J |
_ /M
I A\
SWARM Lab ._-

John Kubiatowicz
kubitron@cs.berkeley.edu

J |
_ /M
I A\
SWARM Lab ._-

Cloud Services

access

\ Sensory swarm

The Local Swarm:
Person, House, Office, Café

Enterprise Services

J |
7 /M
I A\
SWARM Lab ._-

» What system structure required to support Swarm?
— Integrate sensors, portable devices, cloud components
— Guarantee responsiveness, real-time behavior, throughput

— Services with guaranteed behavior, self-adapting to adjust
for failure and performance predictability

— Uniformly secure, durable, available data

Swarm App Store

Distributed Sense-Control-Actuate Platforms

Integration

Innovative Devices and Materials

J |
7 /M
I A\
SWARM Lab ._-

* Resources not well managed: QoS hard to achieve
— 20t™-century notions of utilization and resource virtualization
— Despite a cornucopia of resources — we still cannot get the ones
we need when we need them!
» Services not easily interconnected
— Every service has a unique API

— Highly-specialized “stovepipes” often do not provide exactly what
users are looking for = they end up integrating “by hand”

— Tradeoffs between client and cloud not easy to achieve
* Too many things explicitly depend on location:

— Where: is my data stored? (oops — it was there!)

— Where: can | execute this piece of functionality?
Where: can | display this information?

— Where: did | start this job (because | have to finish it there)
* And others don’t properly depend on location:

— Here I am: do something about it!

* What support do we need for new Swarm applications?
— Should we just port Linux, Android, or Windows 7?
— A lot of functionality, hard to experiment with, possibly fragile, ...

» Clearly, these applications will contain:
— Direct interaction with Swarm and Cloud services
« Potentially extensive use of remote services
« Serious security/data vulnerability concerns
— Real Time requirements
¢ Sophisticated multimedia interactions
« Control of/interaction with health-related devices
— Responsiveness Requirements
« Provide a good interactive experience to users
— Explicitly parallel components
« However, parallelism may be “hard won” (not embarrassingly parallel)
¢ Must not interfere with this parallelism

* No existing OS handles all of these well....

Treat the world as a single system...
— Set of all applications forms a connected graph of services
* New Buzzword: Service Oriented Architecture?
— Important aspects:
« How to discover and assign resources to components
¢ How to provide guaranteed access (QoS) to components
¢ How to startup (boot?) applications
— Data as a First-Class Citizen
Primary software component: Cell
— Software component with QoS-guaranteed access to resources
— Exports service(s) with QoS guarantees to other Cells
« Service provided by a Cell becomes resource for other Cells
Hierarchical Resource Discovery and Awareness

— Resources owned by broker agents capable of discovering,
configuring, and assigning them

Guaranteed Access to Assigned Resources

— Cell and Networking implementation designed to guarantee access to
resources and services

What might we want to guarantee?
— Examples:
e Guarantees of BW (say data committed to Cloud Storage)
¢ Guarantees of Requests/Unit time (DB service)
» Guarantees of Latency to Response (Deadline scheduling)
e Guarantees of maximum time to Durability in cloud
« Guarantees of total energy/battery power available to Cell
What level of guarantee?
— Firm Guarantee (Better than existing systems)
« With high confidence (specified), Maximum deviation, etc.
What does it mean to have guaranteed resources?
— A Service Level Agreement (SLA)?
— Something else?
“Impedance-mismatch” problem
— The SLA guarantees properties that programmer/user wants

— The resources required to satisfy SLA are not things that
programmer/user really understands

SWAR“M"!.‘?LR

 Partitioning varies over time

— Fine-grained multiplexing and
guarantee of resources

aoedg

o Spatial Partition:
Performance isolation

— Each partition receives a

vector of basic resources * Resources are gang-scheduled
* A number HW threads

. : » Controlled multiplexing, not
¢ A portion of physical . . .
memory uncontrolled virtualization

