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OceanStore Vision:
Utility-based Infrastructure
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• Data service provided by storage federation
• Cross-administrative domain 
• Contractual Quality of Service (“someone to sue”)
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What are the advantages 
of a utility?

• For Clients:
– Outsourcing of Responsibility

• Someone else worries about quality of service 
– Better Reliability

• Utility can muster greater resources toward durability
• System not disabled by local outages
• Utility can focus resources (manpower) at security-

vulnerable aspects of system
– Better data mobility

• Starting with secure network modelsharing
• For Utility Provider:

– Economies of scale
• Dynamically redistribute resources between clients
• Focused manpower can serve many clients simultaneously
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Key Observation:
Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure 
– Exclude malicious elements
– Repair itself 
– Incorporate new elements 

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term 
(accessible for 100s of years):
– Geographic distribution of information
– New servers added/Old servers removed
– Continuous Repair  Data survives for long term
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Why Peer-to-Peer?
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Peer-to-Peer is:

• Old View: 
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic 

techniques to achieve guarantees
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• Untrusted Infrastructure: 
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a 

high-bandwidth network most of the time
– Exploit multicast for quicker consistency when possible

• Promiscuous Caching:
– Data may be cached anywhere, anytime 

• Responsible Party:
– Some organization (i.e. service provider) guarantees 

that your data is consistent and durable
– Not trusted with content of data, merely its integrity

OceanStore Assumptions
Peer-to-peer

Quality-of-Service
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Important Peer-to-Peer Service:
Decentralized Object Location and Routing

to Self-Verifying Handles (GUIDs)

GUID1

DOLR

GUID1GUID2
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The Tapestry DOLR:
Peer-to-peer Stability

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps
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A Peek at
OceanStore
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OceanStore Data Model
• Versioned Objects

– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between 
permanent name and latest version
– Write access control/integrity involves managing 

these mappings

Comet Analogy updates

versions
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Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data 
B -Tree

Indirect
Blocks

M

d'8 d'9

M
backpointer

copy on 
write

copy on 
write

AGUID = hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed
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Two Types of OceanStore Data
• Active Data: “Floating Replicas”

– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

• Data coded into n fragments, any m of which are 
sufficient to reconstruct (e.g m=16, n=64)

• Coding overhead is proportional to nm (e.g 4)
– Fragments are cryptographically self-verifying

• Most data in the OceanStore is archival!
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The Path of an 
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients
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OceanStore API:
Universal Conflict Resolution

• Consistency is form of optimistic concurrency 
– Updates contain predicate-action pairs 
– Each predicate tried in turn:

• If none match, the update is aborted
• Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching 
3. Access control
4. Archival Storage

OceanStore
API
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Peer-to-Peer Caching:
Automatic Locality Management

• Self-Organizing mechanisms to place replicas
• Automatic Construction of Update Multicast

Primary Copy
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Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers
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Extreme Durability
• Exploiting Infrastructure for Repair

– DOLR permits efficient heartbeat mechanism to 
notice:

• Servers going away for a while
• Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to 
physical medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied 
by servers) to Suppress Entropy
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PondStore
Prototype
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OceanStore Prototype
• All major subsystems operational

– Self-organizing Tapestry base
– Primary replicas use Byzantine agreement
– Secondary replicas self-organize into multicast tree
– Erasure-coding archive
– Application interfaces: NFS, IMAP/SMTP, HTTP

• 280K lines of Java (J2SE v1.3)
– JNI libraries for cryptography, erasure coding

• PlanetLab Deployment (FAST 2003, “Pond” paper)
– 220 machines at 100 sites 

in North America, Europe, 
Australia, Asia, etc. 

– 1.26Ghz PIII (1GB RAM), 
1.8Ghz PIV (2GB RAM)

– OceanStore code running 
with 1000 virtual-node 
emulations
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Event-Driven Architecture 
of an OceanStore Node

• Data-flow style
– Arrows Indicate flow of messages

• Potential to exploit small multiprocessors at 
each physical node

World
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Why aren’t we using
Pond every Day?
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• Had Reasonable Stability: 
– In simulation
– Or with small error rate

• But trouble in wide area:
– Nodes might be lost and

never reintegrate
– Routing state might 

become stale or be lost
• Why?

– Complexity of algorithms 
– Wrong design paradigm: strict rather than loose state
– Immediate repair of faults

• Ultimately, Tapestry Routing Framework succumbed to: 
– Creeping Featurism (designed by several people)
– Fragilility under churn
– Code Bloat 

Problem #1: DOLR is Great Enabler—
but only if it is stable
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• Simple, Stable, Targeting Failure
• Rethinking of design of Tapestry:

– Separation of correctness from performance
– Periodic recovery instead of reactive recovery
– Network understanding

(e.g. timeout calculation)
– Simpler Node Integration

(smaller amount of state)
• Extensive testing under 

Churn and partition
• Bamboo is so stable that

it is part of the OpenHash
public DHT infrastructure.

