 
words, according to the idealized life cycle specifica- 
tions, an individual member of a population could 
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2 d J2 
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( aeinetpplain u wit ag-deedn 
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J80 J N J, N 

22f 
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FIG. 4B. Linear flow graphs corresponding to the 
networks of Fig. 4. 
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be represented as being involved in only one process 
at any given moment. On the other hand, there 
are numerous ways in which idealized or hypo- 
thetical life cycles could be specified that would re- 
quire states based on two or more processes. Sup- 
pose, for example, that an individual female can be 
lactating and gestating at the same time. One very 
well might wish to include in his model the possibility 
that survival from day to day is different for lac- 
tating individuals (being forced to defend the litter), 
pregnant individuals (being hampered by physio- 
logical state) and individuals that are both pregnant 

A B 

1 ~~~~~~~~~~~~b 
36 KA. 2 O a JF 

96 2 '3 e 

ity of I 8 yr. 
FIG. 5. Linear flow graph corresponding to network 

of Fig. 5: 
a=K1z-36; b=K4(1-K2)z-2; c =K2; d =K3; e= 
K4( 1 - K3)z-12; f = K4z-12; g = 0.5; h =-K4'z-9 
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and lactating (having both handicaps simultaneously). 
Furthermore, one might wish to include also the 
possibility that the probability of impregnation is 
different for lactating and nonlactating females, or 
that it varies from stage to stage during lactation. 
Even more commonly, one might wish to include 
age as well as other initialized-time variables in the 
state description, on the assumption that mortality 
or natality was affected significantly by age as well 
as participation in the other processes. Under cer- 
tain, rather restricted circumstances, such specifica- 
tions can be represented explicitly and economically 
with network models of the type discussed in this 
paper. In general, however, these network models 
are not well suited for such complex specifications. 

Example S 

The females of Example 4 exhibit age-dependent 
mortality such that during the first 180 days after 
reaching maturity, the individual faces an effectively 
constant probability, K3', of surviving each day, for 
the second 180 days she faces a different probability, 
K3", and her maximum longevity is 360 days from 
maturation. 

Figure 4Ab shows a modified version of the net- 
work in 4Aa, embodying these new features. Here, 
J3' is the net flow of members into the younger 
breeding pool and comprises the difference between 
the flow (J_') of newly emerging adult females and 
the flows (Ji' and J4') of females out of the pool 
as a result of death and of graduation to the older 
breeding pool, respectively. J3" is the net flow into 
the older breeding pool and comprises the difference 
between the flow (Jl") of newly graduating indi- 
viduals and the flows (J2" and J4") of individuals 
out of the pool as a result of death. 

Example 6 

The females of Example 3 face essentially non- 
selective mortality (as stated in the example), but 
only until age 11, their absolute longevity, beyond 
which there are zero survivors. 

Figure SA shows the appropriate modification of 
the network in Fig. 2Ac. As in Example 5, double 
bookkeeping accomplishes the task. The flow of 
emerging 3-yr-old females passes into a 96-mo delay; 
the proportion, K48 that survive the corresponding 
8 yr (to the limit of longevity) is subtracted from 
the flow of nesting adults. 

Example 7 

The same idealized seabirds exhibit completely age- 
dependent mortality and natality, with proportion 
pi surviving from the end of the i - 1 nesting season 
to the end of the ith nesting season, and fi female 
fledglings expected per brood of females participating 

A Bo B 
K1~~~~~~~~J 

KIG. 6A2 The same model, with age-dependentmor-L 

K= I-K =0 
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FIG. 6A. The same model, with age-dependent mor- 
tality throughout. 

FIG. 6B. Linear flow graph corresponding to the net- 
work of Fig. 6: 

aon for; btidf2y fsi= r o forK1z6;kK2; 1 =1r-yK2; 
12 ~~~~~~~~~~~~~-12 mi n=P2Z, ;o=K3; p=1 -K3; q=r_ = A3 Z 

primiparae, n=dpz'2 .n .o . - Xp h-. 

in their ith nesting season. Once again, the absolute 
longevity is 1 1 yr. 

A network realization of this -idealized life cycle 
is shown in Fig. 6A. For their first tw o nesting 
seasons, the birds are represented in diverging paths, 
one for third-year primiparae, one for fourth-year 
primiparae, and one for fifth-year primiparae. The 
three parallel paths in Fig. 6A can be combined to 
yield the simpler version of Fig. 7A. Except for its 
first time delay, this network simply is a form of 
the Leslie model (Lewis 1942, Leslie 1945). The 
scale factors Kj!_, (K,+ K3-K,K3) f2, f3, f4, * * * fi 
would be the elements of the first row of the Leslie 
matrix, and the scale factors K1, P2, P3, P4 , Pi 
would be subdiagonal elements. 

Example 8 

Mortality among the females in the idealized pop- 
ulation of Example 2 depends on the age of the 
individual and upon whether or not she is pregnant. 
The absolute longevity is 2,000 days. 

