Optimizing the layout and error properties of quantum circuits

Professor John Kubiatowicz University of California at Berkeley

> September 28th, 2012 kubitron@cs.berkeley.edu http://qarc.cs.berkeley.edu/

Quantum Circuits are Big!

- Some recent (naïve?) estimates for Ground-State Estimation (Level 3 Steane code):
 - 209 logical qubits \times 343 (EC) = 71687 data qubits
 - Total operations: 10¹¹ to 10¹⁷ (depending on type)
 - 10^{17} T gates \times 117,000 ancillas/T gate = 10^{22} ancillas
 - 5×10^{26} Operations for SWAP (communication)
 - And on...
- Shor's Algorithm for factoring?
 - 5×10^5 or more data qubits
 - 1.5×10^{15} operations (or more)
- How can you possibly investigate such circuits?
 - This is the realm of *Computer Architecture* and *Computer Aided Design (CAD)*

Sept 28th, 2012

JIQ Workshop

2

Simple example of Why Architecture Studies are Important (2003)

- Consider Kane-style Quantum Computing Datapath
 - Qubits are embedded P⁺ impurities in silicon substrate
 - Manipulate Qubit state by manipulating hyperfine interaction with electrodes above embedded impurities
- Obviously, important to have an efficient wire
 - For Kane-style technology need sequence of SWAPs to communicate quantum state
 - So our group tried to figure out what involved in providing wire
- Results:
 - Swapping control circuit involves complex pulse sequence between every pair of embedded Ions
 - We designed a local circuit that could swap two Qubits (at < 4°K)

electron

P ion

Si substrate

measurement

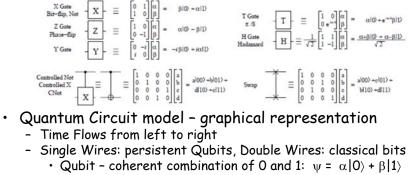
SETs

electroi

P ion

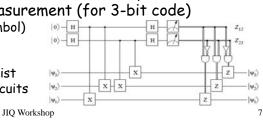
ШЯI

3


- Area taken up by control was > 150 x area taken by bits!
- Conclusion: must at least have a practical WIRE!
 Not clear that this technology meets basic constraint

Pushing Limits

- Very interesting problems happen at scale!
 - Small circuits become Computer Architecture
 - Modular design
 - Pipelining
 - Communication Infrastructure
 - Direct analogies to classical chip design apply
 - The physical organization of components matters
 - "Wires are expensive, adders are not"?
- Important Focus Areas for the future:
 - Languages for Describing Quantum Algorithms
 - Optimal partitioning and layout
 - Global communication scheduling
 - Layout-driven error correction


E:	xpressing Quantum Algorithms		 Graphically Several a QASM: th Primitives C-like lang Scaffold Embedded Use langu Specific Can build Can intro 	some abstraction, modules, fixed lo	Domain s tors
Sept 28 th , 2012	JIQ Workshop	5	Sept 28 th , 2012	JIQ Workshop	6

Quantum Circuit Model

- Universal gate set: Sufficient to form all unitary transformations
- Example: Syndrome Measurement (for 3-bit code)
 - Measurement (meter symbol) produces classical bits
- Quantum CAD
 - Circuit expressed as netlist
 - Computer manpulated circuits and implementations

Sept 28th, 2012

Higher-Level Language: Chisel

How to express

- Scala-based language for digital circuit design
 - High-level functional descriptions of circuits as input
 - Many outputs: for instance direct production on Verilog
 - Used in design of new advanced RISC pipeline
- Features
 - High-level abstraction
 - Hierarchical design
 - Abstractions build up circuit (netlist)
- Inner-Product FIR Digital Filter: $y[t] = \sum_{i} w_i * x_i[t-i]$

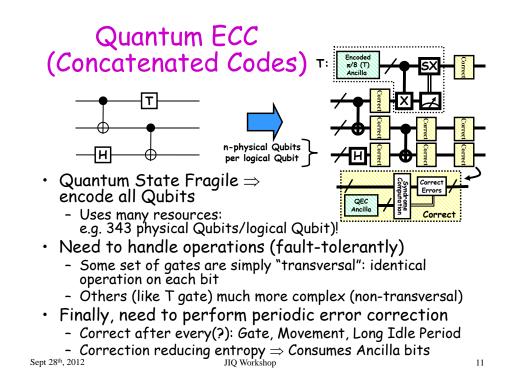
Quantum Chisel

- Simple additions to Chisel Code base
 - Addition of Classical \Rightarrow Quantum translation
 - Produce Ancilla, UseToffoli Gates, CNots, etc
 - Reverse Logic to automagically reverse netlists and produce reversible output
 - State machine transformation (using "shift registers" to keep extra state when needed)
 - Because of the way Chisel constructed, can be below the level of syntax (DSL) seen by programmer
 - \cdot With possible exception of explicit REVERSE operator
- Goal? Take classical circuits designed in Chisel and produce quantum equivalents