• In wide use by many researchers

Answer: Bamboo!
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Problem #2: Pond Write Latency
• Byzantine algorithm adapted from Castro & 

Liskov
– Gives fault tolerance, security against compromise
– Fast version uses symmetric cryptography

• Pond uses threshold signatures instead
– Signature proves that f +1 primary replicas agreed
– Can be shared among secondary replicas
– Can also change primaries w/o changing public key

• Big plus for maintenance costs
– Results good for all time once signed
– Replace faulty/compromised servers transparently
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Closer Look: Write Cost
• Small writes

– Signature dominates
– Threshold sigs. slow!
– Takes 70+ ms to sign
– Compare to 5 ms 

for regular sigs.
• Large writes

– Encoding dominates
– Archive cost per byte
– Signature cost per write

• Answer: Reduction in overheads
– More Powerful Hardware at Core
– Cryptographic Hardware

• Would greatly reduce write cost
• Possible use of ECC or other signature method

– Offloading of Archival Encoding

Sign Result
Archive
Apply
Serialize
Validate
Phase

75.877.8
566.94.5
113.01.5
26.66.1

0.40.3

2 MB 
write

4 kB
write

(times in milliseconds)
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Problem #3: Efficiency
• No resource aggregation 

– Small blocks spread widely
– Every block of every file on different set of servers
– Not uniquely OceanStore issue!

• Answer: Two-Level Naming
– Place data in larger chunks (‘extents’)
– Individual access of blocks by name within extents

– Bonus: Secure Log good interface for secure archive
– Antiquity: New Prototype for archival storage

get( E1,R1 )

V2 R2 I3 B6 B5 V1 R1 I2 B4 B3 I1 B2 B1

E0E1
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Problem #4: Complexity
• Several of the mechanisms were complex

– Ideas were simple, but implementation was complex
– Data format combination of live and archival features
– Byzantine Agreement hard to get right

• Ideal layering not obvious at beginning of project:
– Many Applications Features placed into Tapestry
– Components not autonomous, i.e. able to be tied in at any 

moment and restored at any moment
• Top-down design lost during thinking and 

experimentation
• Everywhere: reactive recovery of state

– Original Philosophy: Get it right once, then repair
– Much Better: keep working toward ideal 

(but assume never make it)
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Other Issues/Ongoing Work:
• Archival Repair Expensive if done incorrectly:

– Small blocks consume excessive storage and 
network bandwidth

– Transient failures consume unnecessary repair bandwidth
– Solutions: collect blocks into extents and use threshold repair

• Resource Management Issues
– Denial of Service/Over Utilization of Storage serious threat
– Solution: Exciting new work on fair allocation

• Inner Ring provides incomplete solution:
– Complexity with Byzantine agreement algorithm is a problem
– Working on better Distributed key generation
– Better Access control + secure hardware + simpler Byzantine 

Algorithm?
• Handling of low-bandwidth links and Partial Disconnection

– Improved efficiency of data storage
– Scheduling of links
– Resources are never unbounded

• Better Replica placement through game theory
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What is next?
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Bamboo  OpenDHT
• PL deployment running for several months
• Put/get via RPC over TCP
• Looking for new users/New applications
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• OceanStore Concepts Applied to Tape-less backup
– Self-Replicating, Self-Repairing, Self-Managing
– No need for actual Tape in system 

• (Although could be there to keep with tradition)

The Berkeley PetaByte
Archival Service
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OceanStore Archive  Antiquity
• Secure Log: 

– Can only modify at one point – log head.  
• Makes consistency easier

– Self-verifying
• Every entry securely points to previous forming Merkle

chain
• Prevents substitution attacks

– Random read access – can still read efficiently
• Simple and secure primitive for storage

– Log identified by cryptographic key pair
– Only owner of private key can modify log
– Thin interface, only append()

• Amenable to secure, durable implementation
– Byzantine quorum of storage servers

• Can survive failures at O(n) cost instead of O(n2) cost
– Efficiency through aggregation

• Use of Extents and Two-Level naming
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Storage System
V1 R1 I2 B4 B3 I1 B2 B1