Suddenly, with a very simple change in the state- 
ment of the life cycle, the problem is transformed 
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A B 

36 
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FIG. 7A. A Leslie-model equivalent of the network 
of Fig. 6. 

FIG. 7B. Linear flow graph corresponding to the net- 
work of Fig. 7: 

a = K2f.; b = (K2 + K3 - K2K3)f2; c = f3; d = f4; ... h 

=f3; i = K1.z-3; j2 =pZ-12 k = p:3Z-12 ...p = p8z-12. 

f rom one quite tractable in terms of networks to 
one for wbicb the value of the network approacb is 
extremely doubtful. The reason -for this simply is 
that there are too many states of the individual that 
must be distinguished. Except for those representing 
flow of newborn offspring, no feedback loops will 
be allowed in the network, since they obscure age. 
Furtbermore, at the time of each ovulation, each 
female faces a branching point with respect to state. 
If she becomes pregnant and survives, ber next ovu- 
lation will occur, 53 days later. If she does not be- 
come pregnant, but survives, sbe will ovulate again 
in 20 days. This branching converts ovulation from 
an idealized process with a period of 20 days to a 
process with a fundamental period of 1 day (tbe 
greatest common divisor of 20 and 53). In a truly 
continuous time base, the probability that any two 
values of time actually have a greatest common 
divisor is essentially zero. Tberefore, one normally 
would expect branching to convert periodic processes 
into totally aperiodic processes. In the case at hand, 
the temporal resolution of the life cycle statement 
was tacitly set at 1 day, imposing a minimum period 
of I day on all processes involved and thus masking 

the inherent aperiodicity. Effectively, then, the pe- 
riodic process of ovulation is made aperiodic by the 
branchings. This aperiodicity of the timing of state 
changes precludes feedforward paths in the network 
(i.e., convergence of paths in the network). 

Without feedback or feedforward paths, the por- 
tion of the network representing the state of the 
adult female will comprise an ever expanding tree, 
with a branching point representing each ovulation 
and one branch emanating from that point for each 
of the two possible states following ovulation. The 
complete network is utterly impractical to draw. 
Since, fortuitously, the network has a basic period- 
icity of 1 day, it can, in principle but with consider- 
able difficulty, be reduced to the Leslie-Lewis form 
and represented by a Leslie matrix. On the other 
hand, if ovulation had been specified as being 
aperiodic with no implied unit of temporal resolution 
(e.g., induced ovulation), then reduction to the 
Leslie-Lewis form would not be a precise realization 
of that model. Furthermore, the expanded tree in 
this case would have an infinite number of branch 
points spaced infinitesimally close together. In such 
cases, conventional network techniques offer no 
conceptual advantages over other mathematical and 
simulation methods. 

NETWORK MODELS BASED ON DISCRETE TIME 

It is not at all difficult to argue for the validity 
of discrete-time models. In the first place, even with 
the most modern clocks, there always is a practical 
limit to the resolution of time. Furthermore, because 
the states of individual organisms cannot be measured 
instantaneously, but require certain spans of time 
for their determination, there is a tradeoff between 
precision in time and precision of state determina- 
tion. At the heart of this tradeoff very likely lies 
a fundamental biological uncertainty principle, very 
much akin to that of modern physics. When the 
states of individuals over an entire population are 
to be observed, this tradeoff between temporal pre- 
cision and biological precision undoubtedly will lead 
to compromise units of temporal resolution that are 
rather large. Since the empirical units of temporal 
resolution thus are finite and, in fact, rather large 
for biological populations, one can argue very log- 
ically that it is absurd to make the limit of temporal 
resolution infinitesimal in the models of those pop- 
ulations (i.e., to base them on continuous time). 

From the point of view of analysis and simulation, 
models with fixed delays that are based on discrete 
time have certain advantages over the same models 
based on continuous time. In the first place, when 
time delays and pools occur together in a model, its 
analysis will lead to differential-difference equations 
if it is based on continuous time and to pure differ- 
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ence equations if it is based on discrete time. With 
presently available methods, the latter are very easy 
to solve completely (i.e., determine the complete 
response to a more or less arbitrary input), the 
former are quite difficult (Bellman and Cooke 1963, 
Hale 1971). The two types of equations usually 
are equally easy to analyze in terms of deduced 
tendencies of the system to grow or decline and to 
sustain oscillations. The discrete-time models have 
the added advantage that they can be viewed directly 
as flow charts for digital simulation programs. 

