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DELAY-LINE MODELS OF POPULATION GROWTH' 

E. R. LEWIS 
Department of Electrical Engineering and Computer Sciences and the Electronics 

Research Laboratory, University of California 
Berkeley, California 94720 

A bstract. Replacing the usual principle of conservation of numbers with the equivalent 
principle of continuity of flow (or rates) leads to a very heuristic approach to modeling time 
lags in populations. The approach allows the direct use of unequal time lags (or age classes 
of unequal lengths) without the implicit assumption of a stable age distribution. Furthermore, 
for simple, linear natality processes, it allows direct estimation of the biotic potential and of 
the frequencies of inherent oscillations. 

INTRODUCTION 

Pure-birth processes have been described by a 
fairly large number of diverse mathematical models 
(see Keyfitz 1967 and Goodman 1967). In light of 
the complex and stochastic nature of various natality 
processes, one should not be particularly surprised 
at the ever-increasing diversity and complexity in the 
published models. In fact, one finds that the most 
sophisticated and complex models are those describ- 
ing the natality process that is probably the simplest 
and most primitive, binary fission (see Bronk, Dienes, 
and Paskin 1968). When more-complex birth pro- 
cesses are treated with similar attention to detail, the 
models promise to be extremely complicated and 
difficult to manage analytically. 

Most deterministic models of pure-birth processes 
are elaborations of one of three basic models (for 
an excellent review of stochastic models, see Bha- 
rucha-Reid 1960): the differential form of the Mal- 
thusean equation (see Pielou 1969): 

dN 
dt 

where o is the intrinsic birth rate and N is the total 
population; a form of the renewal equation (Lotka's 
equation) (Feller 1941): 

dN ) dN 
d= G(t) + () d (2) 

where 7 is age, oc(7) is the age-dependent natality, 
and G(t) is the continuing contribution to the birth 
rate by the initial members of the population (those 
alive at time 0); and a discrete approximation to the 
renewal equation, the Leslie-Lewis vector difference 
equation (Parlett 1971): 

Nt + T = ANt (3) 

where A is an extremely sparse matrix that describes 
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the age dependence of natality and N is a vector 
comprising age cohorts. Since eq. (2) represents the 
aging process in implicit form, it occasionally is 
coupled with an explicit representation of aging, the 
basic von Foerster equation2 (von Foerster 1959, 
Sinko and Streifer 1967, Fredrickson 1971): 

DN(t,z) DN(t,7) 
Dt Dy~~ ~ (4) at abl 

N(t,y) is population density at age 7. Death pro- 
cesses, migration terms, and density dependence of 
course can be added to any of these models (some- 
times at the expense of analytical manageability); 
and the effects of time delays, many of which are 
carried implicitly in eq. (2), (3), and (4), can be 
incorporated in eq. (1) by converting it to a simple 
differential- difference equation such as that proposed 
by Tognetti and Mazanov (1970) for certain insect 
populations: 

dNMt - o'cN(t -T) (5) 
dt 

where N(t) is the number of adults at time t, ox is the 
rate of egg production per adult, and T is the dura- 
tion of the egg stage. 

Equation (5) points up a difficulty inherent in 
eq. (2), (3), and (4). Certain specific, reasonably 
well-fixed, discrete delays often are important aspects 
of pure-birth processes. Equations (2) and (4) are 
designed to deal with a continuum of age dependence 
and thus a continuum of time delays, and eq. (3) is 
designed to provide a discrete approximation to that 
continuum. When discrete delays such as gestation 
periods, nonreproductive lactation periods, and ovu- 
lation intervals are to be incorporated in a model, 
equations designed for a continuum of delays are 
neither economical nor especially revealing. On the 
other hand, a delay such as any of those mentioned 
above generally exhibits a stochastic nature, and 
representing it as a single number may be a gross 

2Sinko and Streifer (1969, 1971) have modified this 
equation to include mass as a third independent variable, 
thus incorporating size as well as age. 
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simplification. However, in most models of popula- 
tion dynamics, random variables are reduced to their 
mean values; for example, in eq. (2), o(*') usually 
is defined to be the mean value of natality for a given 
age at. One is no less justified in similarly considering 
the means of discrete delays. 

In this note I shall discuss two methods of modeling 
natality so that discrete delays are retained explicitly. 
One distinct advantage of these formulations is that 
one often can deduce from them directly the r-la- 
tionships between the delays (or their mean values) 
and the biotic potential (innate reproductive capa- 
bility) of the species involved. Furthermore, these 
formulations lend themselves rather readily to block 
diagrams and are therefore easily visualized and quite 
heuristic. Another advantage, in contradistinction to 
the Leslie-Lewis formulation, is that this method al- 
lows direct use of unequal time delays (equivalent 
to age classes of unequal lengths) without the im- 
plicit assumption of a stable age distribution. A major 
disadvantage (with respect to eq. ( 1 ) and (3) ) is 
that they include continuous delay lines and there- 
fore inherently do not have a finite number of state 
variables. They are not as difficult in this respect as 
eq. (2) and (4), however. 