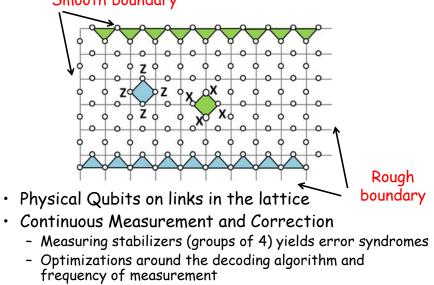
JIQ Workshop

- Adders, Multipliers
- Floating-Point processors
- Output: Quantum Assembly (QASM)
 - Input to other tools!

Sept 28th, 2012

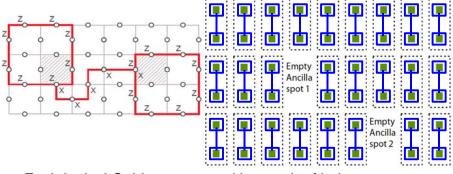


Sept 28th, 2012


9

JIQ Workshop

10



Topological (Surface) Quantum ECC Smooth boundary

JIQ Workshop

Computation with Topological Codes

- Each logical Qubit represented by a pair of holes
- Layout for Large Algorithm: Tile Lattice with paired holes
- CNOT: move a smooth hole around a rough one
 - Complications: may need to transform a smooth hole into a rough one before performing CNOT
 - Rules for how to move holes (grow and shrink them)
- Again: Some gates easy, some not (Once again, T is messy)

Sept 28th, 2012

JIQ Workshop

Moving to the Realm of Quantum Computer Aided Design

Sept 28th, 2012

OR

cx q1, q0;

cx q1, q2;

correct q1;

cx q3, q4;

correct q4;

zmeasure q3, c3;

(@c3==1) x q4;

Quantum Assembly

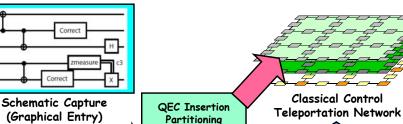
(QASM)

h a2;

Sept 28th, 2012

JIQ Workshop

14


Need for CAD: More than just Size

- Data locality:
 - Where gubits "live" and how they move can make or break the ability of a quantum circuit to function:
 - Movement carries risk and consumes time
 - Ancilla must be created close to where used
 - Communication must be minimized through routing optimization
- Customized (optimal?) data movement ⇒ customized channel structure/quantum data path
 - One-size fits all topology not necessarily the best
- Parallelism:
 - How to exploit parallelism in dataflow graph
 Partitioning and scheduling algorithms
 - Area-Time tradeoff in Ancilla generation
 - Customized circuits for pre-computing non-transversal Ancilla reuse?
- Error Correction:
 - One-size fits all probably not desirable
 - Adapt level of encoding in circuit-dependent way
 - Corrections after every operation may not be necessary

Sept 28th, 2012

15

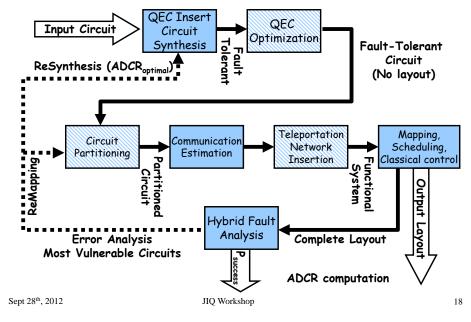
13

Quadence Design Tool

Layout Network Insertion Error Analysis ... Optimization CAD Tool

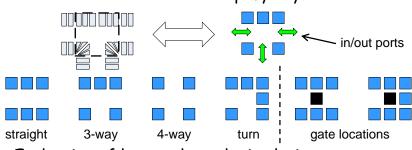
JIQ Workshop

Important Measurement Metrics


Traditional CAD Metrics:

