
Tessellation OS

Architecting Systems Software in a
ManyCore World

John Kubiatowicz
UC Berkeley

kubitron@cs.berkeley.edu Tessellation OS Tessellation: 2November 12th, 2009

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

 Sea change in chip
design: multiple “cores” or
processors per chip

3X

Tessellation OS Tessellation: 3November 12th, 2009

ManyCore Chips: The future is here

 “ManyCore” refers to many processors/chip
 64? 128? Hard to say exact boundary

 How to program these?
 Use 2 CPUs for video/audio
 Use 1 for word processor, 1 for browser
 76 for virus checking???

 Something new is clearly needed here…

 Intel 80-core multicore chip (Feb 2007)
 80 simple cores
 Two floating point engines /core
 Mesh-like "network-on-a-chip“
 100 million transistors
 65nm feature size

Tessellation OS Tessellation: 4November 12th, 2009

Parallel Processing for the Masses

 Why is the presence of ManyCore a problem?
 Parallel computing has been around for 40 years with

mixed results
 Many researchers, several generations, widely varying approaches

 Parallel computing has never become a generic software
solution (especially for client applications)

 Suddenly, parallel computing will appear at all levels of our
computation stack
 Cellphones
 Cars (yes, Bosch is thinking of replacing some of the 70 processors

in a high end car with ManyCore chips)
 Laptops, Desktops, Servers…

 Time for the computer industry to panic a bit???
 Perhaps

Tessellation OS Tessellation: 5November 12th, 2009

Why might we succeed this time?
 No Killer Microprocessor to Save Programmers (No Choice)

 No one is building a faster serial microprocessor
 For programs to go faster, SW must use parallel HW

 New Metrics for Success (Different Criteria)
 Perhaps linear speedup is not the primary goal
 Real Time Latency/Responsiveness and/or MIPS/Joule
 Just need some new killer parallel apps

vs. all legacy SW must achieve linear speedup
 Necessity: All the Wood Behind One Arrow (More Manpower)

 Whole industry committed, so more working on it
 If future growth of IT depends on faster processing at same price (vs.

lowering costs like NetBook)
 User-Interactive Applications Exhibit Parallelism (New Apps)

 Multimedia, Speech Recognition, situational awareness
 Multicore Synergy with Cloud Computing (Different Focus)

 Cloud Computing apps parallel even if client not parallel
 Manycore is cost-reduction, not radical SW disruption

5 Tessellation OS Tessellation: 6November 12th, 2009

Outline
 What is the problem (Did this already)
 Berkeley Parlab

 Structure
 Applications
 Software Engineering

 Space-Time Partitioning
 RAPPidS goals
 Partitions, QoS, and Two-Level Scheduling

 The Cell Model
 Space-Time Resource Graph
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Tessellation Software Stack
 Status

Tessellation OS Tessellation: 7November 12th, 2009

ParLab: a Fresh Approach to Parallelism
 What is the ParLAB?

 A new Laboratory on Parallelism at Berkeley
 Remodeled “open floorplan” space on 5th floor of Soda Hall
 10+ faculty, some two-feet in, others collaborating

 Funded by Intel, Microsoft, and other affilliate partners
 Goal: Productive, Efficient, Correct, Portable SW for 100+ cores &

scale as core increase every 2 years (!)
 Application Driven! (really!)

 Some History
 Berkeley researchers from many backgrounds started meeting in

Feb. 2005 to discuss parallelism
 Circuit design, computer architecture, massively parallel computing,

computer-aided design, embedded hardware and software,
programming languages, compilers, scientific programming, and
numerical analysis

 Considered successes in high-performance computing (LBNL) and
parallel embedded computing (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and new Parallel
Computing Laboratory (“Par Lab”)
 Won invited competition form Intel/MS of top 25 CS Departments

Tessellation OS Tessellation: 8November 12th, 2009 8

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Tessellation OS Tessellation: 9November 12th, 2009

Target Environment: Client Computing

 ManyCore + Mobile Devices + Internet
 Lots of Computational Resources

 Must enable massive parallelism (not get in the way)
 Many (relatively) Limited Resources:

 Power, I/O bandwidth, Memory Bandwidth, User patience…
 Must use these as efficiently as possible

 Services backed by vast Internet resources
 Information can be preserved elsewhere
 Access to remote resources must be streamlined
 Obvious use of ManyCore in Services – but this is not the real problem

 Things we are willing to change:
 Software Engineering, Libraries, APIs, Services, Hardware

Clusters

Massive Cluster

Gigabit Ethernet

Tessellation OS Tessellation: 10November 12th, 2009 10

Music and Hearing Application
(David Wessel)
 Musicians have an insatiable appetite for

computation + real-time demands
 More channels, instruments, more

processing,
more interaction!