MODELING DISCRETE DELAYS 

The von Foerster equation provides a dynamic 
picture of the process of aging in a population. In 
the form of eq. (4), where death and migration 
terms have been eliminated, it describes a very sim- 
ple flow process such as one might find along a con- 
veyer belt moving at constant speed or through a 
telephone wire carrying messages at a constant speed. 
Material or messages are loaded at the input end and 
flow smoothly along a route toward some destination. 
A string of material or messages thus is distributed 
over the route, and at any point along the route one 
finds, unaltered, the material or messages that were 
loaded at some time in the past. We can lump all 
such flow processes into the general category of pure 
"delay lines," which introduce time delays into their 

At t=t, 
N *1O _______ _ _ _ _ _ _ _ 

N(tl, 0)__ 

0 x 

At a later time 
H t2-H 

t =t2_ 
N(t 0) ! 

FIG. 1. Von Foerster's dynamic concept of a deathless 
population. The open-ended rectangles represent a delay 
line, along which waveforms travel without changing 
shape or amplitude. In this case, the waveforms N(t,x) 
represent population density, and distance along the de- 
lay line represents age (x). The velocity of travel is one. 

input functions but do not otherwise alter them. 
Equation (4) describes a delay line whose input is 
the density of newborns (number per unit time) and 
along which moves a waveform (population density 
given in individuals per unit age) that does not 
change shape as it advances (Fig. 1). In its more 
complete form, with death and migration terms, the 
equation becomes 

DN DN 

t + + N + rN = ? (4a) DX 
where 8 is the reath rate and r is the migration rate. 
This equation does not describe a pure delay line; 
migration and death will alter the waveform as it 
advances. The equation was derived from a basic 
conservation principle: at any age other than zero, 
the number of individuals is changed only by three 
processes: aging, death, and migration (von Foerster 

N0 

N, N2 N3 N4 Ni+1(t+l) N=i) 

Sal N ja2N2 la3N3 ta4N4 

N0 N (t+)= 
FIG. 2. A discrete (segmented) version of the delay 

line of Fig. 1, with the input (births) determined by the 
weighted sums of the delay-line contents. The open se- 
quence of rectangles represents the delay line; the circles 
represent scalors that apply weighting factors (&x's) to 
the contents of the delay-line segments; and the long, 
open rectangle is an adder that sums the weighted con- 
tents. 

1959). In the renewal equation (2) that generates 
the input function, N(t,O), to the delay line of Fig. 
1, the contents of the line are sampled continuously 
along its length. This is most easily diagramed (Fig. 
2) from the discrete approximation represented by 
eq. (3), where the delay line is segmented and the 
density function in each segment integrated to yield 
a single number. 

In the case of a single, discrete delay, one may 
reduce the number of terminals on the delay line to 
two, one input and one output. Furthermore, with 
such delays it is most convenient to convert the usual 
principles of conservation of numbers to an equiv- 
alent principle of "continuity" of the flow from sec- 
tion to section of the delay line, completely analogous, 
for example, to the continuity principle applied to 
flow processes in fluid mechanics. Rather than con- 
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sidering the number of individuals at a particular 
age, we shall consider the rate at which individuals 
pass through a particular age. Thus, for example, if 
we happen to be ignoring death, we shall apply our 
conservation principle by demanding that the rate at 
which individuals emerge from a 2-year delay is 
precisely equal to the rate at which they entered 2 
years ago. In other words, the rate of emergence of 
2-year-olds today equals the birth rate precisely 2 
years ago. By applying the conservation principle in 
this manner we shall be able to construct with ease 
very heuristic systems diagrams of our population 
models. 

Consider, for example, a population of idealized 
bacteria, each of which undergoes fission every 10 
min. Using classical approaches, we could describe 
this population rather simply with either eq. (1) or 
eq. (3): 

dN 
-d = N; x = [(log 2)/10] (6) 

or 
Nt- 2Nt-10 (7) 

the unit of time in each case being 1 min. On the 
other hand, if the process of fission is sufficiently con- 
tinuous or if the population is sufficiently large that 
we can define a continuous rate of fission at any time, 
then we can say that the rate of fission now is pre- 
cisely twice the rate of fission 10 min ago. We may 
represent this view diagramatically as shown in Fig. 

10-minute delay line 

dNI 2| dN A 
dt t dt -Omin dt -Omin 

FIG. 3. A delay-line model of an idealized fission pro- 
cess. In this case the fission interval is 10 min. 

3. The current products of fission enter a 10-min 
delay. On emerging from this delay, they immedi- 
ately undergo fission again. Therefore, we may write 
a third equation to describe the population: 

dN dN 
dt _ t-iO - (8) 

For contrast, a diagramatic representation of eq. (6) 
is presented in Fig. 4. The major distinction between 
the two representations is the replacement of the 
integrator in the classic model by a delay line. When 
one computes the appropriate value of a (= log 2/ 
10), he begins to suspect that the model of Fig. 3 
is the more fundamental representation. This suspi- 

Integrator 

aNCI) NMt):faNt) dt 
-,,, 

FIG. 4. The classic model for the idealized fission pro- 
cess of Fig. 3. 

cion is confirmed when populations with several dis- 
crete delays, such as those of mammals, are con- 
sidered. The relationship between a and the various 
delays becomes an end result of modeling rather than 
a starting point. 

