
Cloud Storage is the Future

Lessons from the
OceanStore Project

John Kubiatowicz
University of California at Berkeley

OceanStore:2CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Internet
Connectivity

Where should data reside?

• Today we hear a lot about
cloud computing
– Not much about cloud storage

or cross-domain storage
• Storage Cloud 

– Data is “out there”
– Migrates to where it is needed

• Consider modern clients:
– 32GB flash storage
– 1.5 TB desktop drives

• How is data protected?
– What if organization fails?
– What if organization has

major IT disaster?

IBM
GoogleAmazon EC2

OceanStore:3CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

It’s all about the data
• Cloud computing requires data

– Interesting computational tasks require data
– Output of computation is data
– Most cloud computing solutions provide temporary data storage;

little guarantee of reliability
• Reliable services from soft SLAs:

– Use of multiple clouds for reliable computation
– Move source data and results between computing clouds and clients
– Data must move seamlessly between clouds in order to make it

viable to use multiple computing clouds for a single task
• Cloud computing is “easy” in comparison

– Computation is fungable, data is not
– Data privacy cannot be recovered once compromised
– Unique data cannot be recovered once lost
– Integrity of data cannot be restored if written improperly
– Movement of data requires network resources and introduces

latency if done on demand
OceanStore:4CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Original OceanStore Vision:
Utility-based Infrastructure

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

• Data service provided by storage federation
• Cross-administrative domain
• Contractual Quality of Service (“someone to sue”)

W
estern

Region

OceanStore:5CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

What are the advantages
of a utility?

• For Clients:
– Outsourcing of Responsibility

• Someone else worries about quality of service
– Better Reliability

• Utility can muster greater resources toward durability
• System not disabled by local outages
• Utility can focus resources (manpower) at security-

vulnerable aspects of system
– Better data mobility

• Starting with secure network modelsharing
• For Utility (Cloud Storage?) Provider:

– Economies of scale
• Dynamically redistribute resources between clients
• Focused manpower can serve many clients simultaneously

OceanStore:6CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Key Observation:
Want Automatic Maintenance

• Assume that we have a global utility that contains
all of the world’s data
– I once looked at plausibility of “mole” of bytes (1024)
– Total number of servers could be in millions?

• System should automatically:
– Adapt to failure
– Exclude malicious elements
– Repair itself
– Incorporate new elements

• System should be secure and private
– Encryption, authentication, access control (w/ integrity)

• System should preserve data over the long term
(accessible for 100s/1000s of years):
– Geographic distribution of information
– New servers added/Old servers removed
– Continuous Repair  Data survives for long term

OceanStore:7CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Some advantages of
Peer-to-Peer

OceanStore:8CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Peer-to-Peer is:

• Old View:
– A bunch of flakey high-school students stealing music

• New View:
– A philosophy of systems design at extreme scale
– Probabilistic design when it is appropriate
– New techniques aimed at unreliable components
– A rethinking (and recasting) of distributed algorithms
– Use of Physical, Biological, and Game-Theoretic

techniques to achieve guarantees

OceanStore:9CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

• Untrusted Infrastructure:
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a

high-bandwidth network most of the time
– Exploit multicast for quicker consistency when possible

• Promiscuous Caching:
– Data may be cached anywhere, anytime

• Responsible Party:
– Some organization (i.e. service provider) guarantees

that your data is consistent and durable
– Not trusted with content of data, merely its integrity

OceanStore Assumptions
Peer-to-peer

Quality-of-Service

OceanStore:10CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Routing to Data, not endpoints!
Decentralized Object Location and Routing

to Self-Verifying Handles (GUIDs)

GUID1

DOLR

GUID1GUID2

OceanStore:11CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Possibilities for DOLR?
• Original Tapestry

– Could be used to route to data or endpoints with
locality (not routing to IP addresses)

– Self adapting to changes in underlying system
• Pastry

– Similarities to Tapestry, now in nth generation release
– Need to build locality layer for true DOLR

• Bamboo
– Similar to Pastry – very stable under churn

• Other peer-to-peer options
– Coral: nice stable system with course-grained locality
– Chord: very simple system with locality optimizations

OceanStore:12CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Pushing the Vision

OceanStore:13CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Secure Object Storage

• Security: Access and Content controlled
by client/organization
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing

Client
(w/ TPM) Client

(w/ TPM)
OceanStoreOceanStore

Client
Data

Manager Amazon

(Storage
Cache

w/TPM)

OceanStore:14CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Issues with assuming that
data is encrypted

• Key Management!
– Root keys carried around with users? Biometric unlocking?

• Sharing  granting keys to clients or servers
– Need unencrypted versions for computing
– Does system keep decrypted data around (caching)?

• Is this risky?
• Do you trust third parties with your data?

– Perhaps only large organizations?
– Could impact number/size of computational clouds

• How many keys?
– One per data field?
– One per file?