 Latency must be low (5 ms)
 Must be reliable (No clicks!)

1. Music Enhancer
 Enhanced sound delivery systems for home

sound systems using large microphone and
speaker arrays

 Laptop/Handheld recreate 3D sound over ear
buds

2. Hearing Augmenter
 Handheld as accelerator for hearing aid

3. Novel Instrument User Interface
 New composition and performance systems

beyond keyboards
 Input device for Laptop/Handheld

Berkeley Center for New Music and Audio
Technology (CNMAT) created a compact
loudspeaker array: 10-inch-diameter
icosahedron incorporating 120 tweeters.

Tessellation OS Tessellation: 11November 12th, 2009

Health Application: Stroke Treatment
(Tony Keaveny)

 Stroke treatment time-critical, need
supercomputer performance in hospital

 Goal: First true 3D Fluid-Solid Interaction
analysis of Circle of Willis

 Based on existing codes for distributed
clusters

Tessellation OS Tessellation: 12November 12th, 2009 12

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance
Feedback

ImageImage
DatabaseDatabase

Query by example

Similarity
Metric

Candidate
Results Final ResultFinal Result

 Built around Key Characteristics of personal
databases
 Very large number of pictures (>5K)
Non-labeled images
Many pictures of few people
 Complex pictures including people, events, places,

and objects

1000’s of
images

Tessellation OS Tessellation: 13November 12th, 2009 13

Robust Speech Recognition
(Nelson Morgan)

 Meeting Diarist
 Laptops/ Handhelds at meeting

coordinate to create speaker
identified, partially transcribed
text diary of meeting

Use cortically-inspired manystream spatio-temporal
features to tolerate noise

Tessellation OS Tessellation: 14November 12th, 2009 14

Parallel Browser
(Ras Bodik)
 Goal: Desktop quality browsing on handhelds

 Enabled by 4G networks, better output devices

 Bottlenecks to parallelize
 Parsing, Rendering, Scripting

84ms84ms

2ms2ms

Tessellation OS Tessellation: 15November 12th, 2009

Parallel Software Engineering
 How do we hope to tackle parallel programming?

 Through Software Engineering and Control of Resources
 Two type of programmers:

 Productivity programmers (90% of programmers)
 Not parallel programmers, rather domain specific programmers

 Efficiency programmers (10% of programmers)
 Parallel programmers, extremely competent at handling parallel

programming issues

 Target new ways to express software so that is can be
execute in parallel
 Parallel Patterns

 System support to avoid “getting in the way” of the result
 Parallel Libraries, Autotuning, On-the-fly compilation
 Explicitly managed resource containers (Partitions)

Tessellation OS Tessellation: 16November 12th, 2009

Architecting Parallel Software with
Patterns (Kurt Keutzer/Tim Mattson)

Our initial survey of many applications brought out
common recurring patterns:

“Dwarfs” -> Motifs
 Computational patterns
 Structural patterns
Insight: Successful codes have a comprehensible

software architecture:
 Patterns give human language in which to

describe architecture

Tessellation OS Tessellation: 17November 12th, 2009 17

 How do compelling apps relate to 12 motifs?

