
An OceanStore Retrospective

John Kubiatowicz
University of California at Berkeley OceanStore:2EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

OceanStore Vision:
Utility-based Infrastructure

Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

• Data service provided by storage federation
• Cross-administrative domain
• Contractual Quality of Service (“someone to sue”)

OceanStore:3EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

What are the advantages
of a utility?

• For Clients:
– Outsourcing of Responsibility

• Someone else worries about quality of service
– Better Reliability

• Utility can muster greater resources toward durability
• System not disabled by local outages
• Utility can focus resources (manpower) at security-

vulnerable aspects of system
– Better data mobility

• Starting with secure network modelsharing
• For Utility Provider:

– Economies of scale
• Dynamically redistribute resources between clients
• Focused manpower can serve many clients simultaneously

OceanStore:4EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Key Observation:
Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure
– Exclude malicious elements
– Repair itself
– Incorporate new elements

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term
(accessible for 100s of years):
– Geographic distribution of information
– New servers added/Old servers removed
– Continuous Repair  Data survives for long term

OceanStore:5EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Why Peer-to-Peer?

OceanStore:6EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Peer-to-Peer is:

• Old View:
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic

techniques to achieve guarantees

OceanStore:7EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

• Untrusted Infrastructure:
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a

high-bandwidth network most of the time
– Exploit multicast for quicker consistency when possible

• Promiscuous Caching:
– Data may be cached anywhere, anytime

• Responsible Party:
– Some organization (i.e. service provider) guarantees

that your data is consistent and durable
– Not trusted with content of data, merely its integrity

OceanStore Assumptions
Peer-to-peer

Quality-of-Service

OceanStore:8EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Important Peer-to-Peer Service:
Decentralized Object Location and Routing

to Self-Verifying Handles (GUIDs)

GUID1

DOLR

GUID1GUID2

OceanStore:9EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

The Tapestry DOLR:
Peer-to-peer Stability

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps

OceanStore:10EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

A Peek at
OceanStore

OceanStore:11EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

OceanStore Data Model
• Versioned Objects

– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between
permanent name and latest version
– Write access control/integrity involves managing

these mappings

Comet Analogy updates

versions

OceanStore:12EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data
B -Tree

Indirect
Blocks

M

d'8 d'9

M
backpointer

copy on
write

copy on
write

AGUID = hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed

OceanStore:13EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Two Types of OceanStore Data
• Active Data: “Floating Replicas”

– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

• Data coded into n fragments, any m of which are
sufficient to reconstruct (e.g m=16, n=64)

• Coding overhead is proportional to nm (e.g 4)
– Fragments are cryptographically self-verifying

• Most data in the OceanStore is archival!

OceanStore:14EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

The Path of an
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients

OceanStore:15EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

OceanStore API:
Universal Conflict Resolution

• Consistency is form of optimistic concurrency
– Updates contain predicate-action pairs
– Each predicate tried in turn:

• If none match, the update is aborted
• Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching
3. Access control
4. Archival Storage

OceanStore
API

OceanStore:16EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Peer-to-Peer Caching:
Automatic Locality Management

• Self-Organizing mechanisms to place replicas
• Automatic Construction of Update Multicast

Primary Copy

OceanStore:17EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers

OceanStore:18EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Extreme Durability
• Exploiting Infrastructure for Repair

– DOLR permits efficient heartbeat mechanism to
notice:

• Servers going away for a while
• Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to
physical medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied
by servers) to Suppress Entropy

OceanStore:19EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

PondStore
Prototype

OceanStore:20EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

OceanStore Prototype
• All major subsystems operational

– Self-organizing Tapestry base
– Primary replicas use Byzantine agreement
– Secondary replicas self-organize into multicast tree
– Erasure-coding archive
– Application interfaces: NFS, IMAP/SMTP, HTTP

• 280K lines of Java (J2SE v1.3)
– JNI libraries for cryptography, erasure coding

• PlanetLab Deployment (FAST 2003, “Pond” paper)
– 220 machines at 100 sites

in North America, Europe,
Australia, Asia, etc.