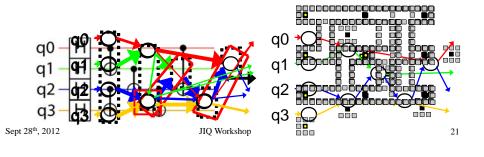
- Area
 - What is the total area of a circuit?
 - Measured in macroblocks (ultimately μm² or similar)
- Latency (Latency_{single})
 - What is the total latency to compute circuit once
 - Measured in seconds (or μs)
- Probability of Success (P_{success})
- Not common metric for classical circuits
- · Account for occurrence of errors and error correction
- Quantum Circuit Metric: ADCR
 - Area-Delay to Correct Result: Probabilistic Area-Delay metric

- ADCR_{optimal}: Best ADCR over all configurations
- Optimization potential: Equipotential designs
 - Trade Area for lower latency
- Trade lower probability of success for lower latency JIQ Workshop Sept 28th, 2012

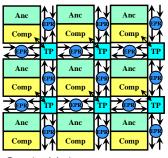


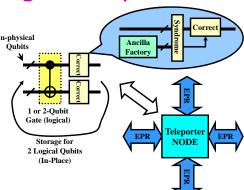
Optimizing Ancilla and Layout

An Abstraction of Ion Traps Basic block abstraction: Simplify Layout



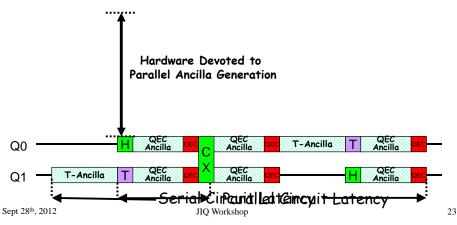
- Evaluation of layout through simulation
 - Movement of ions can be done classically
 - Yields Computation Time and Probability of Success
- Simple Error Model: Depolarizing Errors
 - Errors for every Gate Operation and Unit of Waiting
 - Ballistic Movement Error: Two error Models
 - 1. Every Hop/Turn has probability of error
 - 2. Only Accelerations cause error JIO Workshop


17

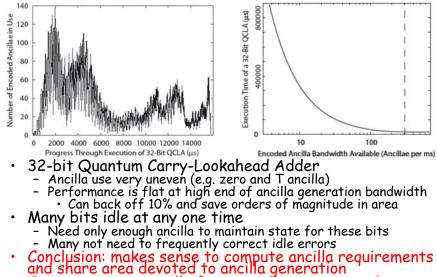

Example Place and Route Heuristic: **Collapsed Dataflow**

- Gate locations placed in dataflow order
 - Qubits flow left to right
 - Initial dataflow geometry folded and sorted
 - Channels routed to reflect dataflow edges
- Too many gate locations, collapse dataflow
 - Using scheduler feedback, identify latency critical edges
 - Merge critical node pairs
 - Reroute channels
- Dataflow mapping allows pipelining of computation!

Quantum Logic Array (QLA)

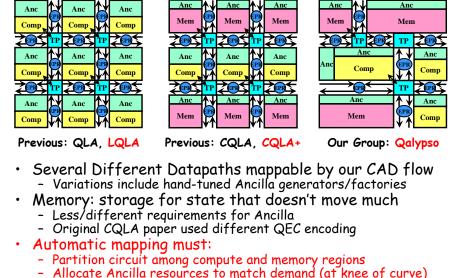


- **Basic Unit:**
 - Two-Qubit cell (logical)
 - Storage, Compute, Correction
- Connect Units with Teleporters
 - Probably in mesh topology, but details never entirely clear from original papers
- First Serious (Large-scale) Organization (2005)
 - Tzvetan S. Metodi, Darshan Thaker,


Andrew W. Cross, Frederic T. Chong, and Isaac L. Chuang JIQ Workshop Sept 28th, 2012

Running Circuit at "Speed of Data" • Often, Ancilla gubits are independent of data

- - Preparation may be pulled offline
 - Very clear Area/Delay tradeoff: Suggests Automatic Tradeoffs (CAD Tool)
- Ancilla gubits should be ready "just in time" to avoid ancilla decoherence from idleness

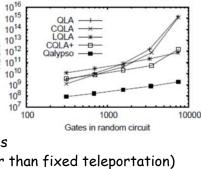


How much Ancilla Bandwidth Needed?

Can precompute ancilla for non-transverse gates!