While it may be a more fundamental representa- 
tion than eq. (6), eq. (8) also has somewhat more 
complicated solutions, which are difficult to express 
precisely in closed form. One can discuss this differ- 
ence conveniently in terms of Fig. 3 and 4. The sys- 
tem of Fig. 4 has a single state variable, N(t). If 
N(t) is known for any single value of time, the be- 
havior of the system can be predicted precisely for 
all time. It is simply 

N(t) = Noeat 

In order to predict completely the behavior of the 
system of Fig. 3, one must know the entire contents 
of the delay line at some moment in time. In other 
words, one must know the form of the function N(t) 
over a complete 10-min span. Just as the initial value 
of N is constrained to be positive for eq. (6), the 
slope of N(t) over the specified segment for eq. (8) 
is constrained to be greater than or equal to zero 
(assuming no death or migration). In serving as a 
boundary condition, this segment of N(t) carries 
information about the proportion of the initial pop- 
ulation participating in fission. Since we initially 
assumed that every bacterium participated, we must 
conclude that in this case our boundary conditions 
are compensating for a deficit in our model. Such a 
deficit is not present in the classic difference equation 
(eq. (7)). However, this form is no more fundamen- 
tal nor useful than that of eq. (6) when several 
delays are involved. 

Even when the contents of the delay line are spec- 
ified at some point in time, it is difficult to express 
the future (or past) behavior of the system of Fig. 3 
in analytical form. On the other hand, in this par- 
ticular example it is not difficult to construct the 
behavior graphically. One simply draws the known 
segment of N(t), then repeats it for successive 10-min 
intervals, amplifying it successively by factors of 2 
(see Fig. 5). 

From the known segment of N(t), one also can 
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N f// 

v Z ~~~~Bl exp log 2t] 

-~~~~~~~~~~~~~~~~~~~ 
I / 

0 10 20 30 40 50 
t (min) 

FIG. 5. One of many growth curves for the model of 
Fig. 3. Ordinate, population; abscissa, time. 

find two exponential functions (as shown in Fig. 5) 
that precisely bound the behavior of the population. 
These functions have the form 

to + Bi exp [a t] 

log 2 

A + B2 exp [a t] 

where the unit of time again is I min, and A = 0 if 
all of the initial population participates in fission. 
One can approximate the behavior of the system of 
Fig. 4 rather well with any function of the form 

A + B exp [a t], a -lo 10 

where B lies -between B, and B2. Such a Malthusean 
approximation will intersect the actual behavior every 
10 min and will never be an error by more than 
100%. Malthusean approximations with values of a 
that differ from (log 2) / 10, on the other hand, will 
diverge progressively from the actual behavior and 
the maximum error will increase without limit. The 
exponential coefficient of the nondiverging Malthu- 
sean approximation can be found by substituting eat 
into eq. (8): 

meat 2mea (t +10) 

from which 
log 2 

a = 

This value of a, then, can be taken as a long-term 

average measure of the innate reproductive capability 
of the species represented by eq. (6) or the system of 
Fig. 3. Therefore, as is often done, we shall define a 
to be the biotic potential of that species. 

DELAY LINE MODELS THAT LEAD TO DIFFERENTIAL- 
DIFFERENCE EQUATIONS 

In probably their simplest application to vertebrate 
populations, delay lines can be used to represent the 
mean time (T1) between birth and the initiation of 
offspring production and the mean duration (T2) of 
the productive period. If one ignores age-dependent 
fecundity and assumes that the rate of production 
of new females, N], is directly proportional to the 
total number of productive adult females, NPt, he 
can write 

Pf -_ kNpf (9 ) 

Assuming no deaths, 
t- T1 

Np= f Nfdt . (10) 
t- (T1+T2) 

Substituting eq. (9) into eq. (10) and decomposing 
the integral, one obtains 

t- T1 t-(T1+T2) 

Npvf = k rNvfdt -k NPfdt. 1 

- cc - cc 

Differentiating both sides with respect to t leads to a 
simple differential difference form of eq. (9). 

dtvf = k[Nf (t - T1) - NPf(t - T,- T2)1] 

(hla) 

Substituting eat for Nvf in eq. ( 1 1 ) or ( 1 1 a), one can 
find the Malthusean approximation and a transcen- 
dental equation relating the biotic potential, a, im- 
plicitly to T1 and T2: 

a = k e-aT(l - e-aT2) . (12) 

One also can construct a systems diagram directly 
from eq. (11) with its decomposed integral. How- 
ever, a simpler, but completely equivalent diagram 
(Fig. 6) can be constructed directly from simple 
considerations of conservation and continuity. In the 
absence of death, the rate at which the population 
of productive females changes is completely deter- 
mined by two terms-the rate of addition of newly 
maturing females (i.e., the rate at which females 
emerge from delay T1) and the rate of removal of 
sexually senescent females (i.e., the rate at which 
females emerge from delay T2). The delay line T2 
contains all the productive females and the integrator 
simply provides a running total of that delay line's 
contents. The scalor k relates the total number of 
productive females to the rate of production of new 
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Delay line Delay line - 

T, T2 

=~~~~~~ Nf Pf I 

Nf 
Integrator 

FIG. 6. A delay-line model of natality in an idealized 
deathless vertebrate population, N f is the present birth- 
rate of females; N Pf is the total number of sexually pro- 
ductive females; T1 is time from birth to sexual ma- 
turity; T2 is the duration of sexual productivity. 

females, which then enter delay T1. The characteris- 
tic differential-difference equation (11 a) can be 
found by direct analysis of the system diagram, be- 
ginning at the right of the summing point. 

