
Chisel-Q: Designing
Quantum Circuits with a

Scala Embedded Language

Xiao Liu and John Kubiatowicz
Computer Science Division

University of California, Berkeley
Email: {xliu, kubitron}@eecs.berkeley.edu

2International Conference on Computer DesignOct 9th, 2013

• Why Quantum Computers?
– Great potential to speed up certain computations, such as

factorization and quantum mechanical simulation
– Fascinating exploration of physics

• Slow but constant research progress
– New technologies, Computer Architectures, Algorithms
– Still cannot quite build a large quantum computer

• Unfortunately, techniques for expressing quantum
algorithms are limited:
– High-level mathematical expressions
– Low-level sequences of quantum gates

• Let’s see if we can find a better form of expression!

Motivation

3International Conference on Computer DesignOct 9th, 2013

• Quantum Algorithms contain two pieces:
– Enclosing Algorithm

• Quantum measurement, control structures, I/O
– Quantum “Oracle” (black-box function of quantum state)

• Often specified as classical function, but must handle
inputs/outputs that are superpositions of values

• Much of the implementation complexity in the Oracles

Structure of Quantum Algorithms

Enclosing Quantum Algorithm

Oracle

4International Conference on Computer DesignOct 9th, 2013

• Oracles: operate on 2048 or 4096-bit values
– Modular exponentiation (with embedded operations)
– Quantum Fourier Transform (QFT)

Example: Shor’s Algorithm

5International Conference on Computer DesignOct 9th, 2013

• Quantum Circuit model – graphical representation of
quantum computing algorithm
– Time Flows from left to right
– Single Wires: persistent qubits

Double Wires: classical bits
– Measurement: turns quantum

state into classical state
• Quantum gates typically operate on one or two qubits

– Universal gate set: Sufficient to form all unitary
transformations

“Compilation Target”:
The Quantum Circuit Model

6International Conference on Computer DesignOct 9th, 2013

How to express
Quantum Circuits/Algorithms?

• Graphically: Schematic Capture Systems
– Several of these have been built

• QASM: the quantum assembly language
– Primitives for defining single Qubits, Gates

• C-like languages
– Scaffold: some abstraction, modules, fixed loops

• Embedded languages
– Use languages such as Scala or Ruby to build Domain

Specific Language (DSL) for quantum circuits
– Can build up circuit by overriding basic operators
– Backend generator can add ancilla bits and erasure of

information at end of computation for reversibility

7International Conference on Computer DesignOct 9th, 2013

Starting Point:
Berkeley Chisel

• Scala-based language for digital circuit design
– High-level functional descriptions of circuits as input
– Many backends: for instance direct production on Verilog
– Used in design of new advanced RISC pipeline

• Features
– High-level abstraction:

• higher order functions, advanced libraries, flexible syntax
– Abstractions build up circuit (netlist)

• E.g.: Inner-Product FIR Digital Filter:

8International Conference on Computer DesignOct 9th, 2013

Quantum Version:
Berkeley Chisel-Q in Nutshell

• Augmented Chisel Syntax, New Backend
– Generate reversible versions of classical circuits
– Classical  Quantum translation:

• Map classical gates to quantum gates
• Add ancilla bits when necessary for reversibility
• Erase ancilla state at end (decouple ancilla from answer)
• State machine transformations

– Supplemental quantum syntax for tuning output
• Output: Quantum Assembly (QASM)

– Input to other tools!
• Goal: Take classical circuits designed in Chisel and

produce quantum equivalents
– Adders, Multipliers
– Floating-Point processors

9International Conference on Computer DesignOct 9th, 2013

• Chisel-Q piggybacks on basic Chisel design flow
– Maintains basic parsing infrastructure
– Internal dataflow format
– Output hooks for generating simulators/HDL (e.g. Verilog)

• Chisel-Q additions:
– Quantum/Classical Signal Type Analysis
– Parsing of Quantum Operators
– Reversible Circuit Generation, Ancilla Erasuree
– State Machine analysis

• Output: QASM and statistics about the resulting circuit
– Gate count, level of parallelism, predicted latency

Chisel-Q Design Flow

10International Conference on Computer DesignOct 9th, 2013

• Annotations and dataflow analysis to distinguish
classical and quantum signals
– Use “isQuantum” annotation on inputs or outputs to indicate

quantum datapath
– Quantum annotations traced through rest of datapath

• Traced through design hierarchy, sequential loops, …
– Combined quantum and classical signal  quantum signal