Linear, time-invariant discrete-time network models 
can be constructed with five of the six structures of 
the continuous-time models: the pure time delay, the 
scalar, the adder, the directed path, and the branch 
point. The sixth structure of the continuous-time 
models, the integrator, is replaced by its discrete- 
time analog, the accumulator, which is illustrated in 
Fig. 8Aa. The appropriate conservation relationship 
is 

N(T) =LT=C Jini(T) 5 
where N(T) is the number of members of the pool 
represented by the accumulator and is a function of 
discrete time, T; Jnin(T) is the net flow of members 
into the pool. Although other conventions are per- 
fectly acceptable, it will be assumed here that the 
values of N(T) and J(T) are determined only for 
integral values of T. Thus, N(T) and J(r) both can 
be considered to comprise delta functions distributed 
periodically with interval equal to the unit of reso- 
lution of T. Thus, J(-r) and N(7-) are commensurate 
and one can restate the accumulator's conservation 
relationship as follows: 

N(-r) = N(7r-1 ) + J.in(r), (6) 

which leads to the network equivalent shown in Fig. 
8Ab, where the accumulator has been replaced by 
a feedback loop with a pure delay, one unit of 
resolution in duration. 

Example 9 

The females of a population of idealized mammals 
exhibit the following life cycle, resolved to 1 day. 
A newly-weaned female requires 300 days to reach 
sexual maturity, after which she is receptive and 
capable of ovulation. Ovulation does not occur 
spontaneously, but is induced by mating. If mating 
does not lead to conception, there is a 25-day period 
of regression, during which ovulation cannot recur 
and the female is not receptive. Gestation requires 
35 days and is followed by a 20-day period of lac- 
tation, during which time the female is neither re- 
ceptive nor capable of ovulation, and during which 
survival of the offspring is contingent upon survival 
of the mother. The probability that a receptive fe- 

A B 
Jnin I | N 

a s~~~~~~~~ Jni I-~Z -t N 

b 

FIG. 8A. Network symbols for discrete accumulation. 
(a) An accumulator. 
(b) Equivalent network for an accumulator. 
FIG. 8B. Linear flow graph symbol for an accumu- 

lator. 

male mates in any given day is K1; the corresponding 
conditional probability of conception is K2. The ex- 
pected number of female offspring in a newly-weaned 
litter is nf. The day to day survival of the female 
depends upon her initialized time class, being pl(T) 

for the 7th day of maturation, P2(r) for the 7th day 
of regression, p3 (T) for the 7th day of gestation, 
p4(7) for the 7th day of lactation, and simply p for 
all days during which she is receptive and capable 
of ovulation. 

A network model embodying the dynamics of this 
population is shown in Fig. 9Aa. The number (NI) 
of receptive females at a given day is equal to the 
flow (J2) of those just completing lactation plus the 
flow (J3) of those just reaching sexual maturity, 
plus the flow (J4) of those just emerging from re- 
gression, plus the flow (15) of those that were re- 
ceptive the previous day but did not mate. The daily 
survivorships associated with each process have been 
lumped into single scalars for the entire process 
e.g., K6 is the product of Pi(T) .over all the days of 
maturation T = 1 to 300). 

Example 10 

The idealized life cycle of Example 4 is given 
with a temporal resolution of 1 day. 

A network model embodying the dynamics of the 
population is shown in Fig. 9Ab. The number (NA) 

of adult females in the breeding pool at a given day 
is equal to the sum of the flow (J1) of newly 
emerging adults and the flow (J2) of adults sur- 
viving from the previous day. 

LINEAR TRANSFORMS FOR DYNAMIC NETWORKS 

Presently, there are three major approaches to 
network theory: the transfer function approach, the 
state space approach, and the operator theory ap- 
proach (Newcomb 1974, Porter 1974). The transfer 
function approach is probably the most thoroughly 
developed of these. It is based on the Fourier, 
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FIG. 9A. Network models based on discrete time. 
(a) Idealized mammals with induced ovulation. 
(b) Discrete time version of the model of Fig. 4A., 

with temporal resolution equal to one day. 
FIG. 9B. Linear flow graphs corresponding to the 

models of Fig. 9A. 
(a) a = Kz-00; b = (1 -KI)K7z-"; c=(l-K2)Ksz25; 

d = K1; e = K2K4K5z-55; f =nf. 

(b) a- Kz-120; b = K3z-; c K2. 

Laplace, or z transforms, depending on the circum- 
stances; it is most directly applicable to those linear, 
time-invariant networks in which one wishes to relate 
the dynamic response of a network variable (the 
output or response variable) to a known or sup- 
posed segment of the time course of a network 
variable (the input or stimulus variable). In the 
case of autonomous linear networks, such as those 
presented so far in this paper, where there are no 
specified input or output connections to other net- 
works or outside influences of any sort, the stimulus 
may be any known or assumed segment of the dy- 
namics of any variable, and the response may be 
the resulting portion of the dynamics of any variable. 
Thus, the direction of causality is presupposed; 
stimulus causes response. In many networks, the 
causal roles can be reversed, but the corresponding 
analysis usually leads to different relationships be- 
tween stimulus and response (e.g., the relationship 
between J1 taken as cause and J2 taken as effect 
generally will not be the same as the relationship 
between J2 taken as cause and J1 taken as effect). 
In many situations, it is convenient to take an initial, 
known segment of a given variable as cause and the 
resulting, subsequent dynamics of that same variable 
as effect; thus, the stimulus and response variables 
become one and the same. In all of the networks 
presented in this paper, every variable is causally 
related to every other variable; any variable could 
be stimulus and any other variable could be response. 
In such cases, certain properties of the network 

transcend the specific choice of stimulus and re- 
sponse. These usually are generalized as the natural 
frequencies or eigenvalues of the network. 