Motif (nee “Dwarf”) Popularity
(Red Hot / Blue CoolBlue Cool)

Tessellation OS Tessellation: 18November 12th, 2009

•Pipe-and-Filter
•Agent-and-Repository
•Event-based
•Bulk Synchronous
•MapReduce
•Layered Systems
•Arbitrary Task Graphs

Decompose Tasks/Data
Order tasks Identify Data Sharing and Access

• Graph Algorithms
• Dynamic programming
• Dense/Spare Linear Algebra
• (Un)Structured Grids
• Graphical Models
• Finite State Machines
• Backtrack Branch-and-Bound
• N-Body Methods
• Circuits
• Spectral Methods

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Tessellation OS Tessellation: 19November 12th, 2009

Par Lab is Multi-Lingual
 Applications require ability to compose parallel code

written in many languages and several different parallel
programming models
 Let application writer choose language/model best suited to task
 High-level productivity code and low-level efficiency code
 Old legacy code plus shiny new code

 Correctness through all means possible
 Static verification, annotations, directed testing, dynamic checking
 Framework-specific constraints on non-determinism
 Programmer-specified semantic determinism
 Require common spec between languages for static checker

 Common linking format at low level (Lithe) not
intermediate compiler form
 Support hand-tuned code and future languages & parallel models

Tessellation OS Tessellation: 20November 12th, 2009

Selective Embedded Just-In-Time
Specialization (SEJITS) for Productivity
(Armando Fox)

 Modern scripting languages (e.g., Python and Ruby) have
powerful language features and are easy to use

 Idea: Dynamically generate source code in C within the
context of a Python or Ruby interpreter, allowing app to
be written using Python or Ruby abstractions but
automatically generating, compiling C at runtime

 Like a JIT but
 Selective: Targets a particular method and a particular

language/platform (C+OpenMP on multicore or CUDA on GPU)
 Embedded: Make specialization machinery productive by

implementing in Python or Ruby itself by exploiting key features:
introspection, runtime dynamic linking, and foreign function
interfaces with language-neutral data representation

Tessellation OS Tessellation: 21November 12th, 2009 21

Autotuning for Code Generation
(Demmel, Yelick)

Search space for
block sizes
(dense matrix):
• Axes are block

dimensions
• Temperature is

speed

 Problem: generating optimal code
like searching for needle in haystack

 Manycore even more diverse
 New approach: “Auto-tuners”

 1st generate program variations of
combinations of optimizations
(blocking, prefetching, …) and data
structures

 Then compile and run to
heuristically search for best code
for that computer

 Examples: PHiPAC (BLAS), Atlas
(BLAS), Spiral (DSP), FFT-W (FFT)

Tessellation OS Tessellation: 22November 12th, 2009

Outline
 What is the problem (Did this already)
 Berkeley Parlab

 Structure
 Applications
 Software Engineering

 Space-Time Partitioning
 RAPPidS goals
 Partitions, QoS, and Two-Level Scheduling

 The Cell Model
 Space-Time Resource Graph
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Tessellation Software Stack
 Status

Tessellation OS Tessellation: 23November 12th, 2009

Services Support for Applications
 What systems support do we need for new ManyCore

applications?
 Should we just port parallel Linux or Windows 7 and be done with it?

 Clearly, these new applications will contain:
 Explicitly parallel components

 However, parallelism may be “hard won” (not embarrassingly parallel)
 Must not interfere with this parallelism

 Direct interaction with Internet and “Cloud” services
 Potentially extensive use of remote services
 Serious security/data vulnerability concerns

 Real Time requirements
 Sophisticated multimedia interactions
 Control of/interaction with health-related devices

 Responsiveness Requirements
 Provide a good interactive experience to users

Tessellation OS Tessellation: 24November 12th, 2009

PARLab OS Goals: RAPPidS
 Responsiveness: Meets real-time guarantees

 Good user experience with UI expected
 Illusion of Rapid I/O while still providing guarantees
 Real-Time applications (speech, music, video) will be assumed

 Agility: Can deal with rapidly changing environment
 Programs not completely assembled until runtime
 User may request complex mix of services at moment’s notice
 Resources change rapidly (bandwidth, power, etc)

 Power-Efficiency: Efficient power-performance tradeoffs
 Application-Specific parallel scheduling on Bare Metal partitions
 Explicitly parallel, power-aware OS service architecture

 Persistence: User experience persists across device failures
 Fully integrated with persistent storage infrastructures
 Customizations not be lost on “reboot”

 Security and Correctness: Must be hard to compromise
 Untrusted and/or buggy components handled gracefully
 Combination of verification and isolation at many levels
 Privacy, Integrity, Authenticity of information asserted

Tessellation OS Tessellation: 25November 12th, 2009

The Problem with Current OSs
 What is wrong with current Operating Systems?

