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What Do I do?
• Background in Parallel Hardware Design

– Technically, I’m a computer architect
– Alewife project at MIT: Parallel Processing

• Shared Memory/Message Passing
– Designed CMMU, Modified SPARC processor

• Background in Operating Systems
– OS Developer for Project Athena (MIT) 
– Background in High-Availability systems
– Current OS lead researcher for new 

Berkeley PARLab (Tessellation OS). 
• Background in Peer-to-Peer Systems

– OceanStore project –
Store your data for 1000 years

– Tapestry and Bamboo –
Find you data around globe

• Quantum Computing Architectures
– Topic of today’s lecture
– Architecture of large-scale Quantum systems
– Using CAD to study Quantum computers
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Outline
• Quantum Computer Architecture

– Some Urban legends about Quantum Architecture
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
• Failure to build  quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

• Shor’s factoring, Grover’s search, Design of Materials
• Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer 
design off to classical designers
– Baring Adiabatic algorithms, will probably need 100s to 1000s 

(millions?) of working logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when they 
are mapped to a physical substrate? 

– Optimization not possible by hand
• Abstraction of elements to design larger circuits
• Lessons of last 30 years of VLSI design: USE CAD
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Things Architect Worries About 
• What are the major

components in system?
– Compute Units
– Ancilla Generators 

(Entropy Suppression)
– Memories
– Wires!

• What are the best architectures for these elements?
– Adders: Ripple Carry vs Carry Lookahead
– Ancilla Factories: Pipelined vs Parallel 
– Communication Architectures: 

• Teleportation Network structure
• EPR Distribution
• When to choose Ballistic vs Teleportation

• What is the best way to build fault-tolerant 
architectures?
– QEC Codes, Layouts, Topology-Specific Error Correction

Memory
ALUALU

Ancilla
Generation

Memory ALU
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Simple example of Why Architecture 
Studies are Important (2003)

• Consider Kane-style Quantum Computing Datapath
– Qubits are embedded P+ impurities in silicon substrate
– Manipulate Qubit state by manipulating hyperfine interaction 

with electrodes above embedded impurities
• Obviously, important to have

an efficient wire
– For Kane-style technology need 

sequence of SWAPs to 
communicate quantum state 

– So – our group tried to figure out
what involved in providing wire

• Results:
– Swapping control circuit involves complex pulse sequence 

between every pair of embedded Ions
– We designed a local circuit that could swap two Qubits (at < 4K)
– Area taken up by control was > 150 x area taken by bits!

• Conclusion: must at least have a  practical WIRE!
– Not clear that this technology meets basic constraint
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• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

• Qubit – coherent combination of 0 and 1:   = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD 

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model
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• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]] 

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
• Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
• Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Quantum Error 
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Not Transversal!
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Some Urban Legends for Later
• More powerful QEC codes are 

better than less powerful QEC 
codes under all circumstances

• Every Qubit has the same 
requirements for ancilla
bandwidth

• Fault-tolerant Circuits must 
correct after every gate, 
long distance movement, long 
memory storage period

• Quantum Computing Circuits 
spend all of their time 
performing error correction
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Outline
• Quantum Computer Architecture

– Some Urban legends about Quantum Architecture
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum computer 

implementation technologies 
– Built on Silicon

• Can bootstrap the vast infrastructure that currently exists in 
the microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
• 12 bits exist, 30 promised soon, …
• Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
• So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

• Memory, Gates, Movement
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Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels 

between electrodes
• Quantum gates performed by 

lasers (either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to 

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to 
cause Ions to migrate

• Care must be taken to avoid 
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT
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An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Movement of ions can be done classically
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations
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• Input: Gate level quantum 

circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
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– Movement/gate schedule
– Control for schedule
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling
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Important Measurement Metrics
• Traditional CAD Metrics:

– Area
• What is the total area of a circuit?
• Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
• What is the total latency to compute circuit once
• Measured in seconds (or s)

– Probability of Success (Psuccess)
• Not common metric for classical circuits
• Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR 
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea
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• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout heuristics!