For linear networks based on discrete time and 
comprising the six structures listed in this paper, the 
z transform is the appropriate choice for transfer 
function analysis. It also is the appropriate choice 
for linear networks based on continuous time and 
comprising paths, scalars, adders, branch points, and 
time delays. I have found that when integrators 
and/or continuous stochastic time delays but no 
fixed time delays appear in those networks, then the 
Laplace transform is the appropriate choice. When 
both integrators and fixed time delays appear, then 
the Laplace transform or the modified z transform 
(Jury 1964) can be used, but simple analytical 
methods are not well developed yet. 

Thorough treatments of the z and Laplace trans- 
form methods for networks are available in elemen- 
tary textbooks on linear network theory and linear 
systems theory (Gardner and Barnes 1942, Kuo 1967, 
Cadzow 1973). Basically, each of these transforms 
converts a function of a single, real variable into a 
corresponding function of a complex variable (z in 
the case of the z transform, s in the case of the 
Laplace transform). For a wide variety of functions 
of a single variable, the transformed version is much 
simpler and thus represents a shorthand notation. 
In fact, both transforms are essentially the same as 
the generator functions used so commonly in prob- 
ability theory. The chief advantage of the two trans- 
forms, however, lies in the fact that they convert 
differential equations and difference equations in 
the real domain into algebraic equations in the com- 
plex domain that allow the process of convolution 
to be carried out in the form of a simple multiplica- 
tion and allow other important processes to be carried 
out by similarly simple algebraic manipulation. The 
final result in the real domain can be obtained by 
inverse transformation. 

For those who are not familiar with these two 
linear transforms, their properties are summarized 
briefly in Table 1. A single variable, x, is used here 
to represent both t (the continuous time variable) 
and T (the discrete time variable). 

LINEAR FLOW GRAPHS 

To analyze linear networks, one can transform 
the variables appropriately and make corresponding 
modifications of the operations represented by the 
network elements. Thus, in the cases of the network 
models of the 10 examples presented in this paper, 
the flow variables would become Jj(z) or Ji(s), and 
the pool memberships would become Nj(z) or Ni(s). 
Owing to the linearity of the transformations, the 

scalars, adders and branch points would be un- 
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TABLE 1. Some properties of the Laplace and Z transforms 

Function of the Corresponding Corresponding 
Property real variable (x) transform Laplace transform 

Linearity 

Homogeneity kf (x) kf (z) kF(s) 

Additivity f(x) + g(x) F(z) + G(z) F(s) + G(s) 

Definition f(x) F(z) = , f(x)z- F(s) - f f(x)e-s dx 

Convolution 

Discrete E f(k)g(x - k) F(z)G(z) NA 
7=0 

Continuous f f(k)g(x - k) dk NA F(S)G(s) 
0 

Real translation f(x - k) z-7OF(z) e-70sF(s) 

Integration f f(x) dx NA F(s)/s 

Summation Afk) F(z)/(l-&) NA 
k=0 

changed in going from the original network to its 
transform. The operation of the integrators in the 
Laplace transformed network would be represented 
as multiplication by l/s (Table 1); the operation 
of the accumulators in the z transformed networks 
would be represented as multiplication by 1/( 1 - z-1) 
(Table 1). A pure delay of duration T would be 
represented as multiplication by z-T in the z trans- 
formed network or by e-8T in the Laplace transformed 
network. Thus, pure delay, integration, and accumu- 
lation in the original networks are represented by 
elements akin to scalers in the transformed network, 
but with scale factors e-sT or Z-T, 1/s, and 1/(1 - z-1), 
respectively. A sequence of such operations in the 
original network would be represented by the con- 
volution of its components, which in turn becomes 
the product of the corresponding scale factors in the 
transformed network. 

For the construction of the transformed networks, 
it is convenient to employ linear graphs (Mason 1956, 
Hubbell 1973), in which the network variables (the 
flows and pool memberships) are represented at 
nodes and the operations or sequences of operations 
are represented as directed paths. This convention 
is illustrated in Figs. 1B through 9B, which show the 
transformed versions of the networks in Figs. 1A 
through 9A, but in linear-flow-graph format. Note 
that summation is represented by convergence at a 
single node, branching as divergence from a single 
node. 