 They do not allow expression of application requirements
 Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS from

system Services, Real Time Constraints, …
 No clean interfaces for reflecting these requirements

 They do not provide guarantees that applications can use
 They do not provide performance isolation
 Resources can be removed or decreased without permission
 Maximum response time to events cannot be characterized

 They do not provide fully custom scheduling
 In a parallel programming environment, ideal scheduling can depend

crucially on the programming model
 They do not provide sufficient Security or Correctness

 Monolithic Kernels get compromised all the time
 Applications cannot express domains of trust within themselves without

using a heavyweight process model

 The advent of ManyCore both:
 Exacerbates the above with a greater number of shared resources
 Provides an opportunity to change the fundamental model

Tessellation OS Tessellation: 26November 12th, 2009

A First Step: Two Level Scheduling

 Split monolithic scheduling into two pieces:
 Course-Grained Resource Allocation and Distribution

 Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
distributed to application (system) components

 Option to simply turn off unused resources (Important for Power)
 Fine-Grained Application-Specific Scheduling

 Applications are allowed to utilize their resources in any way they see fit
 Other components of the system cannot interfere with their use of

resources

MonolithicMonolithic
CPU and ResourceCPU and Resource

SchedulingScheduling
Application SpecificApplication Specific

SchedulingScheduling

Resource AllocationResource Allocation
AndAnd

DistributionDistribution

TwoTwo--Level SchedulingLevel Scheduling

Tessellation OS Tessellation: 27November 12th, 2009

Important Mechanism:
Spatial Partitioning

 Spatial Partition: group of processors acting within hardware boundary
 Boundaries are “hard”, communication between partitions controlled
 Anything goes within partition

 Each Partition receives a vector of resources
 Some number of dedicated processors
 Some set of dedicated resources (exclusive access)

 Complete access to certain hardware devices
 Dedicated raw storage partition

 Some guaranteed fraction of other resources (QoS guarantee):
 Memory bandwidth, Network bandwidth
 fractional services from other partitions

Tessellation OS Tessellation: 28November 12th, 2009

Resource Composition

 Component-based design at all levels:
 Applications consist of interacting components
 Requires composable: Performance, Interfaces, Security

 Spatial Partitioning Helps:
 Protection of computing resources not required within partition

 High walls between partitions anything goes within partition
 “Bare Metal” access to hardware resources
 Shared Memory/Message Passing/whatever within partition

 Partitions exist simultaneously fast inter-domain communication
 Applications split into mutually distrusting partitions w/ controlled

communication (echoes of Kernels)
 Hardware acceleration/tagging for fast secure messaging

SecureSecure
ChannelChannel

BalancedBalanced
GangGang

IndividualIndividual
PartitionPartition

Secure
SecureChannel

Channel

SecureSecure

Channel
ChannelSecureSecure

ChannelChannel

SecureSecure
ChannelChannel

DeviceDevice
DriversDrivers

Tessellation OS Tessellation: 29November 12th, 2009

Space-Time Partitioning

 Spatial Partitioning Varies over Time
 Partitioning adapts to needs of the system
 Some partitions persist, others change with time
 Further, Partititions can be Time Multiplexed

 Services (i.e. file system), device drivers, hard realtime partitions
 Some user-level schedulers will time-multiplex threads within a partition

 Global Partitioning Goals:
 Power-performance tradeoffs
 Setup to achieve QoS and/or Responsiveness guarantees
 Isolation of real-time partitions for better guarantees

TimeTime

Space
Space

Space
Space

Tessellation OS Tessellation: 30November 12th, 2009

Another Look: Two-Level Scheduling
 First Level: Gross partitioning of resources

 Goals: Power Budget, Overall Responsiveness/QoS, Security
 Partitioning of CPUs, Memory, Interrupts, Devices, other resources
 Constant for sufficient period of time to:

 Amortize cost of global decision making
 Allow time for partition-level scheduling to be effective

 Hard boundaries interference-free use of resources for quanta
 Allows AutoTuning of code to work well in partition

 Second Level: Application-Specific Scheduling
 Goals: Performance, Real-time Behavior, Responsiveness, Predictability
 CPU scheduling tuned to specific applications
 Resources distributed in application-specific fashion
 External events (I/O, active messages, etc) deferrable as appropriate