< A]E)ortion offshared cache |e Partitioning adapted to the
* A fraction of memory ,
bandwidth system’s needs

» Cell Properties:
— A user-level software Address Address

component, with guaranteed Space A Space B
resources

— Explicit security context which
allows access to protected data

— Knowledge of how to adapt itself
to new environments (SEJITS)

— Checkpoint/restart to provide
fault tolerance, mobility and
adaptation

» Execution Environment:

— Explicitly parallel computation

— Resource Guarantees

— Trusted computing base

— Secure channels (intra/interchip)
with ability to suspend and
restart during migration

uoneidepy

Femaa /3ui0d¥23y2

Processing Resources
QoS Guarantees
Trusted HW/sw

! kSWARM Lab

Device
Real-Time :: Drivers
Cells m [1)
(AUdiO, .. ‘l.lli ..
Video) o0 Parallel |4)
/ core Application Library File

) Service
» Component-based model of computation

— Applications consist of interacting components

— Components may be local or remote
» Communication defines Security Model

— Channels are points at which data may be compromised

— Channels define points for QoS constraints

— Question: Can we provide proofs of correctness on inter-cell protocols?
» Naming process for initiating endpoints

— Need to find consistent version of library code (within cell)

— Need to find compatible remote services

— Solution of version constraint problem for running application

SWAR“M"!.‘?LR 1

» Connected graph of Cells < Object-Oriented Programming
— Lowest-Impact: Wrap a functional interface around channel
¢ Cells hold “Objects”, Secure channels carry RPCs for “method calls”
¢ Example: POSIX shim library calling shared service Cells
— Greater Parallelism: Event triggered programming

» Shared services complicate resource isolation:

— How to guarantee that each client gets guaranteed fraction of service?
— Distributed resource attribution (application as distributed graph)

Application A 0
PP 00

Shared File Service

icati o0
Application B 94

» Communication defines Security Model

— SecureCell: Keys as resource — Outside entity handles privacy concerns
— Mandatory Access Control Tagging (levels of information confidentiality)

! kSWARM Lab

VN

» Normal Components split

into pieces

— Device drivers
(Security/Reliability)

— Network Services
(Performance)
« TCP/IP stack
¢ Firewall
¢ Virus Checking
 Intrusion Detection

— Persistent Storage
&Pe.rfo_rmance, Security,
eliability)

— Monitoring services
« Performance counters
« Introspection

— ldentity/Environment
services (Security)

* Biometric, GPS,
Possession Tracking

* Applications Given

Larger Partitions

— Freedom to use
resources arbitrarily

Storage

SWAR“MML’:B L
V i d eo cr Draw
Player Lt Frame \\

>
Browser
oWse Client

Library
Text

Monitor

Framebuffer

‘ Mouse

Keyboard
» Operate on user-meaningful “actions”

— E.g. “draw frame”, “move window”
» Service time guarantees (soft real-time)
— Differentiated service per application
— E.g. text editor vs video
» Performance isolation from other applications

(gswm_m GUI Serwce Archltecture

- \«"isual
PP 1 .‘

Cell A ﬁ

CellB
Channed

Taken l<_ __l_{k__ O~
ot , =~ "Front End =
~ 4 Task . oot E“:f“ i
-3 s <" andler Tas
" i
Rendering é’ﬁ’@ | User-Level
Task < Input-Device
(MAS) Drivers
| |]
| 1]
I]]
| 1 |
VFBI = = : = WAL,
[| | Manager
! ! ! Task (MAS)
1} 1 1
Exclusive
RO RW Access

Input
Events

April 16, 2012

CellG

Framebuffer
Swarm Lab Seminar

Slide 17

& SwARMLE® Experiment Setup

» Capture end-to-end service times (less is better)

» 8 video clients, each sending 4000 video frame requests
— 4 are 30-fps videos (352 x 288)
— 4 are 60-fps videos (352 x 288)