There are obvious step-by-step procedures with 
which linear flow graphs gradually can be reduced 

until there remains but one path between any vari- 
able selected as stimulus and any variable selected 
as response. The transformed parameter associated 
with that path is a concise statement of the causal 
relationship between the two selected variables. The 
more useful equivalences for linear flow graph re- 
duction are given in Fig. 10, and in Fig. 11 they are 
applied to the problem of reducing the flow graph 
of Fig. 2Bc to a single path with J0 as the input and 
J1 as the output. Although it is reassuring to be able 
to carry out such manipulations, Mason (1956) 
published an algorithm that allows one to go directly 
to the final result by inspection. With his notation, 
the algorithm is expressed as follows: 

{[Pi(i,j) + P2(i,j) + . . . + Pp(i,j)] 

P ,I _ (1 - Lj) (-L2 ) ... (1 -L jI** (7 (,) [(1 -Ll) (1 -L2 ) . ..(1 - Lilt)I* 
() 

where P(i, j) is the parameter associated with the 
reduced, single path from node i to node j; PkU(i, j) 
is the product of the parameters along the kth path 
from node i to node j in the unreduced flow graph 
(there being p such paths); and Lk is the product 
of the parameters around the kth closed (feedback) 
loop in the unreduced flow graph. Once the products 
are formed according to Eq. 7, all terms involving 
touching loops or loops and paths that touch are 
dropped (the asterisks serve as a reminder for this 
elimination of terms). Touching is defined simply 
as sharing any node. In Fig. lla, for example, there 
is one path (a) from node J0 to J1 and there are four 
closed loops in the graph (acg, abdg, abeg, and f). 
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FIG. 10. Equivalences useful in systematic reduction 
of linear flow graphs. 

The path is touched by loops acg, abdg, and abeg, 
but not by loop f. All four loops touch one another. 
Thus, the algorithm leads to 

1(Z) 1-acg -abdg-abeg-fJ?(Z) (8) 

which is precisely the result obtained in Fig. 1lf. 
It is clear that with this simple algorithm, any of 
the networks presented in the examples can be re- 
duced very quickly to a relationship of the form of 
Eq. 8. If one wishes to treat the stimulus and re- 
sponse variables as one and the same, relating the 
subsequent dynamics of that variable to an observed, 
initial segment of its behavior, then he can use the 
simple ploy of splitting the node associated with that 
variable. The only path between the resulting pair 
of nodes has parameter 1 associated with it; so the 
algorithm of Eq. 7 reduces to 

P(i, i) _ [(1-LI) (1-L2) * *(1-Ln)]* (9) 
[(1 -LI) (1-L2) (1 -Lnl)] 

where terms involving touching loops are dropped 
from numerator and demoninator; terms involving 
loops that touch node i are dropped from the nu- 
merator. 

When Laplace or z transforms have been employed, 
P(i, i) and P(i, j) will be functions of s or z. The 
causal relationships they represent are given by 

Uj= P(i,j) Ui, (10) 
or 

U1 (subsequent) = P(i, i) Ui (initial) (11) 

b b 
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a [c + b(d e ( f )g 

e f 

FIG. 11. Step-by-step reduction of the linear flow 
graph of Fig. 2Ac. 

where Ui is the Laplace or z transform of the variable 

[Ni(x) or Ji(x)] associated with node i, and the 
variable on the left is taken to be effect, that on the 
right to be cause. As a consequence of the linearity 
of the networks, superposition of responses can be 
employed. Thus, if Ujl is the response of the variable 
at node j to stimulus U11 at node i, and Uj2 is the 
response to Ui2, then the response to Ui1 and Ui2 
applied together is simply Ujl + Uj2. 

Since any stimulus function can be considered to 
comprise a sequence of delta functions (infinitesi- 
mally close together if the stimulus function is con- 
tinuous, with finite spacing if the stimulus function 
is discrete), the delta function itself can be considered 
the basic element of all stimuli. Therefore, all re- 
sponse functions must comprise sums of responses 
to delta functions; the stimulus response relationship 
can be characterized completely by a single delta 
function response. For convenience, the magnitude 
of the delta function eliciting the characteristic re- 
sponse usually is taken to be one. Such a function 
at any node in one of the flow graphs in this paper 
would represent a single individual (or unit cohort) 
entering or leaving a process or belonging to a pool. 
When the unit delta function is applied at t = 0 or 

= 0, in these cases the response might very well 
be called the unit cohort response. The Laplace or 
transform of the unit cohort stimulus applied at 

x = 0 is equal to one. Therefore, the transform of 

the unit cohort response is simply P(i, j) or P(i, i). 
To illustrate the analytical convenience of linear 

flow graphs with the algorithm of Eq. 7, the entries 

of Table 2 are the various transformed unit cohort 
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TABLE 2. Sample unit cohort response functions for the 10 examples of this paper 

In the network when the is a unit cohoit applied at x = 0, the 
of Fig. variable following transformed response occurs 

2A a Jo J1 = 1 - 2e(mTF) z (-TF) 

2A C JO J?o= 1 - f - acg - abdg - abeg 

2A b J, Jo = cdf 
1- b - ced - acdf 

4A a Jo N ab 
1 -bc -abd 

4A b J J 1 + b-cd-gh+cdgh-bgh 
1 + b - cd - gh + cdgh - bgh - adgf - abigf - ace + acegh ? abigfcd + abgfcd 

5A Jo .Jo=-i 
1 - ahg- acg - abdg - abeg - f 

6A JO J? 1 - jka - jkmb - jkmqd - lnoc - jilnord - jlnpsd 

7A Jo Jo=- 1 
7 1- ia - ijb - ijkc- ijkld - ijkline ... 