• Create a physical layout and scheduling of bits
• Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

• Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

• Smaller modules evaluated via vector Monte Carlo
• Teleportation infrastructure evaluated via fidelity of EPR bits

• Finally – Compute ADCR for particular result
– Repeat as necessary by varying parameters to generate ADCRoptimal

How to evaluate a circuit?

Normal 
Monte Carlo:

n times

Vector
Monte Carlo:
single pass
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Quantum CAD flow
QEC Insert

Circuit
Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit

O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant 
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC 
OptimizationFault

Tolerant

ADCR computation

QARC:20Quantum Computer Architectures ©2009 John Kubiatowicz/UC Berkeley

Example Place and Route Heuristic:
Collapsed Dataflow

• Gate locations placed in dataflow order
– Qubits flow left to right
– Initial dataflow geometry folded and sorted
– Channels routed to reflect dataflow edges

• Too many gate locations, collapse dataflow
– Using scheduler feedback, identify latency critical edges
– Merge critical node pairs
– Reroute channels

• Dataflow mapping allows pipelining of computation!

q0
q1
q2
q3

q0
q1
q2
q3

q0
q1
q2
q3
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• Possible to perform a comparison between codes
– Pick circuit/Run through CAD flow
– Result depends on goodness of layout and scheduling heuristic

• Layout for CNOT gate (Compare with Cross, et. al)
– Using Dataflow Heuristic

• Validated with Donath’s
wire-length estimator 
(classical CAD)

– Fully account of movement
– Local gate model

• Failure Probability results
– Best:[[23,1,7]] (Golay), 

[[25,1,5]] (Bacon-Shor), 
[[7,1,3]] (Steane)

– Steane does particularly
well with high movement errors

• Simplicity particularly 
important in regime

• More info in Mark Whitney thesis
– http://qarc.cs.berkeley.edu/publications

Comparing Different QEC Codes
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• Basic Unit: 
– Two-Qubit cell (logical)
– Storage, Compute, Correction

• Connect Units with Teleporters
– Probably in mesh topology, but 

details never entirely clear from original papers
• First Serious (Large-scale) Organization (2005)

– Tzvetan S. Metodi, Darshan Thaker, 
Andrew W. Cross, Frederic T. Chong, and Isaac L. Chuang

Teleporter
NODEEPR EPR

EPR
EPR

QARC:24Quantum Computer Architectures ©2009 John Kubiatowicz/UC Berkeley

Details
• Why Regular Array?

– Distribute Ancilla generation where it is needed
– Single 2-Qubit storage cell quite large 

• Concatenated [[7,1,3]] could have 343 or more 
physical Qubits/ logical Qubit

– Size of single logical Qubit 
makes sense to teleport between large logical blocks

– Regularity easier to exploit for CAD tools!
• Same reason we have ASICs with regular routing channels

• Assumptions:
– Rate of ancilla consumption constant for every Qubit
– Ratio of one Teleporter for every two Qubit gate is optimal
– (Implicit) Error correction after every move or gate is optimal
– Parallelism of quantum circuits can exploit computation on every

Qubit in the system at same time
• Are these assumptions valid???
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Parallel Circuit Latency

Running Circuit at “Speed of Data”
• Often, Ancilla qubits are independent of data

– Preparation may be pulled offline
– Very clear Area/Delay tradeoff: 

• Suggests Automatic Tradeoffs (CAD Tool)
• Ancilla qubits should be ready “just in time”

to avoid ancilla decoherence from idleness
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Hardware Devoted to 
Parallel Ancilla Generation

Serial Circuit Latency
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How much Ancilla Bandwidth Needed?

