
Tessellation OS

Architecting Systems Software in a g y
ManyCore World

John Kubiatowicz
UC Berkeley

kubitron@cs.berkeley.edu

Services Support for Applications
 What systems support do we need for new ManyCore

applications?
 Should we just port parallel Linux or Windows 7 and be done with it? Should we just port parallel Linux or Windows 7 and be done with it?
 A lot of functionality, hard to experiment with, possibly fragile, …

 Clearly, these new applications will contain:
 Explicitly parallel components

 However, parallelism may be “hard won” (not embarrassingly parallel)
 Must not interfere with this parallelism

 Direct interaction with Internet and “Cloud” services
 Potentially extensive use of remote services
 Serious security/data vulnerability concernsy/ y

 Real Time requirements
 Sophisticated multimedia interactions
 Control of/interaction with health-related devices

Microsoft/UPCRC Tessellation: 2April 29th, 2010

 Control of/interaction with health related devices

 Responsiveness Requirements
 Provide a good interactive experience to users

PARLab OS Goals: RAPPidS
 Responsiveness: Meets real-time guarantees 

 Good user experience with UI expected
 Illusion of Rapid I/O while still providing guaranteesp / p g g
 Real-Time applications (speech, music, video) will be assumed

 Agility: Can deal with rapidly changing environment
 Programs not completely assembled until runtime
 User may request complex mix of services at moment’s notice
 Resources change rapidly (bandwidth, power, etc)

 Power-Efficiency: Efficient power-performance tradeoffs
A li ti S ifi ll l h d li B M t l titi Application-Specific parallel scheduling on Bare Metal partitions

 Explicitly parallel, power-aware OS service architecture
 Persistence: User experience persists across device failures

 Fully integrated with persistent storage infrastructures Fully integrated with persistent storage infrastructures
 Customizations not be lost on “reboot”

 Security and Correctness: Must be hard to compromise 
 Untrusted and/or buggy components handled gracefully

Microsoft/UPCRC Tessellation: 3April 29th, 2010

 Untrusted and/or buggy components handled gracefully
 Combination of verification and isolation at many levels
 Privacy, Integrity, Authenticity of information asserted

The Problem with Current OSs
 What is wrong with current Operating Systems?

 They (often?) do not allow expression of application requirements
 Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS from , y , Q

system Services, Real Time Constraints, …
 No clean interfaces for reflecting these requirements

 They (often?) do not provide guarantees that applications can use
They do not provide performance isolation They do not provide performance isolation

 Resources can be removed or decreased without permission
 Maximum response time to events cannot be characterized

 They (often?) do not provide fully custom scheduling They (often?) do not provide fully custom scheduling 
 In a parallel programming environment, ideal scheduling can depend 

crucially on the programming model
 They (often?) do not provide sufficient Security or Correctness

 Monolithic Kernels get compromised all the time
 Applications cannot express domains of trust within themselves without 

using a heavyweight process model

 The advent of ManyCore both:

Microsoft/UPCRC Tessellation: 4April 29th, 2010

 The advent of ManyCore both:
 Exacerbates the above with a greater number of shared resources
 Provides an opportunity to change the fundamental model



Outline
 Space-Time Partitioning

 Two-Level Scheduling
 Spatial Partitioning Spatial Partitioning
 Cell Model

 The Resource Management Architecture
S Ti R G h Space-Time Resource Graph

 Policy Service Architecture
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Status
 Future Directions

Microsoft/UPCRC Tessellation: 5April 29th, 2010

A First Step: Two Level Scheduling
Resource AllocationResource Allocation

AndAnd
DistributionDistribution

MonolithicMonolithic
CPU and ResourceCPU and Resource

SchedulingScheduling
TwoTwo--Level SchedulingLevel Scheduling

S lit lithi h d li i t t i

Application SpecificApplication Specific
SchedulingScheduling

 Split monolithic scheduling into two pieces:
 Course-Grained Resource Allocation and Distribution