 Justifications for two-level scheduling?
 Global/cross-app decisions made by 1st level

 E.g. Save power by focusing I/O handling to smaller number of cores
 App-scheduler (2nd level) better tuned to application

 Lower overhead/better match to app than global scheduler
 No global scheduler could handle all applications

Tessellation OS Tessellation: 31November 12th, 2009

It’s all about the communication
 We are interested in communication for many reasons:

 Communication represents a security vulnerability
 Quality of Service (QoS) boils down message tracking
 Communication efficiency impacts decomposability

 Shared components complicate resource isolation:
 Need distributed mechanism for tracking and accounting of resource

usage
 E.g.: How do we guarantee that each partition gets a guaranteed fraction

of the service:

Secure
SecureChannel

Channel

Secure
Secure

Channel

Channel
Application B

Application A

Shared File Service

Tessellation OS Tessellation: 32November 12th, 2009

Tessellation: The Exploded OS
 Normal Components split

into pieces
 Device drivers

(Security/Reliability)
 Network Services

(Performance)
 TCP/IP stack
 Firewall
 Virus Checking
 Intrusion Detection

 Persistent Storage
(Performance, Security,
Reliability)

 Monitoring services
 Performance counters
 Introspection

 Identity/Environment
services (Security)
 Biometric, GPS,

Possession Tracking
 Applications Given

Larger Partitions
 Freedom to use

resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Tessellation OS Tessellation: 33November 12th, 2009

Tessellation in Server Environment

DiskDisk
I/OI/O

DriversDrivers

OtherOther
DevicesDevices

NetworkNetwork
QoSQoS

MonitorMonitor
AndAnd

AdaptAdapt

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System

Large ComputeLarge Compute--BoundBound
ApplicationApplication

Large I/OLarge I/O--BoundBound
ApplicationApplication

DiskDisk
I/OI/O

DriversDrivers

OtherOther
DevicesDevices

NetworkNetwork
QoSQoS

MonitorMonitor
AndAnd

AdaptAdapt

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System

Large ComputeLarge Compute--BoundBound
ApplicationApplication

Large I/OLarge I/O--BoundBound
ApplicationApplication

DiskDisk
I/OI/O

DriversDrivers

OtherOther
DevicesDevices

NetworkNetwork
QoSQoS

MonitorMonitor
AndAnd

AdaptAdapt

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System

Large ComputeLarge Compute--BoundBound
ApplicationApplication

Large I/OLarge I/O--BoundBound
ApplicationApplication

DiskDisk
I/OI/O

DriversDrivers

OtherOther
DevicesDevices

NetworkNetwork
QoSQoS

MonitorMonitor
AndAnd

AdaptAdapt

Persistent Storage &Persistent Storage &
Parallel File SystemParallel File System

Large ComputeLarge Compute--BoundBound
ApplicationApplication

Large I/OLarge I/O--BoundBound
ApplicationApplication

QoS
QoS

Guarantees

Guarantees

Cloud Cloud
StorageStorage
BW BW QoSQoS

QoSQoS

Guarantees

Guarantees

QoSQoSGuarantees
Guarantees

Q
oS

Q
oS

G
u

aran
tees

G
u

aran
tees

Tessellation OS Tessellation: 34November 12th, 2009

Outline
 What is the problem (Did this already)
 Berkeley Parlab

 Structure
 Applications
 Software Engineering

 Space-Time Partitioning
 RAPPidS goals
 Partitions, QoS, and Two-Level Scheduling

 The Cell Model
 Space-Time Resource Graph
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Tessellation Software Stack
 Status

Tessellation OS Tessellation: 35November 12th, 2009

Defining the Partitioned Environment
 Cell: a bundle of code, with guaranteed resources, running

at user level
 Has full control over resources it owns (“Bare Metal”)
 Contains at least one address space (memory protection domain),

but could contain more than one
 Contains a set of secured channel endpoints to other Cells
 Interacts with trusted layers of Tessellation (e.g. the “NanoVisor”)

via a heavily Paravirtualized Interface
 E.g. Can manipulate its address mappings but does not know what page

tables even look like
 We think of these as components of an application or the OS

