
Section 8: Cache, Clock Algorithm, and Demand Paging

CS162

March 15, 2019

Contents

1 Vocabulary 2

2 Problems 3
2.1 Caching . 3
2.2 Clock Algorithm . 4
2.3 Demand Paging . 5
2.4 Virtual Memory . 6
2.5 Wait and Exit . 9

2.5.1 Thinking about what you need to do . 9
2.5.2 Code . 9

3 Calling Conventions and Argument Passing 11
3.1 Calling Conventions . 11

1

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

1 Vocabulary

• Compulsory Miss The miss that occurs on the first reference to a block. There’s essentially
nothing that you can do about this type of miss, but over the course of time, compulsory misses
become insignificant compared to all the other memory accesses that occur.

• Capacity Miss This miss occurs when the cache can’t contain all the blocks that the program
accesses. Usually the solution to capacity misses is to increase the cache size.

• Conflict Miss Conflict misses occur when multiple memory locations are mapped to the same
cache location. In order to prevent conflict misses, you should either increase the cache size or
increase the associativity of the cache.

• Coherence Miss Coherence misses are caused by external processors or I/O devices that updates
what’s in memory.

• Working set The subset of the address space that a process uses as it executes. Generally we can
say that as the cache hit rate increases, more of the working set is being added to the cache.

• Thrashing Phenomenon that occurs when a computer’s virtual memory subsystem is constantly
paging (exchanging data in memory for data on disk). This can lead to significant application
slowdown.

2

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

2 Problems

2.1 Caching

An up-and-coming big data startup has just hired you do help design their new memory system for a
byte-addressable system. Suppose the virtual and physical memory address space is 32 bits with a 4KB
page size.

First, you create 1) a direct mapped cache and 2) a fully associative cache of the same size that
replaces the least recently used pages when the cache is full. You run a few tests and realize that the
fully associative cache performs much worse than the direct mapped cache. What’s a possible access
pattern that could cause this to happen?

Let’s say each cache held X amount of blocks. An access pattern would be to repeatedly iterate
over X+1 consecutive blocks, which would cause everything in the fully associated cache to miss.

Instead, your boss tells you to build a 8KB 2-way set associative cache with 64 byte cache blocks.
How would you split a given virtual address into its tag, index, and offset numbers?

Since it’s two way set associative, the cache is split into two 4KB banks. The offset will take 6 bits,
since 26 = 64. Each bank can store 64 blocks, since 212/26 = 26, so there will be 6 index bits. Then
the rest of the bits will be for the tag. It will look like this:

20 Bits 6 Bits 6 Bits
Tag Index Offset

You finish building the cache, and you want to show your boss that there was a significant improve-
ment in average read time. Suppose your system uses a two level page table to translate virtual addresses
and your system uses the cache for the translation tables and data. Each memory access takes 50ns, the
cache lookup time is 5ns, and your cache hit rate is 90%. What is the average time to read a location
from memory?

Since the page table has two levels, there are three reads for each access. For each access, the
average access time is: 0.9 ∗ 5 + 0.1 ∗ (5 + 50) = 10ns. Since there are 3 accesses, we multiply this
by 3 to get an average read time of 30ns.

3

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

2.2 Clock Algorithm

Suppose that we have a 32-bit virtual address split as follows:

10 Bits 10 Bits 12 Bits
Table ID Page ID Offset

Show the format of a PTE complete with bits required to support the clock algorithm.

20 Bits 8 Bits 1 Bit 1 Bit 1 Bit 1 Bit
PPN Other Dirty Use Writable Valid

For this problem,assume that physical memory can hold at most four pages. What pages remain in
memory at the end of the following sequence of page table operations and what are the use bits set to
for each of these pages:
- Page A is accessed
- Page B is accessed
- Page C is accessed
- Page A is accessed
- Page C is accessed
- Page D is accessed
- Page B is accessed
- Page D is accessed
- Page A is accessed
- Page E is accessed
- Page F is accessed

E: 1, F: 1, C: 0, D: 0

4

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

2.3 Demand Paging

Your boss has been so impressed with your work designing the caching that he has asked for your advice
on designing a TLB to use for this system. Suppose you know that there will only be 4 processes
running at the same time, each with a Resident Set Size (RSS) of 512MB and a working set size of
256KB. Assuming the same system as the previous problem (32 bit virtual and physical address space,
4KB page size), what is the minimum amount of TLB entries that your system would need to support
to be able to map/cache the working set size for one process? What happens if you have more entries?
What about less?

A process has a working set size of 256KB which means that the working set fits in 64 pages. This
means our TLB should have 64 entries. If you have more entries, then performance will increase
since the process often has changing working sets, and it should be able to store more in the TLB.
If it has less, then it can’t easily translate the addresses in the working set and performance will
suffer.

Suppose you run some benchmarks on the system and you see that the system is utilizing over 99% of
its paging disk IO capacity, but only 10% of its CPU. What is a combination of the of disk space and
memory size that can cause this to occur? Assume you have TLB entries equal to the answer from the
previous part.

The CPU can’t run very often without having to wait for the disk, so it’s very likely that the system
is thrashing. There isn’t enough memory for the benchmark to run without the system page faulting
and having to page in new pages. Since there will be 4 processes that have a RSS of 512MB each,
swapping will occur as long as the physical memory size is under 2GB. This happens regardless of
the number of TLB entries and disk size. If the physical memory size is lower than the aggregate
working set sizes, thrashing is likely to occur.