 Chunks of resources (CPUs, Memory Bandwidth, QoS to Services) 
dist ib ted to application (s stem) componentsdistributed to application (system) components

 Option to simply turn off unused resources (Important for Power)
 Fine-Grained Application-Specific Scheduling

 Applications are allowed to utilize their resources in any way they see fit

Microsoft/UPCRC Tessellation: 6April 29th, 2010

 Applications are allowed to utilize their resources in any way they see fit
 Other components of the system cannot interfere with their use of 

resources

Important Idea: Spatial Partitioning

 Spatial Partition: group of processors within hardware boundary 
 Boundaries are “hard”, communication between partitions controlled
 Anything goes within partition

 Key Idea: Performance and Security Isolation
 Each Partition receives a vector of resources

f Some number of dedicated processors
 Some set of dedicated resources (exclusive access)

 Complete access to certain hardware devices
 Dedicated raw storage partitiong p

 Some guaranteed fraction of other resources (QoS guarantee):
 Memory bandwidth, Network bandwidth
 fractional services from other partitions

Microsoft/UPCRC Tessellation: 7April 29th, 2010

Performance w/ Spatial Partitioning/ p g
 RAMP Gold: FPGA-

Based Emulator
 64 single-issue

3.00

3.50

(7.15)

 64 single issue 
in-order cores
 Up to 8 slices using 

page coloring
 Private L1 Inst and 2.00

2.50

rm
al
iz
ed

 to
 B
es
t)

 Private L1 Inst and 
Data Caches 

 Shared L2 Cache
 Up to 8 slices using 

l i

1.50

2.00

es
 o
n 
A
ll 
Co

re
s 
(N
or

page coloring
 Memory bandwidth 

partitionable into 
3.4 GB/s units

0.50

1.00

Su
m
 o
f C

yc
le

 Spatial partitioning 
shows the potential to 
do quite well  

0.00

Blackscholes and 
Streamcluster

Bodytrack and 
Streamcluster

Blackscholes and 
Fluidanimate

Loop Micro and 
Random Access Micro

Best Spatial Partitioning Time Multiplexing
 However it is important 

to pick the right points.  

Microsoft/UPCRC Tessellation: 8April 29th, 2010

Best Spatial Partitioning Time Multiplexing

Divide the Machine in Half Worst Spatial Partitioning



Space-Time Partitioning

Spac
Spac

TimeTime

cece

 Spatial Partitioning Varies over Time
 Partitioning adapts to needs of the system 

S titi i t th h ith ti Some partitions persist, others change with time
 Further, Partititions can be Time Multiplexed

 Services (i.e. file system), device drivers, hard realtime partitions
 Some user-level schedulers will time-multiplex threads within a partition Some user-level schedulers will time-multiplex threads within a partition

 Controlled Multiplexing, not uncontrolled virtualization
 Multiplexing at coarser grain (100ms?)
 Schedule planned several slices in advance

Microsoft/UPCRC Tessellation: 9April 29th, 2010

 Schedule planned several slices in advance
 Resources gang-scheduled, use of affinity or hardware partitioning 

to avoid cross-partition interference

Defining the Partitioned Environment
O b t ti C ll Our new abstraction: Cell
 A user-level software component, with guaranteed resources 
 Is it a process?  Is it a Virtual Private Machine? Neither, Both

Diff t f T i l Vi t l M hi E i t hi h d li t Different from Typical Virtual Machine Environment which duplicates 
many Systems components in each VM

 Properties of a Cell
H f ll t l it (“B M t l”) Has full control over resources it owns (“Bare Metal”)

 Contains at least one address space (memory protection domain), but 
could contain more than one

 Contains a set of secured channel endpoints to other Cells Contains a set of secured channel endpoints to other Cells
 Contains a security context which may protect and decrypt information
 Interacts with trusted layers of Tessellation (e.g. the “NanoVisor”) via 

a heavily Paravirtualized Interface
 E.g. Manipulate address mappings without knowing format of page tables 

 When mapped to the hardware, a Cell gets:
 Gang-schedule hardware thread resources (“Harts”)