Tiled Quantum Datapaths

- Configure and insert teleportation network


Sept 28th, 2012

JIQ Workshop

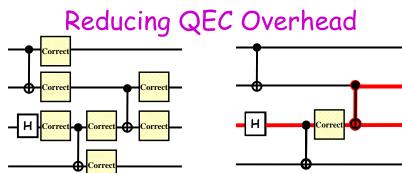
Which Datapath is Best?

ADCR

- Random Circuit Generation
 - Splitting factor (r): measures connectivity of the circuit Related to Rent's factor
- Qalypso clear winner
 - 4x lower latency than LQLA
 - 2x smaller area than CQLA+
- Why Qalypso does well:

ADCR vs Number of Gates, r=0.5

- Shared, matched ancilla factories - Automatic network sizing (rather than fixed teleportation)
- Automatic Identification of Idle Qubits (memory)
- LQLA and CQLA+ perform close second
 - Original supplemented with better ancilla generators, automatic network sizing, and Idle Qubit identification
 - Original QLA and CQLA do very poorly for large circuits

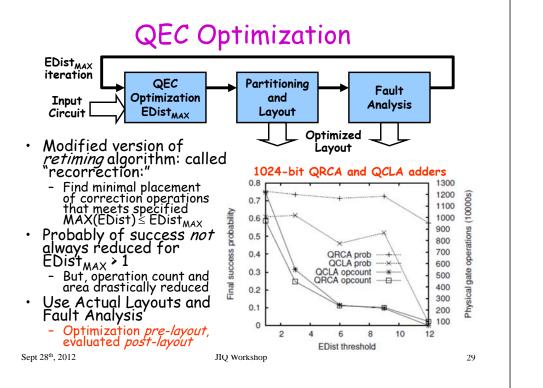

Sept 28th, 2012

JIQ Workshop

26

Optimizing Error Correction

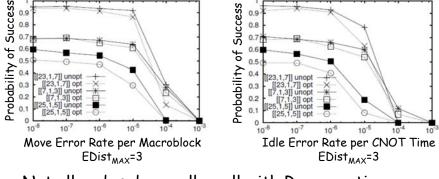
- · Standard idea: correct after every gate, and long communication, and long idle time
 - This is the easiest for people to analyze
- This technique is suboptimal
 - Not every bit has same noise level!
- Different idea: identify critical Qubits
 - Try to identify paths that feed into noisiest output bits
 - Place correction along these paths to reduce maximum noise


Sept 28th, 2012

27

25

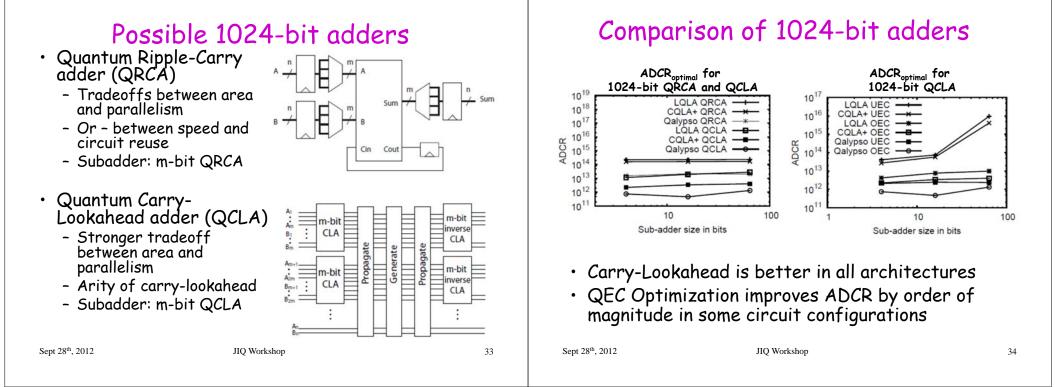
28


Sept 28th, 2012

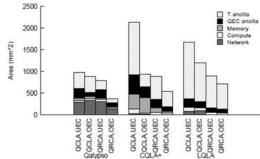
Investigating Larger Circuits

Recorrection of 500-gate Random Circuit (r=0.5)

- Not all codes do equally well with Recorrection
 - Both [[23,1,7]] and [[7,1,3]] reasonable candidates
 - [[25,1,5]] doesn't seem to do as well
- Cost of communication and Idle errors is clear here!
- However real optimization situation would vary EDist to find optimal point


Sept 28th, 2012

JIQ Workshop

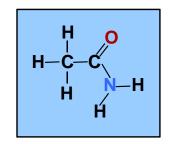

30

What does Quadence do?