– 1.26Ghz PIII (1GB RAM),
1.8Ghz PIV (2GB RAM)

– OceanStore code running
with 1000 virtual-node
emulations

OceanStore:21EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Event-Driven Architecture
of an OceanStore Node

• Data-flow style
– Arrows Indicate flow of messages

• Potential to exploit small multiprocessors at
each physical node

World

OceanStore:22EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Why aren’t we using
Pond every Day?

OceanStore:23EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

• Had Reasonable Stability:
– In simulation
– Or with small error rate

• But trouble in wide area:
– Nodes might be lost and

never reintegrate
– Routing state might

become stale or be lost
• Why?

– Complexity of algorithms
– Wrong design paradigm: strict rather than loose state
– Immediate repair of faults

• Ultimately, Tapestry Routing Framework succumbed to:
– Creeping Featurism (designed by several people)
– Fragilility under churn
– Code Bloat

Problem #1: DOLR is Great Enabler—
but only if it is stable

OceanStore:24EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

• Simple, Stable, Targeting Failure
• Rethinking of design of Tapestry:

– Separation of correctness from performance
– Periodic recovery instead of reactive recovery
– Network understanding

(e.g. timeout calculation)
– Simpler Node Integration

(smaller amount of state)
• Extensive testing under

Churn and partition
• Bamboo is so stable that

it is part of the OpenHash
public DHT infrastructure.

• In wide use by many researchers

Answer: Bamboo!

OceanStore:25EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Problem #2: Pond Write Latency
• Byzantine algorithm adapted from Castro &

Liskov
– Gives fault tolerance, security against compromise
– Fast version uses symmetric cryptography

• Pond uses threshold signatures instead
– Signature proves that f +1 primary replicas agreed
– Can be shared among secondary replicas
– Can also change primaries w/o changing public key

• Big plus for maintenance costs
– Results good for all time once signed
– Replace faulty/compromised servers transparently

OceanStore:26EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Closer Look: Write Cost
• Small writes

– Signature dominates
– Threshold sigs. slow!
– Takes 70+ ms to sign
– Compare to 5 ms

for regular sigs.
• Large writes

– Encoding dominates
– Archive cost per byte
– Signature cost per write

• Answer: Reduction in overheads
– More Powerful Hardware at Core
– Cryptographic Hardware

• Would greatly reduce write cost
• Possible use of ECC or other signature method

– Offloading of Archival Encoding

Sign Result
Archive
Apply
Serialize
Validate
Phase

75.877.8
566.94.5
113.01.5
26.66.1

0.40.3

2 MB
write

4 kB
write

(times in milliseconds)

OceanStore:27EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Problem #3: Efficiency
• No resource aggregation

– Small blocks spread widely
– Every block of every file on different set of servers
– Not uniquely OceanStore issue!

• Answer: Two-Level Naming
– Place data in larger chunks (‘extents’)
– Individual access of blocks by name within extents

– Bonus: Secure Log good interface for secure archive
– Antiquity: New Prototype for archival storage

get(E1,R1)

V2 R2 I3 B6 B5 V1 R1 I2 B4 B3 I1 B2 B1

E0E1

OceanStore:28EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Problem #4: Complexity
• Several of the mechanisms were complex

– Ideas were simple, but implementation was complex
– Data format combination of live and archival features
– Byzantine Agreement hard to get right

• Ideal layering not obvious at beginning of project:
– Many Applications Features placed into Tapestry
– Components not autonomous, i.e. able to be tied in at any

moment and restored at any moment
• Top-down design lost during thinking and

experimentation
• Everywhere: reactive recovery of state

– Original Philosophy: Get it right once, then repair
– Much Better: keep working toward ideal

(but assume never make it)

OceanStore:29EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Other Issues/Ongoing Work:
• Archival Repair Expensive if done incorrectly:

– Small blocks consume excessive storage and
network bandwidth

– Transient failures consume unnecessary repair bandwidth
– Solutions: collect blocks into extents and use threshold repair

• Resource Management Issues
– Denial of Service/Over Utilization of Storage serious threat
– Solution: Exciting new work on fair allocation

• Inner Ring provides incomplete solution:
– Complexity with Byzantine agreement algorithm is a problem
– Working on better Distributed key generation
– Better Access control + secure hardware + simpler Byzantine

Algorithm?
• Handling of low-bandwidth links and Partial Disconnection

– Improved efficiency of data storage
– Scheduling of links
– Resources are never unbounded

• Better Replica placement through game theory

OceanStore:30EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

What is next?

OceanStore:31EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Bamboo  OpenDHT
• PL deployment running for several months
• Put/get via RPC over TCP
• Looking for new users/New applications

OceanStore:32EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

• OceanStore Concepts Applied to Tape-less backup
– Self-Replicating, Self-Repairing, Self-Managing
– No need for actual Tape in system

• (Although could be there to keep with tradition)

The Berkeley PetaByte
Archival Service

OceanStore:33EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

OceanStore Archive  Antiquity
• Secure Log:

– Can only modify at one point – log head.
• Makes consistency easier

– Self-verifying
• Every entry securely points to previous forming Merkle

chain
• Prevents substitution attacks

– Random read access – can still read efficiently
• Simple and secure primitive for storage

– Log identified by cryptographic key pair
– Only owner of private key can modify log
– Thin interface, only append()

• Amenable to secure, durable implementation
– Byzantine quorum of storage servers

• Can survive failures at O(n) cost instead of O(n2) cost
– Efficiency through aggregation

• Use of Extents and Two-Level naming

OceanStore:34EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Storage System
V1 R1 I2 B4 B3 I1 B2 B1

V1
R1

I2
B4

B3
I1

B2
B1

V1 R1 I2 B4 B3 I1 B2 B1

Antiquity Architecture:
Universal Secure Middleware

App

App

Server

App

Replicated
Service• Data Source

– Creator of data
• Client

– Direct user of system
• “Middleware”
• End-user, Server,

Replicated service
– append()’s to log
– Signs requests

• Storage Servers
– Store log replicas on disk
– Dynamic Byzantine quorums

• Consistency and durability
• Administrator

– Selects storage servers
• Prototype currently operational on PlanetLab

OceanStore:35EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Secure Object Storage

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStoreOceanStore

Client
Data

Manager

OceanStore:36EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

For more info:
http://oceanstore.org

• OceanStore vision paper for ASPLOS 2000
“OceanStore: An Architecture for Global-Scale

Persistent Storage”
• Pond Implementation paper for FAST 2003

“Pond: the OceanStore Prototype”
• Tapestry deployment paper (JSAC, to appear)

“Tapestry: A Resilient Global-scale Overlay for
Service Deployment”

• Bamboo Paper for Usenix 2004
“Handling Churn in a DHT”

• OpenDHT Paper for SigCOMM 2005
“OpenDHT: A Public DHT Service”

OceanStore:37EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Backup Slides

OceanStore:38EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Closer Look: Write Cost

(run on cluster)

OceanStore:39EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Secure Naming

• Naming hierarchy:
– Users map from names to GUIDs via hierarchy of

OceanStore objects (ala SDSI)
– Requires set of “root keys” to be acquired by user

Foo
Bar
Baz

Myfile

Out-of-Band
“Root link”

OceanStore:40EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

The Thermodynamic Analogy

• Large Systems have a variety of latent order
– Connections between elements
– Mathematical structure (erasure coding, etc)
– Distributions peaked about some desired behavior

• Permits “Stability through Statistics”
– Exploit the behavior of aggregates (redundancy)

• Subject to Entropy
– Servers fail, attacks happen, system changes

• Requires continuous repair
– Apply energy (i.e. through servers) to reduce entropy