G t d f ti f th h i l

Microsoft/UPCRC Tessellation: 10April 29th, 2010

 Guaranteed fractions of other physical resources
 Physical Pages (DRAM), Cache partitions, memory bandwidth, power

 Guaranteed fractions of system services

Resource Composition
D iD i

SecureSecure
ChannelChannel

DeviceDevice
DriversDrivers

SecureSecure
ChannelChannel

SecureSecure

RealReal--TimeTime
CellsCells

(Audio,(Audio,

 Component-based model of computation

FileFile
ServiceService

SecureSecure
ChannelChannelVideo)Video)

Core ApplicationCore Application
ParallelParallel
LibraryLibrary

p p
 Applications consist of interacting components
 Produces composable: Performance, Interfaces, Security

CoResident Cells fast inter domain communication CoResident Cells  fast inter-domain communication
 Could use hardware acceleration for fast secure messaging 
 Applications could be split into mutually distrusting partitions pp p y g p

w/ controlled communication (echoes of Kernels)
 Fast Parallel Computation within Cells

 Protection of computing resources not required within partition Protection of computing resources not required within partition
 High walls between partitions  anything goes within partition
 Shared Memory/Message Passing/whatever within partition

Microsoft/UPCRC Tessellation: 11April 29th, 2010

It’s all about the communication
 We are interested in communication for many reasons:

 Communication crosses resource and security boundaries
 Efficiency of communication impacts (de)composability

 Shared components complicate resource isolation:
 Need distributed mechanism for tracking and accounting of resources

 E.g.: How guarantee that each partition gets guaranteed fraction of service?

Application A

Sh d Fil  S i

Application B

Shared File Service

 How does presence of a message impact Cell activation?
 Not at all (regular activation) or immediate change (interrupt-like)

 Communication defines Security Model Communication defines Security Model
 Mandatory Access Control Tagging (levels of information confidentiality)
 Ring-based security (enforce call-gate structure with channels)

Microsoft/UPCRC Tessellation: 12April 29th, 2010



Tessellation: The Exploded OS
 Normal Components split Normal Components split 

into pieces
 Device drivers 

(Security/Reliability)
 Network Services

FirewallFirewall
VirusVirus  Network Services 

(Performance)
 TCP/IP stack
 Firewall
 Virus Checking

VirusVirus
IntrusionIntrusion

MonitorMonitor
AndAnd

Large ComputeLarge Compute--BoundBound
ApplicationApplication

 Virus Checking
 Intrusion Detection

 Persistent Storage 
(Performance, Security, 
Reliability)

Video &Video &
WindowWindow

AndAnd
AdaptAdapt

RealReal--TimeTime
A li tiA li ti

y)
 Monitoring services

 Performance counters
 Introspection

 Identity/Environment 
( )