• Classical signals automatically upgraded to quantum
• Advantages

– Combine classical control and quantum datapath in same design
– Classical designs easily transformed to quantum designs simply

by annotating enclosing module (subject to some restrictions)

Signal Type Analysis

11International Conference on Computer DesignOct 9th, 2013

• Gate Level operator mapping:
– Simple, one for one substitution
– Addition of ancilla as necessary

• Reversed circuit generation
– Leveling the nodes in the dataflow graph
– Output the nodes in a reversed order
– In reversed circuit, each node is replaced by the reversed

operation from original one
• Gets tricky only with rotation operators

• Example: transformation of carry circuit

Easy Case: Combination Circuits
(Ancilla Insertion and Reversal)

12International Conference on Computer DesignOct 9th, 2013

• Optimization on a case-by-case basis:
– More like “peep-hole optimization” than “logical optimization”

• Some examples (which get a lot of mileage):
– For nodes with single-level of fan-out (e.g. direct assignments

or NOT operations), avoid introducing new ancillas
– For nodes with more than one qubit bandwidth and multiple

fanouts, we avoid introducing new ancillas when the qubits
from that node are disjointedly connected to other nodes

– For quantum operators, we avoid introducing ancillas
• Lots of room for improvement!

– Assume that Chisel-Q output will feed into QASM-compatible
optimization toolset

Chisel-Q Optimization Approach

13International Conference on Computer DesignOct 9th, 2013

• When left alone, qubits act like registers
– Except for fact that state decays if left too long

• Classical circuit with pipelined structure
– With registers
– Without loops (acyclic dataflow graph)

• Easy to identify/handle this type of structure
– Pipeline registers replaced by multi-input identity

elements for synchronization
– Transformation is similar to combinational circuit

• Gate mapping, ancilla additions, reversal, …

Easy Case: Pipeline
(Acyclic Dataflow Graph with State)

14International Conference on Computer DesignOct 9th, 2013

• Sequential loops: Very important
– Widely used by classical designers
– Includes: state machines, iterative computations, …

• Sequential circuits are challenging:
1. Quantum circuits achieved via classical control 

cannot handle iteration count based on quantum info
2. Cannot erase state information: must restore ancilla

at end of computation
• Two options for Chisel-Q

– Only handle easy cases: Combinational Logic, Pipelines
– Try to handle at least some sequential circuits

Hard Case: State Machine
(Sequential Circuits with State)

15International Conference on Computer DesignOct 9th, 2013

Loop Fixing
Transformation

• Fixed (classically computable) iteration count
– No data-dependent looping!
– Use Iteration_Count_Quantum annotation

• Specified Quantum Completion Signal:
– Transformation into Fixed iteration count (first case)
– Use Iteration_Count_Quantum and Done annotations

• Cannot currently handle
unspecified (and/or unbounded)
termination condition!

Handling Looped Structure

16International Conference on Computer DesignOct 9th, 2013

• Save state values before they are overwritten, then
use to erase state at end of computation
– “Quantum Stack”: LIFO physical structure for holding qubits
– Natural implementation in, e.g. Ion-trap quantum computer

• Transformation discussed in paper:

Reversing Ancilla State with
Fixed Iterative Structure

State Hoarding
Transformation

17International Conference on Computer DesignOct 9th, 2013

• Native syntax for quantum circuit design
– Insert “just enough” quantum knowledge to improve

generated results
– Specify a complete quantum circuit without intervention

from Chisel-Q backend
• Annotation IsReversed = false to block the

generation of reversed circuit

Designing with quantum operators

Syntax of Quantum
Gates in Chisel-Q

18International Conference on Computer DesignOct 9th, 2013

• Annotation IsReversed = false to block the
generation of reversed circuit

Parameterized Quantum Fourier
Transform (QFT) Module

19International Conference on Computer DesignOct 9th, 2013

Design Name Description

Adder_Ripple Ripple‐carry adder designed in classical way.

Adder_Ripple_Q Ripple‐carry adder designed with quantum gate operators were used; Using
designer intuition to recognize very specific quantum operators.

Adder_CLA Carry‐lookahead adder designed in classical way.