8A a Jo 1- b - dc - de 

8A b J, Jo = 
1 - ac - b 

responses for the networks of Examples 1 through 
10, which were derived by inspection. 

INVERSE Z AND LAPLACE TRANSFORMS 

Once the z or Laplace transforms of a unit cohort 
response function or other network response function 
is available, the corresponding function of time is 
found by the process of inverse transformation, 
which can be accomplished with tables (Erdelyi et al. 
1954), or, more generally, by expansion of the trans- 
formed response into additive terms of standard 
format (i.e., partial fraction expansion) and replace- 
ment of each of those terms by a corresponding time 
function of standard format. As long as integrators 
and fixed time delays are not both present, then by 
simple manipulation, it always will be possible to 
convert the transformed unit cohort response into 
a ratio of polynomials: 

P = W/Q (12) 

W = aw Uw + awl uw-1 + aw-2 UW-2 + ... + ao (13) 

Q = U + bq1 uq-l+ bq2 Uq-2 +... + bo (14) 

where u is either s or z, w is the degree of the 
numerator, and q the degree of the denominator. 
The coefficient of uq in Q is guaranteed to be one 
by the form of Eq. 7 and the fact that the z trans- 
form of the time delay is z-T and the Laplace trans- 
form of the integrator is s-1. The conventional partial 

fraction expansions comprise terms of the forms 

Ch,kZ k/(Z-rh) k for the z transform (15) 

and 

Ch,k/(S- rh)k for the Laplace transform (16) 

where rh is the hth root of the polynomial Q, k ranges 
from 1 to the multiplicity of that root, and ch k is a 
constant determined during the process of expansion. 
The corresponding inverse transforms are 

Cl.A(~ k 
- 

1 ) (rh T> [for Eq. (15)] (17) 

where 

(T+k-1)=(T + kk-1)! (18) 

and T is discrete, taking on only integral values, and 

Ch,ktk-le(rit) [for Eq. (16)] (18) 

where t is continuous. Usually the multiplicity of 
roots is one (i.e., the roots are not repeated); so 
the terms of the inverse transform usually have the 
forms: chrh(7) and che(rht). 

In order to apply the methods of partial fraction 
expansion, one first must find the roots of the poly- 
nomial Q, the denominator of the proper fraction P. 
This polynomial often is called the characteristic 
function of the network; and it is precisely analogous 
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to the characteristic polynomial of a matrix. In fact, 
the characteristic function of any network that can 
be reduced to the Leslie form will be one and the 
same as the characteristic polynomial of the corre- 
sponding Leslie matrix; the roots, r7, are the eigen 
values of that matrix. 

Once the roots have been found, then all that re- 
mains is to find the coefficients (c7,, -) of the expan- 
sion. When the roots are not repeated, this process 
is quite simple 

rhch = (z - rh)PI zr, for the z transform, (19a) 

and 

Ch (s - rh)Ps r,, for the Laplace transform. (19b) 

It is slightly more complicated for repeated roots, 
but nonetheless quite straightforward (Cadzow 1973). 

If a network contains both integrators and fixed 
time delays, then the resulting unit cohort responses 
will contain terms in s and terms in e8. In such 
cases, there presently are no simple systematic 
methods for finding the inverse transform. A few 
specific transforms have been found and are avail- 
able in the more extensive tables of Laplace trans- 
forms (Erdelyi et al. 1954). But in general, the 
modeler wishing to obtain estimates of a complete 
solution would be wise to convert the state space 
to discrete time and either use the z transform or 
digital simulation. 

INTERPRETATIONS OF UNIT COHORT RESPONSES 

The unit cohort response of a network model 
represents expected, or mean behavior of the modeled 
system as a result of one individual that was part 
of the input flow or input pool at time zero. In dis- 
crete time, as defined in this paper, the value of the 
unit cohort response of a given flow variable at time 
T is the predicted expected number of individuals 
entering or emerging from the corresponding process 
at r. In continuous-time, the value of the unit cohort 
response of a flow variable at time t is the expected 
number of individuals per unit time participating in 
that flow at t, and the unit cohort response of a 
pool variable (N) at t is the expected number of 
individuals in the corresponding pool at t. Thus, 
both in discrete and continuous time, and in spite of 
the fact that the actual flow or pool itself must be 
made up of discrete individuals, the unit cohort 
response generally will take on nonintegral values, 
representing predicted mean or expected numbers 
of individuals. 