DeviceDevice
DriversDrivers

WindowWindow
DriversDrivers

PersistentPersistent
Storage &Storage &

HCI/HCI/
VoiceVoice

ApplicationApplication

Iden
t

Iden
t y/

services (Security)
 Biometric, GPS, 

Possession Tracking
 Applications Given 

Larger Partitions

DriversDrivers
gg

File SystemFile System RecRec

tity
tity

Microsoft/UPCRC Tessellation: 13April 29th, 2010

Larger Partitions
 Freedom to use 

resources arbitrarily

Tessellation in Server Environment
NetworkNetwork

QoSQoSLarge ComputeLarge Compute--BoundBound
NetworkNetwork

QoSQoSNetworkNetwork
MonitorMonitor

AndAnd
AdaptAdapt

ApplicationApplication
QoSQoS

MonitorMonitor
AndAnd

AdaptAdapt

Large ComputeLarge Compute--BoundBound
ApplicationApplication

NetworkNetwork
QoSQoS

MonitorMonitor
AndAnd

Large ComputeLarge Compute--BoundBound
ApplicationApplication

NetworkNetwork
QoSQoS

MonitorMonitor
Large ComputeLarge Compute--BoundBound

ApplicationApplication Cloud Cloud 

DiskDisk

OtherOther
DevicesDevices

P i t t St &P i t t St &

Large I/OLarge I/O--BoundBound
ApplicationApplication OtherOther

DevicesDevices

AdaptAdapt

Large I/OLarge I/O--BoundBound
ApplicationApplication OtherOther

DevicesDevices

AndAnd
AdaptAdapt

Large I/OLarge I/O--BoundBound
ApplicationApplication OtherOther

MonitorMonitor
AndAnd

AdaptAdapt

ApplicationApplication

Large I/OLarge I/O--BoundBound

StorageStorage
BW QoSBW QoS

DiskDisk
I/OI/O

DriversDrivers

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System DiskDisk

I/OI/O
DriversDrivers

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System DiskDisk

I/OI/O
D iD i

DevicesDevices

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System

ApplicationApplication

DiskDisk
I/OI/O

OtherOther
DevicesDevices

Persistent Storage &Persistent Storage &

Large I/OLarge I/O--BoundBound
ApplicationApplication

DriversDrivers
yy

I/OI/O
DriversDrivers

gg
Parallel File SystemParallel File System

Q
oS 

Q
oS 

G
u

aran
t

G
u

aran
t

Microsoft/UPCRC Tessellation: 14April 29th, 2010

tees
tees

Outline
 Space-Time Partitioning

 Two-Level Scheduling
 Spatial Partitioning Spatial Partitioning
 Cell Model

 The Resource Management Architecture
S Ti R G h Space-Time Resource Graph

 Policy Service Architecture
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Status
 Future Directions

Microsoft/UPCRC Tessellation: 15April 29th, 2010

Another Look: Two-Level Scheduling
 First Level: Global partitioning of resources

 Goals: Power Budget, Overall Responsiveness/QoS, Security
 Adjust resources to meet system level goals Adjust resources to meet system level goals

 Partitioning of CPUs, Memory, Interrupts, Devices, other resources
 Constant for sufficient period of time to:

 Amortize cost of global decision making Amortize cost of global decision making
 Allow time for partition-level scheduling to be effective

 Hard boundaries  interference-free use of resources for quanta
 Allows AutoTuning of code to work well in partitiong p

 Second Level: Application-Specific Scheduling
 Goals: Performance, Real-time Behavior, Responsiveness, 

Predictabilityy
 Fine-grained, rapid switching 

 CPU scheduling tuned to specific applications
 Resources distributed in application-specific fashionpp p
 External events (I/O, active messages, etc) deferrable as appropriate

Microsoft/UPCRC Tessellation: 16April 29th, 2010



Space-Time Resource Graph

Resources:Resources:
Cell 3Cell 3

ResourceResource
GroupGroup

Cell 2Cell 2

4 Proc, 50% time4 Proc, 50% time
1GB network BW1GB network BW
25% File Server25% File Server

 Space-Time Resource Graph (STRG)
 the explicit instantiation of resource assignments and relationships

Cell 3Cell 3 LightweightLightweight
Protection DomainsProtection Domains

 Leaves of graph hold Cells
 All resources have a Space/Time component

 E.g. X Processors/fraction of time, or Y Bytes/Sec
 Resources cannot be taken away except via explicit APIsesou ces ca ot be ta e a ay e cept a e p c t s
 Resources include fractions of OS services

 Interior Nodes
 Resource Groups can hold resources to be shared by children
 “Pre Allocated” resources can be shared as excess until needed Pre-Allocated  resources can be shared as excess until needed
 Some Similarity to Resource Containers

Microsoft/UPCRC Tessellation: 17April 29th, 2010

Implementing the Space-Time Graphp g p p
 Partition Policy Service (allocation)

 Allocates Resources to Cells based 
on Global policies

 Produces only implementable space-

Partition Policy LayerPartition Policy Layer
(Resource Allocator)(Resource Allocator)
Reflects Global GoalsReflects Global Goals Produces only implementable space

time resource graphs
 May deny resources to a cell that 

requests them (admission control)
 Mapping Layer (distribution) Mapping Layer (distribution)