V1
R1

I2
B4

B3
I1

B2
B1

V1 R1 I2 B4 B3 I1 B2 B1

Antiquity Architecture:
Universal Secure Middleware

App

App

Server

App

Replicated
Service• Data Source

– Creator of data
• Client

– Direct user of system
• “Middleware”
• End-user, Server, 

Replicated service
– append()’s to log
– Signs requests

• Storage Servers
– Store log replicas on disk
– Dynamic Byzantine quorums

• Consistency and durability
• Administrator

– Selects storage servers
• Prototype currently operational on PlanetLab
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Secure Object Storage

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing 

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStoreOceanStore

Client
Data

Manager
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For more info:
http://oceanstore.org

• OceanStore vision paper for ASPLOS 2000
“OceanStore: An Architecture for Global-Scale 

Persistent Storage”
• Pond Implementation paper for FAST 2003

“Pond: the OceanStore Prototype”
• Tapestry deployment paper (JSAC, to appear)

“Tapestry: A Resilient Global-scale Overlay for 
Service Deployment”

• Bamboo Paper for Usenix 2004
“Handling Churn in a DHT”

• OpenDHT Paper for SigCOMM 2005
“OpenDHT: A Public DHT Service”
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Backup Slides
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Closer Look: Write Cost

(run on cluster)
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Secure Naming

• Naming hierarchy:
– Users map from names to GUIDs via hierarchy of 

OceanStore objects (ala SDSI)
– Requires set of “root keys” to be acquired by user

Foo
Bar
Baz

Myfile

Out-of-Band
“Root link”
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The Thermodynamic Analogy

• Large Systems have a variety of latent order
– Connections between elements
– Mathematical structure (erasure coding, etc)
– Distributions peaked about some desired behavior

• Permits “Stability through Statistics”
– Exploit the behavior of aggregates (redundancy)

• Subject to Entropy
– Servers fail, attacks happen, system changes

• Requires continuous repair
– Apply energy (i.e. through servers) to reduce entropy
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The Biological Inspiration
• Biological Systems are built from (extremely) 

faulty components, yet:
– They operate with a variety of component failures 
 Redundancy of function and representation

– They have stable behavior  Negative feedback
– They are self-tuning  Optimization of common case

• Introspective (Autonomic)
Computing:
– Components for performing
– Components for monitoring and

model building
– Components for continuous 

adaptation Adapt

Dance

Monitor
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Basic Tapestry Mesh
Incremental Prefix-based Routing
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Use of Tapestry Mesh
Randomization and Locality
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Single Node Tapestry

Transport Protocols

Network Link Management

Application Interface / Upcall API

OceanStoreApplication-Level
Multicast

Other
Applications

Router
Routing Table

&
Object Pointer DB

Dynamic Node
Management



OceanStore:45EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Object Location
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Tradeoff: Storage vs Locality
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Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost 
Per Year (FBLPY)
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Statistical Advantage of Fragments

• Latency and standard deviation reduced:
– Memory-less latency model
– Rate ½ code with 32 total fragments

Time to Coalesce vs. Fragments Requested (TI5000)
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Self-Organized
Replication
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Effectiveness of second tier
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Second Tier Adaptation: 
Flash Crowd

• Actual Web Cache running on OceanStore
– Replica 1 far away
– Replica 2 close to most requestors (created t ~ 20)
– Replica 3 close to rest of requestors (created t ~ 40)
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Introspective Optimization
• Secondary tier self-organized into 

overlay multicast tree:
– Presence of DOLR with locality to suggest placement 

of replicas in the infrastructure
– Automatic choice between update vs invalidate

• Continuous monitoring of access patterns:
– Clustering algorithms to discover object relationships

• Clustered prefetching: demand-fetching related objects
• Proactive-prefetching: get data there before needed

– Time series-analysis of user and data motion
• Placement of Replicas to Increase Availability
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Parallel Insertion Algorithms 
(SPAA ’02)

• Massive parallel insert is important 
– We now have algorithms that handle “arbitrary 

simultaneous inserts”
– Construction of nearest-neighbor mesh links

• Log2 n message complexityfully operational routing 
mesh

– Objects kept available during this process 
• Incremental movement of pointers

• Interesting Issue: Introduction service
– How does a new node find a gateway into the 

Tapestry?
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Can You Delete (Eradicate) Data?
• Eradication is antithetical to durability!

– If you can eradicate something, then so can someone else!  
(denial of service)

– Must have “eradication certificate” or similar
• Some answers:

– Bays: limit the scope of data flows
– Ninja Monkeys: hunt and destroy with certificate

• Related: Revocation of keys
– Need hunt and re-encrypt operation

• Related: Version pruning 
– Temporary files: don’t keep versions for long
– Streaming, real-time broadcasts:  Keep? Maybe
– Locks:  Keep?  No, Yes, Maybe (auditing!)
– Every key stroke made: Keep?  For a short while?