OceanStore:41EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

The Biological Inspiration
• Biological Systems are built from (extremely)

faulty components, yet:
– They operate with a variety of component failures
 Redundancy of function and representation

– They have stable behavior  Negative feedback
– They are self-tuning  Optimization of common case

• Introspective (Autonomic)
Computing:
– Components for performing
– Components for monitoring and

model building
– Components for continuous

adaptation Adapt

Dance

Monitor

OceanStore:42EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

NodeID
0xEF34

NodeID
0xEF31NodeID

0xEFBA

NodeID
0x0921

NodeID
0xE932

NodeID
0xEF37

NodeID
0xE324

NodeID
0xEF97

NodeID
0xEF32

NodeID
0xFF37

NodeID
0xE555

NodeID
0xE530

NodeID
0xEF44

NodeID
0x0999

NodeID
0x099F

NodeID
0xE399

NodeID
0xEF40

NodeID
0xEF34

Basic Tapestry Mesh
Incremental Prefix-based Routing

OceanStore:43EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Use of Tapestry Mesh
Randomization and Locality

OceanStore:44EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Single Node Tapestry

Transport Protocols

Network Link Management

Application Interface / Upcall API

OceanStoreApplication-Level
Multicast

Other
Applications

Router
Routing Table

&
Object Pointer DB

Dynamic Node
Management

OceanStore:45EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Object Location

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Client to Obj RTT Ping time (1ms buckets)

R
D

P
(m

in
, m

ed
ia

n,
 9

0%
)

OceanStore:46EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Tradeoff: Storage vs Locality

OceanStore:47EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost
Per Year (FBLPY)

OceanStore:48EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Statistical Advantage of Fragments

• Latency and standard deviation reduced:
– Memory-less latency model
– Rate ½ code with 32 total fragments

Time to Coalesce vs. Fragments Requested (TI5000)

0

20

40

60

80

100

120

140

160

180

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Objects Requested

La
te

nc
y

OceanStore:49EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Self-Organized
Replication

OceanStore:50EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Effectiveness of second tier

OceanStore:51EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Second Tier Adaptation:
Flash Crowd

• Actual Web Cache running on OceanStore
– Replica 1 far away
– Replica 2 close to most requestors (created t ~ 20)
– Replica 3 close to rest of requestors (created t ~ 40)

OceanStore:52EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Introspective Optimization
• Secondary tier self-organized into

overlay multicast tree:
– Presence of DOLR with locality to suggest placement

of replicas in the infrastructure
– Automatic choice between update vs invalidate

• Continuous monitoring of access patterns:
– Clustering algorithms to discover object relationships

• Clustered prefetching: demand-fetching related objects
• Proactive-prefetching: get data there before needed

– Time series-analysis of user and data motion
• Placement of Replicas to Increase Availability

OceanStore:53EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Parallel Insertion Algorithms
(SPAA ’02)

• Massive parallel insert is important
– We now have algorithms that handle “arbitrary

simultaneous inserts”
– Construction of nearest-neighbor mesh links

• Log2 n message complexityfully operational routing
mesh

– Objects kept available during this process
• Incremental movement of pointers

• Interesting Issue: Introduction service
– How does a new node find a gateway into the

Tapestry?

OceanStore:54EMC OceanStore Retrospective ©2006 John Kubiatowicz/UC Berkeley

Can You Delete (Eradicate) Data?
• Eradication is antithetical to durability!

– If you can eradicate something, then so can someone else!
(denial of service)

– Must have “eradication certificate” or similar
• Some answers:

– Bays: limit the scope of data flows
– Ninja Monkeys: hunt and destroy with certificate

• Related: Revocation of keys
– Need hunt and re-encrypt operation

• Related: Version pruning
– Temporary files: don’t keep versions for long
– Streaming, real-time broadcasts: Keep? Maybe
– Locks: Keep? No, Yes, Maybe (auditing!)
– Every key stroke made: Keep? For a short while?