 Makes no decisions
 Time-Slices at a course granularity 

(when time-slicing necessary)
f bi ki lik ti M i L (R Di t ib t )M i L (R Di t ib t )

SpaceSpace--Time Resource GraphTime Resource Graph

 performs bin-packing like operation 
to implement space-time graph

 In limit of many processors, no time 
multiplexing of processors, merely 
distributing of resources

Mapping Layer (Resource Distributer)Mapping Layer (Resource Distributer)

distributing of resources
 Partition Mechanism Layer

 Implements hardware partitions and 
secure channels

Partition Mechanism LayerPartition Mechanism Layer

Microsoft/UPCRC Tessellation: 18April 29th, 2010

 Device Dependent: Makes use of 
more or less hardware support for 
QoS and Partitions

Partition Mechanism LayerPartition Mechanism Layer
ParaVirtualized HardwareParaVirtualized Hardware

To Support PartitionsTo Support Partitions

Resource Allocation Architecture
MajorCell Creation

Po

Major
Change
Request

ACK/NACK

Cell Creation
and Resizing

Requests
From Users

Admission
Control

MinorACK/NACK

Global Policies /
User Policies and
Preferences

Resource 
Allocation

And Adaptation
h

olicy Se

Minor
Changes

All system 
resources

Cell g o p

Space‐Time 
Resource Graph 

(STRG)

Mechanism

Offline Models
Online

Performance rvice
Cell Cell Cell

Cell group 
with fraction 
of resources

Cell

(Current Resources)

and Behavioral
Parameters

Monitoring, 
Model Building,
and Prediction

Tesse
K

e
(Tru

STRG Validator
Resource Planner

Partition 
Mapping and
Multiplexing

Layer

Partition
Multiplexing ellation

ernel
usted)

Layer

Partition 
Mechanism 

Layer
QoS

Enforcement
Partition

Implementation
Channel

Authenticator

Microsoft/UPCRC Tessellation: 19April 29th, 2010 Partitionable Hardware Resources
CoresPhysical

Memory
Network

Bandwidth
Cache/

Local Store Disks NICs
Performance

Counters

Modeling and Adaptation Policies
Frame  Color depth= 24;  Compression ratio = 30

Sampling
frequency

Number of channels= 1

20 fps

25 fps

30 fps

308 Kbps

385 Kbps

462 Kbps 1.84 Mbps 7.37 Mbps

4.92 Mbps

1.54 Mbps 6.16 Mbps

rateExample of Zigzag Trajectories for a 
Conversation‐level 

Videoconference Application

frequency

8 KHz

11 KHz

22 KHz

44 KHz

64 Kbps

88 Kbps

128 Kbps

176 Kbps 353 Kbps

706 Kbps

F i

10 fps

15 fps

20 fps

154 Kbps

230 Kbps

614 Kbps

922 Kbps 3.69 Mbps

2.46 Mbps

1.23 
Mbps

 Adaptation

Stop point: 
At this point we stop and go to  improve video

Sample size8 16

Frame size
160x120 320x240 640x320

Stop point
At this point we stop  improving video 
and go back to  improve audio

Configuration space for audio Configuration space for video

 Convex optimization 
 Relative importance of different Cells expressed via scaling functions (“Urgency”)

 Walk through Configuration space 
 Meet minimum QoS properties first, enhancement with excess resources

U L l P li i User-Level Policies
 Declarative language for describing application preferences and adaptive desires

 Modeling of Applications
 Static Profiling: may be useful with Cell guarantees Static Profiling: may be useful with Cell guarantees
 Multi-variable model building 

 Get performance as function of resources
 Or – tangent plane of performance as function of resources

Microsoft/UPCRC Tessellation: 20April 29th, 2010



Scheduling inside a cellg
 Cell Scheduler can rely on:

 Coarse-grained time quanta allows efficient fine-grained use of resources
 Gang-Scheduling of processors within a cell

N t d l f No unexpected removal of resources
 Full Control over arrival of events

 Can disable events, poll for events, etc.