• How to handle/revoke keys?
– Never give them out (TPM)
– Reencrypt on revocation (expensive, impractical)

OceanStore:15CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

A Peek at
OceanStore

OceanStore:16CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

OceanStore Data Model
• Versioned Objects

– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between
permanent name and latest version
– Write access control/integrity involves managing

these mappings

Comet Analogy updates

versions

OceanStore:17CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Two Types of OceanStore Data
• Active Data: “Floating Replicas”

– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

• Data coded into n fragments, any m of which are
sufficient to reconstruct (e.g m=16, n=64)

• Coding overhead is proportional to nm (e.g 4)
– Fragments are cryptographically self-verifying
– Use of newer codes: n and m flexible

• Much cheaper to repair data
• Most data in the OceanStore is archival!

OceanStore:18CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

The Path of an
OceanStore UpdateSecond-Tier

Caches
Inner-Ring

Servers

Clients

OceanStore:19CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

OceanStore API:
Universal Conflict Resolution

• Consistency is form of optimistic concurrency
– Updates contain predicate-action pairs
– Each predicate tried in turn:

• If none match, the update is aborted
• Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching
3. Access control
4. Archival Storage

OceanStore
API

OceanStore:20CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Long-Term
Archival Storage

OceanStore:21CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Archival Dissemination
of Fragments

(online Error Correction Codes)

Archival
Servers

Archival
Servers

OceanStore:22CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Archival Storage Discussion
• Continuous Repair of Redundancy: Data transferred

from physical medium to physical medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized
– Keep the raw bits safe

• Thermodynamic Analogy: Use of Energy (supplied by
servers) to Suppress Entropy
– 1000 year time frame?

• Format Obsolescence
– Continuous format evolution
– Saving of virtual interpretation environment

• Proof that storage servers are “doing their job”
– Can use zero-knowledge proof techniques
– Reputations

• Data deletion/scrubbing?
– Harder with this model, but possible in principle

OceanStore:23CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Lessons from
Pond Prototype

OceanStore:24CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

OceanStore Prototype (Pond)
• All major subsystems operational

– Self-organizing DOLR base (Tapestry)
– Primary replicas use Byzantine agreement
– Secondary replicas self-organize into multicast tree
– Erasure-coding archive
– Application interfaces: NFS, IMAP/SMTP, HTTP

• 280K lines of Java (J2SE v1.3)
– JNI libraries for cryptography, erasure coding

• PlanetLab Deployment (FAST 2003, “Pond” paper)
– 220 machines at 100 sites

in North America, Europe,
Australia, Asia, etc.

– 1.26Ghz PIII (1GB RAM),
1.8Ghz PIV (2GB RAM)

– OceanStore code running
with 1000 virtual-node
emulations

OceanStore:25CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

• Tapestry (original DOLR)
performed well:
– In simulation
– Or with small error rate

• But trouble in wide area:
– Nodes might be lost and

never reintegrate
– Routing state might

become stale or be lost
• Why?

– Complexity of algorithms
– Wrong design paradigm: strict rather than loose state
– Immediate repair of faults

• Ultimately, Tapestry Routing Framework succumbed to:
– Creeping Featurism (designed by several people)
– Fragilility under churn
– Code Bloat

Lesson #1: DOLR is Great Enabler—
but only if it is stable

OceanStore:26CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

• Simple, Stable, Targeting Failure
• Rethinking of design of Tapestry:

– Separation of correctness from performance
– Periodic recovery instead of reactive recovery
– Network understanding

(e.g. timeout calculation)
– Simpler Node Integration

(smaller amount of state)
• Extensive testing under

Churn and partition
• Bamboo is so stable that

it is part of the OpenHash
public DHT infrastructure.

• In wide use by many researchers

Answer: Bamboo!

OceanStore:27CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Lesson #2: Pond Write Latency
• Byzantine algorithm adapted from Castro &

Liskov
– Gives fault tolerance, security against compromise
– Fast version uses symmetric cryptography

• Pond uses threshold signatures instead
– Signature proves that f +1 primary replicas agreed
– Can be shared among secondary replicas
– Can also change primaries w/o changing public key

• Big plus for maintenance costs
– Results good for all time once signed
– Replace faulty/compromised servers transparently

OceanStore:28CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Closer Look: Write Cost
• Small writes

– Signature dominates
– Threshold sigs. slow!
– Takes 70+ ms to sign
– Compare to 5 ms

for regular sigs.
• Large writes

– Encoding dominates
– Archive cost per byte
– Signature cost per write

• Answer: Reduction in overheads
– More Powerful Hardware at Core
– Cryptographic Hardware

• Would greatly reduce write cost
• Possible use of ECC or other signature method

– Offloading of Archival Encoding

Sign Result
Archive
Apply
Serialize
Validate
Phase

75.877.8
566.94.5
113.01.5
26.66.1

0.40.3

2 MB
write

4 kB
write

(times in milliseconds)

OceanStore:29CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Lesson #3: Efficiency
• No resource aggregation

– Small blocks spread widely
– Every block of every file on different set of servers
– Not uniquely OceanStore issue!