• 32-bit Quantum Carry-Lookahead Adder
– Ancilla use very uneven (zero and T ancilla)
– Performance is flat at high end of ancilla generation bandwidth

• Can back off 10% in maximum performance an save orders of 
magnitude in ancilla generation area

• Many bits idle at any one time
– Need only enough ancilla to maintain state for these bits
– Many not need to frequently correct idle errors

• Conclusion: makes sense to compute ancilla requirements 
and share area devoted to ancilla generation
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Encoded Ancilla Verification Qubits

Ancilla Factory Design I
• “In-place” ancilla preparation

• Ancilla factory consists of many of these
– Encoded ancilla prepared

in many places, then
moved to output port

– Movement is costly!
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Ancilla Factory Design II
• Pipelined ancilla preparation: break into stages

– Steady stream of encoded ancillae at output port
– Fully laid out and scheduled to get area and 

bandwidth estimates
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The Qalypso Datapath Architecture
• Dense data region

– Data qubits only
– Local communication

• Shared Ancilla Factories
– Distributed to data as needed
– Fully multiplexed to all data
– Output ports (   ): close to data
– Input ports (    ): may be far from

data (recycled state irrelevant)
• Regions connected by teleportation networks

R R R
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Tiled Quantum Datapaths

• Several Different Datapaths mappable by our CAD flow
– Variations include hand-tuned Ancilla generators/factories

• Memory: storage for state that doesn’t move much
– Less/different requirements for Ancilla
– Original CQLA paper used different QEC encoding 

• Automatic mapping must:
– Partition circuit among compute and memory regions
– Allocate Ancilla resources to match demand (at knee of curve)
– Configure and insert teleportation network
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Which Datapath is Best?
• Random Circuit Generation

– f(Gate Count, Gate Types, Qubit Count, Splitting factor)
– Splitting factor (r): measures connectivity of the circuit

• Example: 0.5 splits Qubits in half, adds random gates between 
two halves, then recursively splits results

• Closely related to Rent’s parameter
• Qalypso clear winner (for all r)

– 4x lower latency than LQLA
– 2x smaller area than CQLA+

• Why Qalypso does well:
– Shared, matched ancilla generation
– Automatic network sizing (not one

Teleporter for every two Qubits) 
– Automatic Identification of

Idle Qubits (memory)
• LQLA and CQLA+ perform close second

– Original datapaths supplemented with better ancilla generators, 
automatic network sizing, and Idle Qubit identification

– Original QLA and CQLA do very poorly for large circuits
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How to design 
Teleportation Network

• What is the architecture of the network?
– Including Topology, Router design, EPR Generators, etc..

• What are the details of EPR distribution?
• What are the practical aspects of routing?

– When do we set up a channel?
– What path does the channel take?
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• Positive Features
– Regularity (can build classical network topologies)
– T node linking not on critical path
– Pre-purification part of link setup

• Fidelity amplification of the line
– Allows continuous stream of EPR correlations to be established 

for use when necessary

G TT G TGT G TGT

PP

TeleportationTeleportation

Adjacent T nodes linked for teleportation

Basic Idea: 
Chained Teleportation
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• Experiment: Transmit enough EPR pairs over network to 
meet required fidelity of channel
– Measure total global traffic
– Higher Fidelity local EPR pairs  less global EPR traffic

• Benefit: decreased congestion at T Nodes
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• Grid of T nodes
• Packet-switched network 

- Options: Dimension-Order or Adaptive Routing
- Precomputed or on-demand start time for setup

T T T T

T T T T

P P P P

P P P P

G

G

G

G

G

G G

G G G

, linked by G nodes

• Each EPR qubit has associated classical message

Gate Gate Gate Gate

Gate Gate Gate Gate

Building a Mesh Interconnect
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Optimization of Network?