 Pure environment of a Cell  Autotuning will return same Pure environment of a Cell  Autotuning will return same 
performance at runtime as during training phase

 Application-specific scheduling for performance
 Lithe Scheduler Framework (for constructing schedulers)( g )

 Will be able to handle premptive scheduling/cross-address-space scheduling
 Systematic mechanism for building composable schedulers

 Parallel libraries with different parallelism models can be easily composed
 Of course: preconstructed thread schedulers/models (Silk pthreads ) as Of course: preconstructed thread schedulers/models (Silk, pthreads…) as 

libraries for application programmers
 Application-specific scheduling for Real-Time

 Label Cell with Time-Based Labels.  Examples:
 Run every 1s for 100ms synchronized to ± 5ms of a global time base
 Pin a cell to 100% of some set of processors

 Then, maintain own deadline scheduler
Microsoft/UPCRC Tessellation: 21April 29th, 2010

Discussion
 How to divide application into Cell? How to divide application into Cell?

 Cells probably best for coarser-grained components
 Fine-grained switching between Cells antithetical to stable resource 

guarantees
 Division between Application components and shared OS services 

natural (obvious?)
 Both for security reasons and for functional reasons

 Division between types of scheduling Division between types of scheduling
 Real-time (both deadline-driven and rate-based), pre-scheduled
 GUI components (responsiveness most important)
 High-throughput (As many resources as can get)

St b d (P ll li th h d iti i t i li t ) Stream-based (Parallelism through decomposition into pipeline stages)

 What granularity of Application component is best for Policy 
Service?
 Fewer Cells in system leads to simpler optimization problem Fewer Cells in system leads to simpler optimization problem

 Language-support for Cell model?
 Task-based, not thread based
 Cells produced by annotating Software Frameworks with QoS needs? Cells produced by annotating Software Frameworks with QoS needs?
 Cells produced automatically by just-in-time optimization?

 i.e. Selective Just In Time Specialization or SEJITS
Microsoft/UPCRC Tessellation: 22April 29th, 2010

Outline
 Space-Time Partitioning

 Two-Level Scheduling
 Spatial Partitioning Spatial Partitioning
 Cell Model

 The Resource Management Architecture
S Ti R G h Space-Time Resource Graph

 Policy Service Architecture
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Status
 Future Directions

Microsoft/UPCRC Tessellation: 23April 29th, 2010

What we might like from Hardware
 A good parallel computing platform (Obviously!)

 Good synchronization, communication (Shared memory within Cells would be nice)
 Vector, GPU, SIMD (Can exploit data parallel modes of computation)
 Measurement: performance counters Measurement: performance counters

 Partitioning Support
 Caches: Give exclusive chunks of cache to partitions
 High-performance barrier mechanisms partitioned properly

S d id h System Bandwidth 
 Power (Ability to put partitions to sleep, wake them up quickly)

 QoS Enforcement Mechanisms
 Ability to give restricted fractions of bandwidth (memory, on-chip network) Ability to give restricted fractions of bandwidth (memory, on chip network)
 Message Interface: Tracking of message rates with source-suppression for QoS
 Examples: Globally Synchronized Frames (ISCA 2008, Lee and Asanovic)

 Fast messaging support (for channels and possible intra-cell)
 Virtualized endpoints (direct to destination Cell when mapped into memory FIFO Virtualized endpoints (direct to destination Cell when mapped, into memory FIFO 

when not)
 User-level construction and disposition of messages
 DMA, user-level notification mechanisms
 Trusted Computing Platform (automatic decryption/encryption of channel data) Trusted Computing Platform (automatic decryption/encryption of channel data)

Microsoft/UPCRC Tessellation: 24April 29th, 2010



RAMP Gold: 
FAST Emulation of new HardwareFAST Emulation of new Hardware

 RAMP emulation model for Parlab 
manycorey
 SPARC v8 ISA -> v9
 Considering ARM model 