The effects of an ideal, nonselective (i.e., Poisson) 
death process can be added rather simply to the 
model. If the fractional death rate is 8 deaths per 
individual per unit time, then one can account for 
the deaths in each time delay, T, by introducing a 
survivorship scalor, e T, in series with it. Thus the 
rate at which surviving individuals emerge from a 
delay T is e-5T times the rate at which they entered 
it T time units ago. The rate of change of productive 
females now has three components: the rate of ad- 
dition of young females surviving to maturity: 

(e-5Tl) Nf(t -T), 

the rate of subtraction of females surviving to sexual 
senescence: 

(e-(Ti+T2) )Nf(t - T- T2) 

and the rate of attrition due to death: 

Npf (t) 

These processes are represented in the systems di- 
agram of Fig. 7. Beginning at the right of the sum- 
ming point in this figure, one easily can write the 
characteristic differential-difference equation for the 
system: 

dNpf - T 
dt 

= e-1TNPf(t - T1) 

-e-5(Ti+T2)Npf (t - T- T2) - Npf (t) (13) 

The transcendental equation for the biotic potential 
becomes 

a (e-5T,)e-aT, _ (e-- (l+T2))e a(TI+T2) 

(13a) 

Systems models, such as those of Fig. 6 and 7, 
that contain both delay lines and integrators in any 
loop inherently lead to differential-difference equa- 
tions. The two population models of Fig. 6 and 7 led 
to differential-difference equations of the retarded 

~~~T T2 

L_~ ~ eT e-Ta - 

k ~~~~~~~~~~~~~dNpf 
Npf d 

Integrator 

FIG. 7. The model of Fig. 6 with a nonselective death 
process added. The poisson death rate is 8 (individuals 
per individual unit time). 

type (Bellman and Cooke 1963, Hale 1971). This 
will be a common result in population models whose 
dynamic properties are determined both by discrete 
delays and by mass-action phenomena. (The models 
of Fig. 6 and 7 contain two first-order mass-action 
phenomena: a first-order natality process and a first- 
order death process.) Many population systems are 
represented most naturally by models that incorpo- 
rate mass action; and when delays also are important 
in such systems, then models often lead to retarded 
differential-difference equations (see Wangersky and 
Cunningham 1956, Tognetti and Mazanov 1970). 
Such equations generally are extremely difficult to 
manage analytically. 

DELAY-LINE MODELS THAT LEAD To SIMPLE 
LINEAR DIFFERENCE EQUATIONS 

If one looks into the fine structure of the natality 
process, one generally finds discrete processes with 
fixed delays. Thus, for example, it often is more nat- 
ural to discuss a reproductive interval than a repro- 
ductive rate. The latter is only approximated by the 
reciprocal of the former; and in some cases, such as 
that of binary fission, the approximation is rather 
gross. One can model such reproductive intervals 
quite naturally and easily with delay lines. As an ex- 
ample, consider a population of idealized fin whales. 
On reaching sexual maturity (at age T1), a female 
whale becomes pregnant, producing one calf at the 
end of her first gestation period (TG) and becoming 
pregnant again at the end of her nonreproductive 
lactation period (TL)- She continues this process as 
long as she survives, producing one calf every TL plus 
TG years. Half the calves born at any given time are 
female. The proportion of female calves surviving 
to become sexually mature adults is Yi (This factor 
may include the effects of infant mortality due to 
deaths of lactating females.) The survivorships for 
pregnant and lactating females are YG and YL respec- 
tively. With simple bookkeeping (conservation) one 
easily can construct an appropriate systems diagram 
(Fig. 8) from the verbal model. Beginning at the 
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P 

Birth rate Tota I 
of females birth rate 

FIG. 8. A very simple model of fin-whale natality (see 
text for details). 

left in Fig. 8, one requires a delay of T1 and a sur- 
vivorship scalor Yi between the rate of production of 
newborn females and the rate at which maturing 
females are added to the productive population. The 
rate of addition of maturing females is summed with 
the rate at which already-productive females are 
completing lactation, the sum representing the present 
rate of impregnation. Between impregnation and 
birth, a gestation delay of TG and a survivorship 
scalor YG are required. The total birth rate is divided 
by 2 to yield the rate of production of females, which 
is the input to the first delay line, T1. After giving 
birth, the females are delayed by TL and scaled by 
YL before reentering the reproductive pool and be- 
coming pregnant again. From the diagram one can 
write a characteristic difference equation, the expo- 
nential solution of which will yield the biotic potential 
of the idealized whale population. For convenience, 
we can write the equation in terms of the output of 
the summer (i.e., the rate of impregnation P): 

P = (l/2)yIyGP(t - TG - T1) 

+ YGYLP(t -TG - TL). (14a) 

Substituting eat for P, one finds 

1 = (1/2)yiyGe a(TG+T') + Y;yLe a(G+T L) 

(14b) 