In general, the postulated input flow or pool size 
will not be specified for a single moment, but will 
be distributed over time in some fashion. In that 

case (as long as the model is linear), the resulting 
response is generated by the convolution of the input 
distribution and the unit cohort response. Such con- 

volutions are carried out most easily when the func- 
tions involved are in the forms of z or Laplace trans- 
forms (Table 1). Therefore, the analysis of the 
complete response to a given input function can be 
accomplished in a straightforward manner if both 
the input function and the unit cohort response can 
be transformed into ratios of polynomials in z or s; 
in which case the transform of the convolved func- 
tions also will be a ratio of polynomials in z or s and 
can be inverted to a corresponding function of time 
through partial-fraction expansion. The class of 
input functions that transform to polynomial ratios 
is very large, including impulses, steps, ramps, ex- 
ponentials, sinusoids, and all responses to such func- 
tions by linear, time invariant networks that do not 
contain both integrators and fixed time delays. 

ROOTS OF THE CHARACTERISTIC FUNCTION 

The determination and interpretation of the sig- 
nificant roots (zeros) of the characteristic function 
of the system (i.e., the denominator on the right-hand 
side of Eq. 7) can, in itself, be a final outcome of 
linear flow graph analysis. In networks that do 
not contain both integrators and fixed time delays, 
the function will be a polynomial in s or z. Only 
in very simple models, however, can one expect the 
degree of this polynomial to be sufficiently low to 
alloW analytical solution for its roots (i.e., solutions 
that can carry the network's scale factors in literal 
form as well as in the form of specific numerical 
values). More generally, the solution for the roots 
of the polynomial can be expected to require nu- 
merical methods, which are widely available (e.g., 
Newton's method for real roots and Bairstow's 
method for complex roots, Salvadori and Baron 1952, 
Young and Gregory 1972). As long as one is forced 
to use numerical methods for root determination, 
there is very little difference in difficulty between 
polynomials and transcendental functions, such as 
those containing terms in s and terms in eS. Thus, 
if he or she is interested in the roots of the charac- 
teristic function, a modeler should feel free to em- 
ploy networks containing both integrators and fixed 
time delays. 

The largest real root of the characteristic function 
can be interpreted directly in terms of the dominant 
population growth pattern predicted by the model, 
being either the exponential coefficient of the domi- 
nant exponential growth term or the common ratio 
of the dominant geometric growth term. The com- 
plex roots for both types of transforms as well as 
-the negative real roots for z transforms can be in- 

terpreted directly in terms of the frequencies of os- 
cillations or population waves predicted by the 

model; by comparing these roots with the largest 
real root, one can deduce the predicted propensity 
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of the population to sustain the oscillations (Keyfitz 
1972). 

The interpretations of roots can be used in two 
directions. If reasonable estimates of the life history 
parameters are available but overall population dy- 
namics are not, then the root interpretations can be 
used to deduce estimates of the latter. On the other 
hand, if one or more life history parameters is in 
doubt, but overall population dynamics are reason- 
ably well known, then the root interpretation can be 
used to deduce estimates of the former. 

A NUMERICAL EXAMPLE: HERRING-GULL 

POPULATION 

The model of Fig. 3Ac can be used to represent 
the Herring Gull (Larus argentatus) population asso- 
ciated with a given colony, neglecting migration be- 
tween colonies. For the purpose of generating a 
numerical example, the following- parameter values 
will be used: K1 = 0.4 (Drury and Smith 1968); 
K2 =0.35, K3= 0.6 (Drost et al. 1961); and K4 = 
0.94, expected number of male or female fledglings 
per adult pair = 0.5 (Kadlec and Drury 1968; 
Kadlec et al. 1969). With these parameter values, 
the factors of the linear flow graph of Fig. 3Bc take 
the following forms: a = 0.4z-36; b = 0.611z-12; 
c = 0.35; d = 0.6; e = 0.376z-12; f =0.94z-12; and 
g = 0.5. The characteristic function (Table 2) is 

1-f-acg-a abdg-a beg 

1 - 0.94z-12 - .07Z-36 - 0.7332z-48 
- 0.0459472z-60. (20) 

Since the breeding of the entire population is syn- 
chronized to within 1 mo of each year, there is no 
reason to carry a temporal resolution of < 1 yr. 
One can change the temporal resolution from 1 mo 
to 1 yr by substituting z-1 for Z-12 in the function. 
Doing this and then multiplying by Z5, one obtains 

Z5 - 0.94Z4 - 0.07z2 - 0.7332z - 0.0459472. 