Single socket man co e ta get Single-socket manycore target
 Split functional/timing model, both 

in hardware
 Functional model: Executes ISA
 Timing model: Capture pipeline 

timing detail (can be cycle accurate)
Arch Arch 
SS

Timing Timing 
SS timing detail (can be cycle accurate)

 Host multithreading of both 
functional and timing models

FunctionalFunctional

StateState

TimingTiming

StateState

Microsoft/UPCRC Tessellation: 25April 29th, 2010

 Built for Virtex-5 systems (ML505 
or BEE3)

Functional Functional 
Model Model 

PipelinePipeline

Timing Timing 
Model Model 

PipelinePipeline

Tessellation Implementation Statusp
 First version of Tessellation

 ~7000 lines of code in NanoVisor layer
 Supports basic partitioning

C d h ( i l i ) Cores and caches (via page coloring)
 Fast inter-partition channels (via ring buffers in shared memory, soon 

cross-network channels)
 Use of Memory Bandwidth Partitioning (RAMP)

 Network Driver and TCP/IP stack running in partition Network Driver and TCP/IP stack running in partition
 Devices and Services available across network

 Hard Thread interface to Lithe – a framework for constructing user-
level schedulers

 I iti l i f P li S i t li Initial version of Policy Service to come on line soon
 Currently Two ports

 32-core Nehalem system
 64-core RAMP emulation of a manycore processor (SPARC) 64 core RAMP emulation of a manycore processor (SPARC)

 Will allow experimentation with new hardware resources
 Examples:

 QoS Controlled Memory/Network BW
 Cache Partitioning

Microsoft/UPCRC Tessellation: 26April 29th, 2010

 Cache Partitioning 
 Fast Inter-Partition Channels with security tagging

Future Directions
 Interfaces with Parallel Patterns/Frameworks

 Annotations with guarantees, QoS requirements, etc
 Mapping into Cell structure statically or dynamically Mapping into Cell structure statically or dynamically

 Streaming Parallel (OS?) Services
 File Systems (local and in Cloud)
 Other Network services Other Network services
 Interesting User Interface Devices/GUI services

 Music, Video, Speech, Vector

 Investigate Hardware support for partitioning and QoSg pp p g Q
 Global Orientation

 Every software component has unique name in space
 Can be implemented (and found) either locally or in Cloudp ( ) y
 Data external to Cells automagically encrypted when crossing Cell 

boundaries
 Security Implications of Cell-based architecture

How small can our trusted computing base really be? How small can our trusted computing base really be?
 What about the Policy Service?

Microsoft/UPCRC Tessellation: 27April 29th, 2010

Conclusion
S Ti P i i i i & Space-Time Partitioning: grouping processors & resources 
behind hardware boundary
 Two-level scheduling

1) Global Distribution of resources1) Global Distribution of resources
2) Application-Specific scheduling of resources

 Bare Metal Execution within partition
 Composable performance, security, QoS
C ll B i U i f R d S i Cells: Basic Unit of Resource and Security
 User-Level Software Component with Guaranteed Resources
 Secure Channels to other Cells
Partitioning Service Partitioning Service
 Explicit Admission Control: Sometimes requests for resources must be denied
 Policy-driven optimization of resources

 Tessellation OS Tessellation OS
 Exploded OS: spatially partitioned, interacting services
 Exploit Hardware partitioning mechanisms when available
 Components

Microsoft/UPCRC Tessellation: 28April 29th, 2010

p
 Partitioning Mechanisms (“NanoVisor”)
 Policy Service: Resource Management
 OS services as independent servers



Example of Music Application

A di i / S th i E i

Music program

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Time-sensitive 
Network 

SubsystemInput device Output device GUI SubsystemSubsystemInput device
(Pinned/TT Partition)

Output device
(Pinned/TT Partition)

y

Network 
Service

(Net Partition)

Graphical 
Interface

(GUI Partition)

Communication with other 
audio-processing nodesPreliminary

April 29th, 2010 Tessellation: 29Microsoft/UPCRC