» 5 different GUI system setups
— Traditional window system running on Linux (Nano-X/Linux)
— Traditional window system running on Tessellation (Nano-X/Tess)

— GUI Service running on Tessellation

« With 1 core (GuiServ(1)/Tess)

¢ With 2 cores (GuiServ(2)/Tess)

« With 4 cores (GuiServ(4)/Tess)

* Running on machine with 8 hyperthreads

» Window system and video clients running on separate
cores
April 16, 2012

Swarm Lab Seminar Slide 18

§ ESWARM_ER E

xperimental Data out of 4000 frames

15000f

10000

End-to-End Service Time (us)
S
o
o

5000

April 16%, 2012

|

Missed Deadlines]

0

(4]

0[2000]

Linux

Nano-X/ GuiServ(1
Tess Tess

Swarm Lab Seminar

- - 60-fps deadline
BN 30-fps client
[60-fps client

GuiServ(2)/ GuiServ(4)/
Tess Tess

Slide 19

g-,gsw»:u.m Establishing the

Service Level Agreement

» Conventional Wisdom on achieving QoS
— Painful and takes a lot of effort
— Reason why people don't like doing real-time
* Instead: Automatic profiling of User Meaningful Actions
— Submit complete frames for profiling (Exploration)
— Followed by offer of SLA

Visual App

(Real-Time) GUI Service

Accept

CPU Time in

GUI Service

April 16t, 2012 Swarm Lab Seminar Slide 20

& ﬁswmﬂn I Lab

Allocation of Resources
Discovery, Distribution, and Adaptation

April 16, 2012 Swarm Lab Seminar Slide 21

Two Level Scheduling:
Control vs Data Plane

Resource Allocation

SWARM Lab

And
Monolithic Distribution
CPU and Resource Two-Level Scheduling
Scheduling

Application Specific
Scheduling

 Split monolithic scheduling into two pieces:
— Course-Grained Resource Allocation and Distribution to Cells
¢ Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
« Ultimately a hierarchical process negotiated with service providers
— Fine-Grained (User-Level) Application-Specific Scheduling
« Applications allowed to utilize their resources in any way they see fit

« Performance Isolation: Other components of the system cannot
interfere with Cells use of resources
April 16t, 2012 Swarm Lab Seminar Slide 22

Brokering Service:
The Hierarchy of Ownership

» Discover Resources in “Domain”
— Devices, Services, Other Brokers

* Allocate and Distribute Resources
to Cells that need them
— Solve Impedance-mismatch problem
— Dynamically optimize execution
— Hand out Service-Level Agreements
(SLASs) to Cells
— Deny admission to Cells when
violates existing agreements

» Complete hierarchy

— Throughout world graph of
Lo o applications
9 \\—s.-.m.--m

April 16t, 2012 Swarm Lab Seminar Slide 23

Cell Creation
and Resizing

Requests
From Users

Global Policies /
User Policies and
Preferences

ACK/NACK

Cell #3]-7.

All system
resources
Offline Models

ell group j and Behavioral

with fraction
of resources Parameters

Policy Service

CCell D #/- (Current Resources)

Partition
Mapping and
Multiplexing

L

Partition
Mechanism

sniL)
[ENTEN e
uoneflassaL

(p=2

§

4§

i ..

{Z'§swhang_l;33 Modeling and Adaptation

* Modeling of Applications
— Static Profiling: may be useful with Cell guarantees
— Multi-variable model building: Get performance as function of resources

» Adaptation according to User and System Policies
— Convex optimization
¢ Relative importance of different Cells expressed via scaling functions
— Walk through Configuration space
* Meet minimum QoS properties first, enhancement with excess resources

, Frame Colordepth - M; Compressionrata - ¥
rate

Example of Zigrag Trajectoriesfor a
Conversation-level 0k
Videoconference Application

kn
Sampling Murmtees of chaneeh - 1

]
I
I
1
1
i
i
]
4K T '
1
w1
R e | 158
]
PTT T L . N I 1k
I
Sk A Chom A '
1
1
i
1
]
1
1

frequency 204
O Kign.
160120 0240 A 0
1] i Sample sire @ Stop poiet
@ Stop poiet: AL this point e sop imgroving video