which is a transcendental expression giving the biotic 
potential implicitly in terms of the delays and sur- 
vivorships. 

One might wish to include even more fine structure 
of natality in the model. For example, adult females 
that are neither pregnant nor lactating do not auto- 
matically and instantaneously become pregnant. 
Therefore the ovulation interval becomes a poten- 
tially important factor. Again, one can model this 
with delay lines. Consider the same baleen whale 
population, but with an ovulation interval To and a 
probability 5 of impregnation at any given ovulation. 
This leads to the systems diagram of Fig. 9. Baleen 
whales (and most other groups of mammals) show 
seasonal variation in fecundity, rate of impregnation, 
or both. This can be incorporated in the scalor 5 by 
making it time dependent. Finally, there is some ev- 
idence (Laws 1961) that nulliparous baleen whales 
have ovulation intervals of as much as a year, while 

b 

C 

FIG. 9. A slightly more complete model of fin-whale 
natality. P represents the rate of impregnation (see text 
for remaining details). 

~a 

(b- 

FIG. 10. An even more complete model of fin-whale 
natality. T'o represents the ovulation interval for nulli- 
parious whales, and P' is the probability of impregnation 
of an ovulating nulliparious whale (see text for remain- 
ing details). 

the ovulation interval of primiparous and multiparous 
females generally is I month. This dichotomy can 
be included in the model quite easily, as shown in 
Fig. 10. Characteristic difference equations can be 
obtained easily for the systems of Fig. 9 and 10. In 
the case of Fig. 9, we must sum the effects of three 
loops: 

(11PS)P(t) = PYGO /2)7170 
(t T,,T 

+ (1- P)YO Y ?t-T) + PYGYI P(t - T(;- Tj) 

(15) 

where the first term on the right represents loop a; 
the second term represents loop b; and the third term 
represents loop c. The corresponding transcendental 
equation for the biotic potential is 

1 = (1m2)YonthG.eTh d+iTo) 

+ yo(l1 - P)e-aTo + YGYL~e--a(TG+TL) 

The system of Fig. 10 is more complicated, having 
four loops. Analysis proceeds most easily if the rate 
of impregnation is decomposed into P' and PI' and 
the effects of loops a and b are summed separately 
f roc9 the effects of c and d. For a and b, we have 

(1/ P')P (t) I (12)YGY1Y oP (t - TG- T1) 

P~t - T0) P(t- - TLO) 

+ PI (t - TG- Tj) + ( 1-1 P)Y yo I, 

(16) 
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and for c and d we have 1 
P'(t) ~ P"f(t ? TG ? TL) - P"f(t)- 

( 1/ )P (t) = y(,,yl[P (t- TG- TL) PYGYL 

P"(t-T.) 1-T Y P"(t-To + T, + T+ ), 
+ P"(t - Tc- Tl)] + (l-)y P7 YGYL L 

(17) and the solution can be substituted for each P' term 
Next we can solve eq. (17) for P'(t): in eq. (16): 

p P"(t + T(; + T) )- P"(t)- 
0 

PYY (t- To + TG + TL,) 

- (1/2) 
1 

P"(t + TL TI) - ()I/2)Yyl'oyG P"(t - TG - T) 

- (1/2) '1("oyo 1 f P(t - To - T1 + T7) + (1/2)YlY'(YG P (t - TG - Tj) (18) 

+ ?5, P"(t + T(;, + T.-T'o)- -Y pf(t - T 

_(1 - ') (1 - 7) ," P"(t- To -To + TG + TL) 
"( Th YLr, 

from which one obtains a 10-term transcendental 
equation for the biotic potential. 

Although eq. (14) and (18) may seem rather com- 
plicated, they are in fact simple linear difference 
equations, for which analytical techniques are well 
established (see Goldberg 1958). In addition to bi- 
otic potentials, the various oscillatory modes inherent 
in the models also can be evaluated by application 
of these techniques. Returning briefly to simple bi- 
nary fission, the characteristic equation was 

dN dN 
dt ]t dt t-T 

(where T is the fission interval). This can be rewrit- 
ten as follows: 

t 
let 7 __ 

dN 
and =x 

dt 
then xT = 2x]. (19) 

for all nonnegative integral values of -. The solutions 
to linear difference equations such as this always take 
the form 

xT = nIt (20) 

where in is a root of the characteristic polynomial of 
the difference equation. The polynomial is found 
quite easily by collecting all terms of the difference 
equation on one side and substituting eq. (20). Thus, 
for eq. (19) 

x- 2x 0_ l 
n1_- 2mT-1 = 0 

m-2 0 
m 2. 

The solution by this method for simple binary fission 
becomes 

dN dN 
t to + 7= 

2T 
dt to 

(21) 

where the choice of to is completely arbitrary. Geo- 
metrically, this solution represents a sequence of dis- 
crete points at integral values of T. In order to 
describe the behavior of the equation completely, 
one would need an infinite sum of such solutions, 
one for each point on a continuous curve represent- 
ing dN/dt over a span of T time units. 

On the other hand, one can connect with a con- 
tinuous curve all the points of a single solution of 
the form of eq. (21). Clearly, one such curve is 
given by 

/log 2 t 
y(to + t) = y(to)e( T )t (22) 

Furthermore, by appropriate choices of to, one can 
obtain two solutions of this type that form, respec- 
tively, the upper and lower bounds of all such solu- 
tions intersecting the actual behavior of the system. 
This is precisely what was done graphically in Fig. 
5. However, since these solutions represents dN/dt, 