 When mapped to the hardware, a cell gets:
 Gang-schedule hardware thread resources (“Harts”)
 Guaranteed fractions of other physical resources

 Physical Pages (DRAM), Cache partitions, memory bandwidth, power
 Guaranteed fractions of system services

Tessellation OS Tessellation: 36November 12th, 2009

Space-Time Resource Graph

Cell 2Cell 2
Cell 3Cell 3

Resources:Resources:
4 Proc, 50% time4 Proc, 50% time
1GB network BW1GB network BW
25% File Server25% File Server

Cell 3Cell 3

LightweightLightweight
Protection DomainsProtection Domains

Parent/child
Parent/childSpawning
Spawningrelationship

relationship

Cell 1Cell 1

 Space-Time resource graph: the explicit instantiation of
resource assignments
 Directed Arrows Express Parent/Child Spawning Relationship
 All resources have a Space/Time component

 E.g. X Processors/fraction of time, or Y Bytes/Sec
 What does it mean to give resources to a Cell?

 The Cell has a position in the Space-Time resource graph and
 The resources are added to the cell’s resource label
 Resources cannot be taken away except via explicit APIs

Tessellation OS Tessellation: 37November 12th, 2009

Implementing the Space-Time Graph
 Partition Policy layer (allocation)

 Allocates Resources to Cells based
on Global policies

 Produces only implementable space-
time resource graphs

 May deny resources to a cell that
requests them (admission control)

 Mapping layer (distribution)
 Makes no decisions
 Time-Slices at a course granularity

(when time-slicing necessary)
 performs bin-packing like operation

to implement space-time graph
 In limit of many processors, no time

multiplexing processors, merely
distributing resources

 Partition Mechanism Layer
 Implements hardware partitions and

secure channels
 Device Dependent: Makes use of

more or less hardware support for
QoS and Partitions

Mapping Layer (Resource Distributer)Mapping Layer (Resource Distributer)

Partition Policy LayerPartition Policy Layer
(Resource Allocator)(Resource Allocator)
Reflects Global GoalsReflects Global Goals

SpaceSpace--Time Resource GraphTime Resource Graph

Partition Mechanism LayerPartition Mechanism Layer
ParaVirtualizedParaVirtualized HardwareHardware

To Support PartitionsTo Support Partitions

TimeTime
Space
Space

Space
Space

Tessellation OS Tessellation: 38November 12th, 2009

What happens in a Cell Stays in a Cell
 Cells are performance and security isolated from all other cells

 Processors and resources are gang-scheduled
 All fine-grained scheduling done by a user-level scheduler

 Unpredictable resource virtualization does not occur
 Example: no paging without linking a paging library

 Cells can control delivery of all events
 Message arrivals (along channels)
 Page faults, timer interrupts (for user-level preemptive scheduling),

exceptions, etc
 Cells start with single protection domain, but can request more as

desired
 Initial protection domain becomes primary
 For now, protection domains are Address Spaces, but can be other things

as well

 CellOS: A layer of code within a Cell that looks like a
traditional OS
 Not required for all Cells!
 On Demand Paging, Address Space management, Preemptive

scheduling of multiple address spaces (i.e. processes)

Tessellation OS Tessellation: 39November 12th, 2009

Scheduling inside a cell
 Cell Scheduler can rely on:

 Course-grained time quanta allowing efficient fine-grained use of
resources

 Gang-Scheduling of processors within a cell
 No unexpected removal of resources
 Full Control over arrival of events

 Can disable events, poll for events, etc.
 Application-specific scheduling for performance

 Lithe Scheduler Framework (for constructing schedulers)
 Systematic mechanism for building composable schedulers

 Parallel libraries with completely different parallelism models can be
easily composed

 Application-specific scheduling for Real-Time
 Label Cell with Time-Based Labels. Examples:

 Run every 1s for 100ms synchronized to ± 5ms of a global time base
 Pin a cell to 100% of some set of processors

 Then, maintain own deadline scheduler
 Pure environment of a Cell Autotuning will return same

performance at runtime as during training phase

Time-sensitive
Network

Subsystem

Time-sensitive
Network

Subsystem

Network
Service

(Net Partition)

Network
Service

(Net Partition)

Input device
(Pinned/TT Partition)