Beginning with the assumption that the real root is 
1.0 (a very good starting point for z-transform 
characteristic functions of populations models), six 
iterations of Newton's method yields the root 

z- = 1.08861615 (21) 

which is accurate to eight places. Dividing (z - 
1.088161615) into the characteristic function, one 
obtains the fourth-degree polynomial 

z4 + 0.1486z3 + 0.1618z2 + 0.1061 z + 0.0422, 

whose roots are complex and can be found by the 
quadratic factoring method of Bairstow or by direct 
analysis. By either method, one obtains the quad- 
ratic factors 

z2-0.4532z + 0.287 

and 

z2 + 0.6018z + 0.147 

which, in turn, lead directly to the roots 

Z1,2 0.227 + i 0.486 (22) 

and 

Z3,4 -0.301 + i 0.238. (23) 

The real root implies a dominant growth pattern in 
which the population increases by nearly 9%/yr 
(giving a predicted population doubling time of be- 
tween 8 and 9 yr). The complex roots imply the 
possibility of population waves with periods of 5.5 
years (corresponding to zI 2) and 2.5 yr (correspond- 
ing to Z3, 4). These waves would be triggered by a 
transient stimulus to the population. However, 
according to the magnitudes of the roots, once 
triggerem4-the waves would tend to die away rather 
rapidly. The magnitude of the roots z1,2 is 0.536 
while that of Z3,4 is 0.383. The waves should die 
away geometrically as (0.536)7' and .(0.383)T, re- 
spectively, where T is the time in years since the 
disturbance that triggered the waves. Relative to 
the dominant growth pattern, they will die away even 
faster (i.e., as [0.536/1.0886]T and [0.383/1.0886]7', 
respectively). On the basis of these results, one 
would predict that the modeled population has little 
propensity to sustain waves. 

In some areas (e.g., the Atlantic coast of North 
America) where Herring Gull populations are ex- 
panding rapidly in the face of increasing resources 
(e.g., garbage), the population doubling time for 
some colonies is quite comparable to that predicted 
here (Kadlec and Drury 1968). On the other hand, 
in other areas (e.g., the Atlantic coast of Europe), 
where conditions are more stable, the doubling time 
is considerably longer (e.g., 20 yr, Harris 1970). 
The propensity toward wave activity seems to vary 
considerably from colony to colony, being very low 
in some, high in others, with wave periods ranging 
from 2 to 10 or more years (Kadlec and Drury 1968, 
Drury and Nisbet 1969, Harris 1970), indicating 
that the values of the parameters of the model should 
be determined on a colony by colony basis and 
probably are influenced markedly by ecological con- 
text. 

COMPARISON WITH LESLIE TYPE MODELS 

The standard linear population models (Leslie 
matrix, renewal equation, von Foerster equation) are 
compatible with standard, age-specific demographic- 
type data, which give the expected probabilities of 
survival and of offspring production as functions of 
age. The models presented in this paper are com- 
patible with life history data of another type, namely 
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data concerning underlying natality and mortality 
processes. The differences and the equivalences be- 
tween the two classes of models perhaps can best 
be illustrated by considering the discrete-time ver- 
sions (i.e., by comparing the Leslie-matrix type 
model with the z-transform network type model). 
The characteristic polynomial of a Leslie-matrix 
model exhibits a single positive term (the term of 
highest degree) and a negative term for each of the 
other degrees represented (with the possibility of 
having every degree from the highest on down to 
and including zero represented) (see the entry for 
Fig. 7A in Table 2, and Pielou 1969). 

Because each term in this characteristic poly- 
nomial includes an independent multiplicative factor, 
the subdiagonal element of the matrix, an infinite 
number of Leslie-matrix models, can be constructed 
to provide any given polynomial of the type de- 
scribed. The same type of characteristic function 
arises from network models in which all loops touch 
(i.e., pass through common nodes in the correspond- 
ing flow graph) but not from network models with 
loops that do not touch. Therefore, in principle, 
any network model in which all loops touch has an 
infinite number of Leslie-matrix equivalents, in the 
sense that they provide the same characteristic poly- 
nomial; but a network model with any number of 
nontouching loops in general will have no Leslie- 
matrix equivalent (in other words, the model simply 
could not have been formulated in terms of the 
Leslie matrix). 

Since the age profiles of its time delays need not 
be specified, a discrete-time network model usually 
does not carry the modeled population's age struc- 
ture on a time-unit by time-unit basis. Therefore, 
when Leslie-type equivalents do exist, they will be 
overspecified (as far as the network model is con- 
cerned), and, thus, not unique with respect to age 
structure. Generally, the simplest Leslie-type equiva- 
lent to derive is that in which age structure is 
ignored altogether, and the natality and survivorship 
factors are combined to form the elements of the 
first row, leaving each of the subdiagonal elements 
equal to one. The row elements of this equivalent 
are found by the following method: cut the network 
path representing the flow of new offspring into 
the population thereby forming two paths, one lead- 
ing into the network and one leading out of it; de- 
termine the flow in the new output path in response 
to a unit cohort applied to the new input path. In 
other words, one finds the equivalent Leslie-type 
model by complete analysis of the unit-cohort re- 

sponse of a modified version of the network model. 
Thus, for the types of life history data postulated 

or given in the examples of this paper, the network 
method can be used directly, the Leslie method gen- 

erally cannot. By the same token, although a net- 
work model can be used directly for situations in 
which demographic-type life histories are given or 
postulated, it offers no advantages over the Leslie- 
type model (once the simple algorithm for deriving 
the characteristic polynomial is known), and it has 
the disadvantage of being considerably less compact 
(Fig. 7A). 
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