they must be integrated to provide the bounds of N. 
Thus, if 

I og 2 t 
Y(tni, + t) = y(tM) e t Z ) 

describes the upper (or lower) bound of all exponen- 
tial solutions intersecting dN/dt, then 

? ) T lo( 29) z (tnt + 0 log 2 y(tJn)e 10g 

log 2 t 
=Z (t ) et a .7 
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describes the upper (or lower) bound of all exponen- 
tial solutions intersecting N. Clearly, in the case of 
simple exponentials, integration does not alter the 
functional form of the bound. The upper and lower 
bounds, taken together, form an envelope confining 
the behavior of the system. 

In the case of a linear natality process with more 
than one delay, the difference-equation solution gen- 
erally will have oscillatory terms, and these can be 
incorporated as temporal fine structure in the enve- 
lope of the systems behavior. Presumably, in any 
practical model, each time delay can be expressed 
as an integer times a common divisor of all the de- 
lays (i.e., the common divisor becomes the unit ele- 
ment of an integral domain to which all the delays 
belong). The order of the resulting difference equa- 
tion (and its characteristic polynomial) will be given 
by the longest time delay divided by the greatest unit 
element T (the greatest common divisor of all delays 
in the model). 

Consider a simple population of idealized herring 
gulls. Beginning at age 3, each adult female annually 
produces a brood from which n females survive to 
full fledge (age 2 months) and n y survive to age 3. 
From the time of full fledge until the end of her 
life, each female faces a constant probability of 
death, which can be expressed as a fractional death 
rate, 8 (deaths per bird per year). Employing delay 

+ 

3 yrs. I +yr. 

FIG. 11. A delay-line model of an idealized herring-gull 
population. J is the rate of nesting (see text for remain- 
ing details). 

lines, one easily arrives at the systems model shown 
in Fig. 11. The greatest common divisor of the delays 
is 1 year, and the corresponding difference equation is 

J,-nyJT,_3 + e-aJTIl ( 2 3 ) 
where J is the rate of nesting, r is an integer in the 
domain for which 1 year is unity, and 

y =exp[-( (17/ 6)8 

The characteristic equation is 
(m3 - e-5m2 -- ny) 0, (24) 

and the solution to eq. (23) takes the form 
J- = alml? + a2m2r + a3m3T 

where ml, in2 and m3 are the roots of eq. (24). 
By Descartes's rule we know that eq. (24) has at 

most one (the number of reversals of sign) positive 
real root. The remaining roots must be negative real 

or complex conjugates. The positive real root will 
represent a growing term if the root is greater than 
unity, a constant term if the root is equal to unity, 
or a declining term if the root is less than unity. A 
negative real root represents oscillation at an ap- 
parent frequency of 1/2T (i.e., the term nT is pos- 
itive for even x, negative for odd :). If the magnitude 
of the root is greater than unity, the oscillations will 
grow; if it is equal to unity, the oscillations will re- 
main constant; if the magnitude of the root is less 
than unity, the oscillations will be damped. The same 
statements hold for a conjugate pair of complex 
roots; but the frequency of oscillation will not equal 
1/2T. 

Thus Jr generally will contain one nonoscillatory 
term and one or two oscillatory terms: 

either 
J, = A ?ml7 + BIm2fT cos 7C + CIn m3f cos As 

(25a) 

or 

Jr = Aim,1f + Bfm2jT cos(0 ? c) 
(25b) 

where C E Z+; 

and, the envelope of J will be given by two equations 
of the form 

Jenv = aeat + beftcosjtt+ ceytcosjtt (26a' 
or 

Jenv = aeat + beftcos(Ot + c) . (26b) 
From the envelope of J alone, we cannot determine 
the envelope of N (in the sense of a curve that pe- 
riodically is tangent to the actual solution). However, 
since J cannot be negative, we can determine the 
upper and lower bounds of all possible envelopes: 

t 

N - Nmax (nyJ'c1 -, Ninax) dt (27a) 

t 

N - Nmin =f (nyJ" CI -V NW11l11)dt (27b) 
_00 

where Tenv describes the upper bound of J and J",,v 
describes the lower bound. Evaluation of NlllaX and 
Nmin can be achieved quite easily with the aid of 
Laplace transforms. From (27a), for example, 

Y(Nniax) = ny Y UJl""-) / G + 8) (28) 

where s is the complex variable of the Laplace trans- 
form. The function Nmax can be found directly from 
eq. (28). Qualitatively, the effects of the factor 
1/(s + 8) on Tenv are threefold: (1) The relative 
amplitudes of the various components (oscillatory 
and nonoscillatory) are changed, the slower or lower 
frequency components being favored. (2) The oscil- 
latory components will be shifted in phase (but not 
in frequency). (3) An additional nonoscillatory term, 
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De-5t, will appear. For a quantitative example of 
these effects, consider the second term in eq. (26b), 

beftcos(Ot + c) 

The factor 1/ (s + ') converts this term to 
bVeftcos(Ot + c + 11') + d'e-5t (29a) 

where 
b 

bf = (29b) 
V(E + 3)2 + 02 

0 
IIJ- tan--' . (29c) 

Such shifting of amplitude and phase, of course, does 
not alter the rate constants and frequencies of the 