• Answer: Two-Level Naming
– Place data in larger chunks (‘extents’)
– Individual access of blocks by name within extents

– Bonus: Secure Log good interface for secure archive
– Antiquity: New Prototype for archival storage

get(E1,R1)

V2 R2 I3 B6 B5 V1 R1 I2 B4 B3 I1 B2 B1

E0E1

OceanStore:30CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Storage System
V1 R1 I2 B4 B3 I1 B2 B1

V1
R1

I2
B4

B3
I1

B2
B1

V1 R1 I2 B4 B3 I1 B2 B1

Better Archival Storage:
Antiquity Architecture

App

App

Server

App

Replicated
Service• Data Source

– Creator of data
• Client

– Direct user of system
• “Middleware”
• End-user, Server,

Replicated service
– append()’s to log
– Signs requests

• Storage Servers
– Store log replicas on disk
– Dynamic Byzantine quorums

• Consistency and durability
• Administrator

– Selects storage servers
• Prototype currently operational on PlanetLab

OceanStore:31CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Lesson #4: Complexity
• Several of the mechanisms were complex

– Ideas were simple, but implementation was complex
– Data format combination of live and archival features
– Byzantine Agreement hard to get right

• Ideal layering not obvious at beginning of project:
– Many Applications Features placed into Tapestry
– Components not autonomous, i.e. able to be tied in at any

moment and restored at any moment
• Top-down design lost during thinking and

experimentation
• Everywhere: reactive recovery of state

– Original Philosophy: Get it right once, then repair
– Much Better: keep working toward ideal

(but assume never make it)

OceanStore:32CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Future Work

OceanStore:33CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

QoS Guarantees/SLAs
• What should be guaranteed for Storage?

– Read or Write Bandwidth to storage?
– Transactions/unit time?
– Long-term Reliability?

• Performance defined by request/response traffic
– Ultimately, tied to low-level resources such as network bandwidth
– High performance data storage requires:

• On demand migration of data/Caching
• Staging of updates (if consistency allows)
• Introspective adaptation: observation-driven migration of data

• Reliability metrics harder to guarantee
– Zero-knowledge techniques to “prove” data being stored
– Reputation
– Background reconstruction of data

• Responsible party (trusted third party??):
– Guarantees of correct commitment of updates
– Monitoring of level of redundancy

OceanStore:34CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Peer-to-Peer Caching in Pond:
Automatic Locality Management

• Self-Organizing mechanisms to place replicas
• Automatic Construction of Update Multicast

Primary Copy

OceanStore:35CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

What is next?
• Re-architecting of storage on a large scale

– Functional cloud storage is a “simple matter of
programming:”

• Data location algorithms are a mature field
• Secure, self-repairing archival storage is buildable
• Basic Caching mechanisms easy to construct

– Need to standardize storage interfaces
• Including security, conflict resolution, managment

– Missing pieces:
• Good introspective algorithms to manage locality
• QoS/SLA enforcement mechanisms
• Data market?

• Client integration
– Smooth integration of local storage as cache of cloud
– Seamless use of Flash storage

• Quick local commit
• Caching of important portions of the cloud

OceanStore:36CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Closing Note
Tessellation: The Exploded OS

• Component of Berkeley
Parallel Lab (Par Lab)

• Normal Components split
into pieces
– Device drivers
– Network Services

(Performance)
– Persistent Storage

(Performance, Security,
Reliability)

– Monitoring services
– Identity/Environment

services (Security)
• Use of Flash as front-

end to cloud storage
– Transparent, high-

speed read/write cache
– Introspection to keep

interested data onboard
– Commit of data when

connectivity/energy
optimal

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

OceanStore:37CISCO Cloud Computing Workshop ©2008 John Kubiatowicz/UC Berkeley

Conclusion
• Cloud Computing  Cloud Storage

– More than just interoperability
– Data preserved in the cloud, by the cloud

• OceanStore project
– Took a very distributed view of storage
– Security, performance, long-term archival storage

• Some original papers:
– “OceanStore: An Architecture for Global-Scale

Persistent Storage”, ASPLOS 2000
– “Pond: the OceanStore Prototype,” FAST 2003
– “Tapestry: A Resilient Global-scale Overlay for Service

Deployment”, JSAC 2004
– “Handling Churn in a DHT”, Usenix 2004
– “OpenDHT: A Public DHT Service”, SIGCOMM 2005
– “Attested Append-Only Memory: Making Adversaries

Stick to their Word”, SOSP 2007