Input device
(Pinned/TT Partition)

Graphical
Interface

(GUI Partition)

Graphical
Interface

(GUI Partition)

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Audio-processing / Synthesis Engine
(Pinned/TT partition)

Output device
(Pinned/TT Partition)

Output device
(Pinned/TT Partition)

GUI SubsystemGUI Subsystem

Communication with other
audio-processing nodes

Music program

Preliminary

Example of Music Application

Tessellation OS Tessellation: 41November 12th, 2009

Outline
 What is the problem (Did this already)
 Berkeley Parlab

 Structure
 Applications
 Software Engineering

 Space-Time Partitioning
 RAPPidS goals
 Partitions, QoS, and Two-Level Scheduling

 The Cell Model
 Space-Time Resource Graph
 User-Level Scheduling Support (Lithe)

 Tessellation implementation
 Hardware Support
 Tessellation Software Stack
 Status

Tessellation OS Tessellation: 42November 12th, 2009

What would we like from the Hardware?
 A good parallel computing platform (Obviously!)

 Good synchronization, communication
 On chip Can do fast barrier synchronization with combinational logic
 Shared memory relatively easy on chip

 Vector, GPU, SIMD
 Can exploit data parallel modes of computation

 Measurement: performance counters
 Partitioning Support

 Caches: Give exclusive chunks of cache to partitions
 Techniques such as page coloring are poor-man’s equivalent

 Memory: Ability to restrict chunks of memory to a given partition
 Partition-physical to physical mapping: 16MB page sizes?

 High-performance barrier mechanisms partitioned properly
 System Bandwidth
 Power

 Ability to put partitions to sleep, wake them up quicly
 Fast messaging support

 Used for inter-partition communication
 DMA, user-level notification mechanisms
 Secure Tagging?

 QoS Enforcement Mechanisms
 Ability to give restricted fractions of bandwidth
 Message Interface: Tracking of message rates with source-suppression for QoS
 Examples: Globally Synchronized Frames (ISCA 2008, Lee and Asanovic)

Tessellation OS Tessellation: 43November 12th, 2009

RAMP Gold:
FAST Emulation of new Hardware

 RAMP emulation model for Parlab
manycore
 SPARC v8 ISA -> v9
 Considering ARM model

 Single-socket manycore target
 Split functional/timing model, both

in hardware
 Functional model: Executes ISA
 Timing model: Capture pipeline

timing detail (can be cycle accurate)

 Host multithreading of both
functional and timing models

 Built for Virtex-5 systems (ML505
or BEE3)

Functional Functional
Model Model

PipelinePipeline

Arch Arch
StateState

Timing Timing
Model Model

PipelinePipeline

Timing Timing
StateState

Tessellation OS Tessellation: 44November 12th, 2009

Tessellation Architecture

44

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUsPhysical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Scheduler

Comm.
Reqs

Sched
Reqs.

Partition
Resizing

Callback API

Res.
Reqs.

Tessellation OS Tessellation: 45November 12th, 2009

Tessellation Implementation Status
 First version of Tessellation

 ~7000 lines of code in NanoVisor layer
 Supports basic partitioning

 Cores and caches (via page coloring)
 Fast inter-partition channels (via ring buffers in shared memory, soon

cross-network channels)
 Network Driver and TCP/IP stack running in partition

 Devices and Services available across network
 Hard Thread interface to Lithe – a framework for constructing user-

level schedulers
 Currently Two ports

 4-core Nehalem system
 64-core RAMP emulation of a manycore processor (SPARC)

 Will allow experimentation with new hardware resources
 Examples:

 QoS Controlled Memory/Network BW
 Cache Partitioning
 Fast Inter-Partition Channels with security tagging

Tessellation OS Tessellation: 46November 12th, 2009

Conclusion
 Berkeley ParLAB

 Application Driven: New exciting parallel applicatoins
 Tackling the parallel programming problem via Software

Engineering
 Parallel Programming Motifs

 Space-Time Partitioning: grouping processors &
resources
behind hardware boundary
 Focus on Quality of Service
 Two-level scheduling

1) Global Distribution of resources
2) Application-Specific scheduling of resources

 Bare Metal Execution within partition
 Composable performance, security, QoS

 Tessellation OS
l d d ll d