various terms; therefore, we can obtain the biotic 
potential along with the frequencies of various oscil- 
lations directly from the solution of eq. (23), or 
analogous equations from other linear natality models. 

RELATIONSHIP TO THE LESLIE MODEL 

If we are content to ignore the temporal fine struc- 
ture embedded in the initial functions (i.e., the initial 
contents of the delay lines) of the models of the 
previous section, and instead concentrate on the en- 
velopes and the natural frequencies contained in 
those envelopes, then we effectively reduce the num- 
ber of state variables in the models to a finite set. 
In fact, the dimension k of the state space becomes 
simply the order of the difference equation, which 

can be replaced by a vector state equation consisting 
of a k X k state projection matrix and a k-order state 
vector. In the case of the herring gulls we can write 

-Ji 1 e-5 ? ny ~J 
Ji-1| 1 0 ? IJi-1, (30) 

LJi-2 i =,r+l 0? 1 0 Ji-2 ji=, - 

Because mass action could be ignored and continuity 
could replace conservation, the elements of the state 
vector are rates rather than age cohorts. 

If, on the other hand, we had taken the mass ac- 
tion approach, the elements of the state vector would 
be age cohorts and the elements of the state projec- 
tion matrix would be different. 

Since natality in individual gulls is assumed in the 
model of Fig. 11 to be precisely annual, it is simplest 
to formulate the corresponding Leslie matrix by 
assuming that the entire population is synchronous. 
Define t = 0 to be immediately after egg laying (each 
nest has a full clutch), and r is an integer defined by 

- = t/T; T = 1 year. 

The number of eggs, No, at X + 1 is given by 

(NO) +1 = noe 6[(N2), + (N3) , + . . . + (N1C) r1 

where (NX)r is the number of x-year-old female gulls 
alive at r. The parameter n has been factored into 
no (the number of female eggs per clutch) and yo 
(the survivorship of those eggs to full fledge). The 
resulting state equation is 

N(, 0 noe-0 n(e-0 ..... noe-5 No 
[N| 7o ] E . . . s N| 

0 e-a 0 0 i I. 0 e~~~~~~ 0 I I ~~~~~ (31) 
1 0 e-g I 

LNkrlT L 0 0 . ..e-6 0 ]LNk r 
where y' = y-e - (5/6) 6. 

Owing to the transcendental nature of the model 
(which was employed as a reasonable convenience 
rather than a logical necessity), k in the Leslie for- 
mulation is not finite. Nonetheless, the characteristic 
polynomial and eigen values (A's) of the matrix are 
easily found. First, from the method outlined in Pie- 
lou (1969: 30) we have 

Xk+1 - y'noe-26Xkl2 -2y'noe-36Xk-3 

-. .-y'noe-U = 0, 
which can be simplified as follows: 

k 
-k +1 - y'noV-, E (e-6X -) i = 0 

j=2 

k 
X-y'no E (e- ')i + y'no + y'noe - 1 0 0 

j=O 

k 
lim E: (e-8>-1) j= _-6X1 

Kx jY'no e 
1 e- eX- yO +yn1e- 0 

e-6 - y'no + y'no -y'noe-6-1 
+ y'noe- -1 - y'noe-26X-2 = 0 

,3/X e-?-2 ny = 0 (ny = y'noe26) 

Thus the Leslie formulation leads to the same char- 
acteristic polynomial as the delay-line formulation. 
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The Leslie matrix is a bit more cumbersome than 
that of eq. (30); but this is due simply to the tran- 
scendental nature of the model. Since the dimension 
of the state space is three, we could have simplified 
the Leslie approach by considering only three co- 
horts N1, N2, and all adults NA: 

NA =E NE 
3 

/ 1 ' 0 n~e-6 ' 1' ( )2 =( e o 28)(Ni) (32) 
NA T+1 

0 e-6 e-a NA 

The characteristic polynomial can be found quite 
easily by noting that for any eigen value A, and its 
corresponding eigen vector, 

(NA),+, -- =(NA)T= e 5(Ne)T+ e 6(NA AT, 
from which 

e-6 
(NA)T 6 (N 

and 

(NA) 7 
Be-6 N, ()+ 1 = -\ e-a 6 ) 

This allows the matrix to be displayed in the standard 
Leslie form (; 0e n0 1 Xe-O 8 e6 

and the characteristic polynomial can be obtained 
directly (Pielou 1969): 

X3 ~~~0 - - -6 0 

)X4 e-63 - nYX = ? 

_ e-6X2- ny = 0. 

Thus, if we assume that natality in the gulls is 
synchronized, we can develop a simple Leslie formu- 
lation that leads to precisely the same characteristic 
polynomial as the difference equation derived from 
the delay-line model. If time is considered discrete, 
both methods lead to a three-dimensional state vector 
and to projection matrices that are similar and con- 
tain simple biological parameters. Thus, if one wishes 
to consider time as a discrete variable, the two ap- 
proaches are equally easy and, accepting the assump- 
tion of synchronized natality, equally intuitive. This 
is true of all linear natality models in which the time 
delays have a common divisor that can serve as the 
unit element of an integral domain to which all time 
delays belong. 

In the case of the fin-whale model of Fig. 9, how- 
ever, the greatest common divisor that can serve as 
a unit element of the time delays is, at most, 1 month 
(the ovulation interval). Therefore, an algebraic state 
equation, whether generated by the delay-line or the 
Leslie approach, will be of awkwardly high degree 
for analysis. Furthermore, if any of the timz delays 
is carried as a parameter with unspecified value, as 