• EPR Routing Algorithms
– On Demand using minimal adaptive paths

• Decisions made at runtime, congestion avoidance picks free 
path from A->B, delays if no path available

– Offline, Adaptive
• Pre-schedules channels to overlap with prior computation 
• Must determine and store full path information for each 

communication prior to execution
• Scale network to meet circuit needs (after mapping)

– Size EPR generation, channels, and teleport resources
– Initial Goal: running all computation at “speed of data”

• Causes network to consume 80% of total area if done naively
– Back off from “at speed” point during ADCR optimization

MOVE q0 ‐> fu1
MOVE q1 ‐> fu1
CX q0, q1
MOVE q0 ‐> fu2
MOVE q2 ‐> fu2
CX q0, q2

q0

q1

q0

q2

Time

Teleport

Gate

Channel 
Setup
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• Standard idea: correct after every gate, and long 
communication, and long idle time
– This is the easiest for people to analyze
– Urban Legend?  Must do in order to keep circuit fault tolerant!

• This technique is suboptimal (at least in some domains)
– Not every bit has same noise level!

• Different idea: identify critical Qubits
– Try to identify paths that feed into noisiest output bits
– Place correction along these paths to reduce maximum noise

H

Reducing QEC Overhead

H Correct Correct

Correct

Correct

CorrectCorrect

Correct

HH Correct
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Simple Error Propagation Model

• EDist model of error propagation: 
– Inputs start with EDist = 0
– Each gate propagates max input EDist to outputs 
– Gates add 1 unit of EDist, Correction resets EDist to 1

• Maximum EDist corresponds to Critical Path
– Back track critical paths that add to Maximum EDist

• Add correction to keep EDist below critical threshold
– Example: Added correction to keep EDistMAX  2

Error Distance 
(EDist) Labels

Maximum EDist
propagation:

4=max(3,1)+1 
H Correct

Correct
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QEC Optimization

• Modified version of 
retiming algorithm: called 
“recorrection:”
– Find minimal placement 

of correction operations 
that meets specified 
MAX(EDist)  EDistMAX

• Probably of success not
always reduced for 
EDistMAX > 1
– But, operation count and 

area drastically reduced
• Use Actual Layouts and 

Fault Analysis
– Optimization pre-layout, 

evaluated post-layout

EDistMAX
iteration

QEC
Optimization

EDistMAX

Partitioning
and

Layout

Fault
Analysis

Optimized
Layout

Input
Circuit

1024-bit QRCA and QCLA adders
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Recorrection in presence of 
different QEC codes

• 500 Gate Random Circuit (r=0.5)
• Not all codes do equally well with Recorrection

– Both [[23,1,7]] and [[7,1,3]] reasonable candidates
– [[25,1,5]] doesn’t seem to do as well

• Cost of communication and Idle errors is clear here!
• However – real optimization situation would vary EDist

to find optimal point
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Outline
• Quantum Computer Architecture

– Some Urban legends about Quantum Architecture
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of 

magnitude in some circuit configurations

ADCRoptimal for
1024-bit QCLA

ADCRoptimal for
1024-bit QRCA and QCLA
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• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC ancilla

generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed to  

optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility 

Area Breakdown for Adders
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Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2
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Conclusion
• Quantum Computer Architecture:

– Considering details of Quantum Computer systems at larger 
scale (1000s or millions of components)

• Argued that CAD tools may have a place in Quantum 
Computing Research
– Presented Some details of a Full CAD flow (Partitioning, Layout,

Simulation, Error Analysis)
– New Evaluation Metric: ADCR = Area  E(Latency)
– Full mapping and layout accounts for communication cost 

• “Recorrection” Optimization for QEC
– Simplistic model (EDist) to place correction blocks
– Validation with full layout
– Can improve ADCR by factors of 10 or more

• Improves latency and area significantly, can improve 
probability under some circumstances as well

• Full analysis of Adder architectures and 1024-bit Shor’s
– Still too long (and too big), but smaller than previous estimates
– Total circuit size still too big for our error analysis – but have 

hope that we can improve this