Mul_Booth Multiplier using Booth's algorithm designed in classical way; Quantum
annotation are used to describe the iterative operation.

Mul_WT Multiplier using Wallace tree structure.

Exp_Mul_Booth Exponentiation module with multipliers using Booth's algorithm.

Exp_Mul_WT Exponentiation module with multipliers using Wallace tree structure.

QFT Quantum Fourier transform module described in a purely quantum manner;
Annotation IsReversed is used to avoid reversed circuit generation.

Shor_Exp_Mul Factorization module with Shor’s algorithm; Including submodule
Exp_Mul_WT and QFT.

Mathematical Benchmarks

20International Conference on Computer DesignOct 9th, 2013

• Parse the generated QASM
• Count the required resource

– Ancilla qubit, different gates, …

Resource Estimation for
Simple Benchmarks

Circuit Before Opt. After Opt.
of

Ancilla
Qubits

of
Toffoli

of
CNOT

of X # of
Ancilla
Qubits

of
Toffoli

of
CNOT

of X

Adder 1032 188 2094 0 778 188 1586 0

Adder‐Q 1001 188 2032 0 32 188 126 0

Mul_WT 17764 6582 37478 124 11101 6582 24152 124

Mul_Booth
(Seq)

3704 4860 3811 4428 3598 4860 3387 4428

Exp_MulWT 572411 229018 1174488 36994 365826 229018 761318 36994

Shors_ExpMulWT 573192 229018 1176050 36994 366417 229018 762500 36994

21International Conference on Computer DesignOct 9th, 2013

• Parallelism: How many quantum operations can
be conducted concurrently?

• Latency: How many steps are required to
complete all the operations?

Performance Evaluation for
Simple Benchmarks

Circuit Latency Parallelism
Min

Parallel ism
Max

Parallelism
Average

Adder 448 1 190 4.9

Adder‐Q 268 1 32 2.2

Mul_WT 756 1 2048 46.4

Mul_Booth
(Seq)

39680 1 236 10.4

Exp_MulWT 23543 1 3968 48.9

Shors_ExpMulWT 23792 1 3968 48.4

22International Conference on Computer DesignOct 9th, 2013

Component # of Ancilla
Qubits

of Toffoli # of CNOT # of X

ALU 27785 38492 15528 54056

Arbiter 132 95 35 162

Mem. Arbiter 1032 390 1714 488

Locking Arbiter 6856 10800 2776 14626

Flush Unit 357 638 546 474

FPU Decoder 9364 25948 21152 8226

FPU Comparator 271 1100 1037 329

Resource Estimation of
Components of a RISC Processor

23International Conference on Computer DesignOct 9th, 2013

• Chisel-Q: a high-level quantum circuit design language
– Powerful Embedded DSL in Scala
– Classical circuit designers can construct quantum oracles

• Translation of combinational logic straightforward
– Direct substitution of operations and introduction of ancilla bits
– Generation of reversed circuits to restore ancilla after end of

computation
• Sequential circuits more challenging

– Must identify maximum number of iterations and completion signals
– Must save state for later use in restoring ancilla (and erasing

information).
• For future work, we plan to

– Extend Chisel-Q to a full-blown language for constructing quantum-
computing algorithms

– Additional optimization heuristics

Conclusion

24International Conference on Computer DesignOct 9th, 2013

Extra Slides

25International Conference on Computer DesignOct 9th, 2013

• Qubits can be in a combination of “1” and “0”:
– Written as: = C0|0> + C1|1>

• The C’s are complex numbers!
• Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like,
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• An n-qubit register can have 2n values
simultaneously!

• 3-bit example:
= C000|000>+ C001|001>+ C010|010>+ C011|011>+

C100|100>+ C101|101>+ C110|110>+ C111|111>

Quantum Bits (Qubits)

26International Conference on Computer DesignOct 9th, 2013

• Ripple-carry adder designed in classically and
with quantum additions

26

Parameterized Ripple-carry
adder

27International Conference on Computer DesignOct 9th, 2013

• Iterative operation
annotation
– Iteration_Count_Quantum
– Done_Signal_Name_Quantum

Parameterized Multiplier using
Booth's algorithm

28International Conference on Computer DesignOct 9th, 2013

• Connection of EXP & DFT modules

Parameterized Factorization
module with Shor’s algorithm