it might be in sensitivity studies, then variation of 
that parameter will lead to variation in the degree 
structure of the polynomial rather than to variations 
of its coefficients. In other words, the time-delay 
parameter is not carried explicitly in the character- 
istic polynomial of the algebraic state equations. It 
is carried explicitly, however, in the transcendental 
characteristic equations (such as eq. (13b) and 
(14b) ) derived directly from the characteristic differ- 
ential-difference or difference equations of the delay- 
line models. In this case, therefore, the delay-line 
model has very distinct advantages, the most impor- 
tant of which is that it allows us to deal simply, 
directly, and realistically with nonuniform age classes. 

THE INTEGRAL APPROACH VERSUS THE 
DIFFERENTIAL APPROACH 

In most population models, natality is viewed as a 
mass-action phenomenon, with the present natality 
rate taken to be determined either by the total num- 
ber of sexually productive females or by the weighted 
sums of the numbers occupying various age classes. 
This approach, which has been quite successful, is an 
application of the classical state-variable method; in 
which the rates of change of state variables are re- 
lated (by a state-transition matrix) to those variables 
themselves. Most population models incorporating 
time delays also have been based on the state-variable 
approach. In these cases, however, the present rates 
of change of the state variables are related not to the 
present values of those variables but to their values 
at some fixed interval of time prior to the present. 
Once this has been done, of course, the notion of 
state variable is no longer particularly useful; and 
one must think in terms of state functions. Nonethe- 
less, the models generated by this approach can be 
useful (see Wangersky and Cunningham 1956, Frank 
1960, Lefkovitch 1966, Kiefer 1968, Pennycuick, 
Compton, and Beckingham 1968, Tognetti and Ma- 
zanov 1970). In general, these models are charac- 
terized by their property of relating the present na- 
tality rate either to the total population at some time 
in the past or to the weighted sum of age cohorts at 
some time past. Conceptually, using this approach, 
one converts rates to populations by integration, then 
delays the products of integration to generate future 
rates. Since this approach, strictly speaking, is not a 
state-variable approach, and since continuous systems 
models generated by this approach can be identified 
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by the presence of integrators in the loops represent- 
ing natality, it might well be called an "integral" 
approach. 

In this paper a second approach has been intro- 
duced. Here, rather than introducing delays into the 
population or the population vector, we have intro- 
duced them into the rates themselves. Present rates 
are related to rates at key times in the past rather 
than to total numbers. In its purest form, this method 
leads to systems models (Fig. 3, 8, 9, 10) that are 
completely devoid of integrators in the loops repre- 
senting natality. Formally, these pure delay models 
are specific forms of the renewal equation, in which 
the weighting factor [I(7.) in eq. (2)] is a sequence 
of Dirac delta functions. Because of the lack of in- 
tegrators in the systems models, this approach might 
well be called a "differential" approach. 

The models of Fig. 6 and 7 represent a hybrid ap- 
proach. Natality is taken to be a mass-action phe- 
nomenon, but the time delays are applied to the rates 
rather than the populations. Fundamentally, this ap- 
proach is quite similar to those of Wangersky and 
Cunningham (1956) and Tognetti and Mazanov 
(1970). Conceptually, however, it differs in that the 
time delays are placed ahead of the integrators in- 
stead of after them. Formally, the hybrid integral- 
differential approach represented by Fig. 6. and 7 is 
a specific form of the renewal equation in which the 
weighting factor is a sequence of steps. 

It is not my intention to propose that either the 
differential approach or the integral approach is in- 
herently better than the other and therefore leads to 
more realistic models. I do assert, however, that the 
two methods differ heuristically, that depending on 
the circumstances one or the other will be more 
natural, and that the proper choice therefore will 
facilitate the modeling of the particular system at 
hand. Clearly, where dynamics are most easily de- 
scribed in terms of mass action, as of course they 
often are, the integral approach is indicated. On the 
other hand, time delays generally (but not always) 
can be modeled most easily by the differential ap- 
proach. Where time delays are coupled to mass 
action, the most natural overall approach may be 
hybrid, in which case a differential- difference equa- 
tion will result. Certain linear natality processes, as 
we have shown, can be modeled with a purely dif- 
ferential approach, in which case simple difference 
equations result. 
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