- ECC Insertion and Optimization
 - Logical \Rightarrow Physical circuits
 - Includes encoding, and correction
 - ECC Recorrection optimization (more later)
- Circuit partitioning
 - Find minimum places to cut large circuit
 - Compute ancilla needs
 - Place physical qubits in proper regions of grid
- · Communication Estimation and insertion
 - Generate Custom Teleportation network
- · Schedule movement of bits
 - Movement within Ancilla generators (Macros)
 - Movement within compute and memory regions
 - Movement two and from teleportation stations
- Simulation of result to get timing for full circuit
- MonteCarlo simulation to get error analysis

Area Breakdown for Adders

- Error Correction is *not* predominant use of area
 - Only 20-40% of area devoted to QEC ancilla
 - For Optimized Qalypso QCLA, 70% of operations for QEC ancilla generation, but only about 20% of area
- T-Ancilla generation is major component
 - Often overlooked
- Networking is significant portion of area when allowed to optimize for ADCR (30%)
 - CQLA and QLA variants didn't really allow for much flexibility


35

Sept 28th, 2012

Direct Comparison:

Concatenated and Topological QECC

- Ground State Estimation
 - Find ground state of Glycine
- Problem Size:
 - 50 Basis Functions
 - Result Calculated with 5 Bits accuracy
 - 60 Qubits, 6.9 x 10¹² gates, Parallelism: 2.5
- Conceptual Primitives
 - Quantum Simulation and Phase Estimation

Properties of Quantum Technologies: Gate Times and Errors

	Supercond. Qubits (Primitive)	Supercond. Qubits (Optimal)	Ion Traps (Primitive)	Lon Traps (Optimal)	Neutral Atoms (Primitive)	Neutral Atoms (Trotter)
Time (ns)	25	28	32,000	32,000	14,818	19,465
Gate Err	1.0x10 ⁻⁵	6.6x10 ⁻⁴	3.2x10 ⁻⁹	2.9x10 ⁻⁷	8.1×10 ⁻³	1.5x10 ⁻³
Mem Err	1.0×10 ⁻⁵	1.0×10 ⁻⁵	2.5×10 ⁻¹²	2.5x10 ⁻¹²	0.0	0.0

- Ion traps slower but more reliable than superconductors
- Neutral atoms unusable with concat. codes

Sept 28 th , 2012	JIQ Workshop	37	Sept 28 th , 2012	JIQ Workshop

Ground State Estimation, Multiple Technologies

	Multiple recimologies					
		1 x 10 ⁻³ 19,000 ns	1 x 10 ⁻⁵ 25 ns	1 x 10 ⁻⁹ 32,000 ns		
		Neutral Atoms (Trotter)	Supercond. Qubits (Primitive)	Ion Trap (Primitive)		
	Surface	10,883 years	4.5 years	5,588 years	Time	
	Code	2.0×10^{24}	3.5 x 10 ²²	3.9 × 10 ²²	Gates	
		2.5 × 10 ⁸	1.7×10^{7}	4 4 × 10 ⁷	Qubits	
		-	4,229 years	(128 years)	Time	
	Bacon Shor Code	-	9.5 x 10 ³²	1.5 x 10 ¹⁹	Gates	
		-	9.4 × 10 ¹¹	1.6 x 10 ⁵	Qubits	
		-	5	1	Concatenations	
pt	28 th , 2012		JIQ Workshop			

Conclusion

- How to express guantum algorithms?
 - Embedded DSLs in higher-order languages
- Size of Quantum Circuits \Rightarrow Must Optimize Locality
 - Presented Some details of a Full CAD flow (Partitioning, Layout, Simulation, Error Analysis)
 - New Evaluation Metric: ADCR = Area \times E(Latency)
 - Full mapping and layout accounts for communication cost
- Ancilla Optimization Important
 - Ancilla bandwidth varies widely
 - Custom ancilla factories sized to meet needs of circuit
- "Recorrection" Optimization for QEC
 - Selective placement of error correction blocks
 - Validation with full layout to find optimal level of correction
- Analysis of 1024-bit adder architectures
 - Carry-Lookahead adders better than Ripple Carry adders
 - Error correction not the primary consumer of area! JIQ Workshop

40