AL this it we stop and go 1o improve video and o badk Ao imgrowe auda

Configuration space for vitgﬁde o5

April 16th, 2012 SyS ST P esrion e

& §SWARL!||_I;3£

On Toward the Swarm

April 16, 2012 Swarm Lab Seminar Slide 26

1kab Swarm Data
» Information (Data) as a First Class Citizen:
— Current Viewpoint: Data is byproduct of computation

— Much Better: Data independent of computation, outlasts
computation, transformed by computation

— Computation should be the ephemeral thing!
 Fallacy: Data Resides in a Particular Location
— A breach of the system results in loss of privacy
— Incorrect security configuration results in loss of integrity
— A crash results in loss of updates or new information
— Transient routing failure results in inaccessbility

= lIntegrated, Secure, Deep Archival Storage
— Data available from anywhere, anytime
— Data encrypted all the time (except in authorized cells)

— Data durable by default (coding, widespread replication)

April 16th, 2012 Swarm Lab Seminar Slide 27

BERRILEY

el e 2

e

Data Jail (free use
according to policy)

Trusted HW/sw

Sighature, Polic Challenge/ Sighature, Polic

ersion D Response ersion D
Distributed“Public Key

Infrastructure

» Data divided into globally-addressable capsules
— Addressable by unique GUID and/or metadata search
— Conceptually stored in THE Storage Cloud (cyberspace?)
= If you can name it, you can use it!

» Secure Cell: Security Context as a resource
— Data is signed, has attached policy, Optionally encrypted
— Unwrappable only in correct trusted environment

* Key Distribution = resource management
April 16t 2012 Swarm Lab Seminar Slide 28

;-gsisw_ﬂ Location Independent

Data and Services
L

Level of indirection in network
— “Decentralized Object Location and Routing” (DOLR)

— All data and services explicitly named by secure hash (Sha256?)
» Deep Archival Storage in Cloud

— Integrated use of coding for maximum durability
April 16, 2012 Swarm Lab Seminar Slide 29

Locality-Aw:are
Rout’ag

/7~ O\

n

=0 5 \!
It

Slide 30

;-gsbw_ﬂ Ce” as a Ubiquitous Primitive

for the Swarm

+ Cell with network interconnect is an ideal way to
handle heterogeneity
— From the outside: export services to other Cells

— From the inside: naturally partition components along
heterogeneous boundaries

» Hierarchical Resource Broker Architecture
— Separate allocation of resources from use of resources
» Every component in system should host Cells?
— Even sensors!?
— What is minimal support?
 Security Primitives
» Communication support
» Alternative: Bare sensors do not host Cells
— Requires minimal computational capability
* Legacy components????
April 16th, 2012 Swarm Lab Seminar Slide 31

April 16t, 2012

* Hierarchical Resource Management
— Multi-level resource reservation and adaptation

— Resource guarantees and QoS at all levels
» Synthesis of Tasks from Preexisting Services

— Transparent and adaptive choice of service providers
* Permanent Secure Archival Storage

Swarm Lab Seminar

Slide 32

A4\

» Essential ideas:
— Resource guarantees negotiated hierarchically
— Continual adaptation and optimization
— Deep Archival Storage available from anywhere, anytime
— Mobility of secure data, computation (is there a difference?)

» Important components of future OS environment

— Cells as Basic Unit of Resource and Security
¢ User-Level Software Component with Guaranteed Resources
« Secure Channels to other Cells

— Observation, Monitoring, and Adaptation layers
¢ Machine learning, Convex Optimization

— Portable Secure Data infrastructure
« If you can name it, you can use it

» Tessellation OS: http://tessellation.cs.berkeley.edu