Out of increasing the size of the TLB, adding more disk space, and adding more memory, which one
would lead to the largest performance increase and why?

We should add more memory so that we won’t need to page in new pages as often.

5

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

2.4 Virtual Memory

vmstat is a Linux performance debugging tool that provides information about virtual memory on
your system. When you run it, the output looks like this:

$ vmstat 1

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

r b swpd free buff cache si so bi bo in cs us sy id wa st

1 0 0 174184 1007372 96316 49 642 3095 678 123 128 0 1 99 0 0

0 0 0 174240 1007372 96316 0 0 0 0 48 88 0 0 100 0 0

0 0 0 174240 1007372 96316 0 0 0 0 33 75 0 0 100 0 0

0 0 0 174240 1007372 96316 0 0 0 0 32 73 0 0 100 0 0

The 1 means “recompute the stats every 1 second and print them out”. The first line contains the
average values since boot time, while the second line contains the averages of the last second (current
averages). Here’s a reference for what each one of the columns means.

Procs

r: The number of runnable processes (running or waiting for run time).

b: The number of processes in uninterruptible sleep.

Memory

swpd: the amount of virtual memory used.

free: the amount of idle memory.

buff: the amount of memory used as buffers.

cache: the amount of memory used as cache.

inact: the amount of inactive memory. (-a option)

active: the amount of active memory. (-a option)

Swap

si: Amount of memory swapped in from disk (/s).

so: Amount of memory swapped to disk (/s).

IO

bi: Blocks received from a block device (blocks/s).

bo: Blocks sent to a block device (blocks/s).

System

in: The number of interrupts per second, including the clock.

cs: The number of context switches per second.

CPU

These are percentages of total CPU time.

us: Time spent running non-kernel code. (user time, including nice time)

sy: Time spent running kernel code. (system time)

id: Time spent idle. Prior to Linux 2.5.41, this includes IO-wait time.

wa: Time spent waiting for IO. Prior to Linux 2.5.41, included in idle.

st: Time stolen from a virtual machine. Prior to Linux 2.6.11, unknown.

6

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

Take a look at these 3 programs (A, B, C).

char *buffer[4 * (1L << 20)];

int A(int in) {

// "in" is a file descriptor for a file on disk

while (read(in, buffer, sizeof(buffer)) > 0);

}

int B() {

size_t size = 5 * (1L << 30);

int *x = malloc(size);

memset(x, 0xCC, size);

}

sem_t sema;

pthread_t thread;

void *foo() { while (1) sem_wait(&sema); }

int C() {

pthread_create(&thread, NULL, foo, NULL);

while (1) sem_post(&sema);

}

I ran these 3 programs one at a time, but in a random order. What order did I run them in? Can you
tell where (in the vmstat output) one program stopped and another started? Explain.

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

r b swpd free buff cache si so bi bo in cs us sy id wa st

0 0 684688 25216 1822136 60860 75 748 3645 779 146 296 1 1 98 0 0

1 0 684688 25268 1822136 60868 0 0 0 0 18150 735898 6 44 51 0 0

1 0 684688 25268 1822136 60868 0 0 0 0 61864 1270088 6 77 17 0 0

1 0 684688 25268 1822136 60868 0 0 0 0 59497 1102825 8 71 21 0 0

1 0 684688 25268 1822136 60868 0 0 0 0 94619 766431 11 79 10 0 0

0 0 684688 25612 1822136 60868 0 0 0 0 13605 237430 2 13 85 0 0

0 0 684688 25612 1822136 60868 0 0 0 0 61 115 0 1 100 0 0

3 0 694520 18544 3212 45040 64 11036 264 11144 2647 2339 5 51 43 0 0

4 1 1285828 20560 128 580 88 592440 14248 592440 18289 2171 3 58 36 4 0

3 0 1866176 21492 128 2132 0 578404 8972 578404 47646 1691 2 70 28 1 0

3 0 2350636 17820 136 2640 0 487732 11708 487788 17404 1881 1 58 39 1 0

2 0 2771016 22168 544 4360 2072 417272 15372 417272 17460 2192 2 57 39 3 0

0 0 697036 1922160 560 9712 1516 418224 16508 418228 47747 2616 0 64 30 6 0

0 0 697032 1921696 564 10096 28 0 288 0 77 148 0 0 100 0 0

1 0 696980 878128 1037720 11272 412 0 1038840 0 11128 14854 1 25 54 21 0

1 0 696980 21732 1895476 9348 0 0 1286460 0 13610 18224 0 31 46 22 0

0 2 696980 20992 1896496 9072 0 0 1297536 20 13745 19164 0 36 43 21 1

1 1 696980 20228 1897784 8648 0 0 1283324 32 13659 18931 0 36 41 23 0

1 1 696960 21048 1897404 8716 48 0 1215152 0 12601 17672 0 34 45 21 0

0 0 696952 23048 1899112 9004 8 0 470112 0 5100 7073 0 13 81 6 0

0 0 696952 23048 1899112 9004 0 0 0 0 45 89 0 0 100 0 0

I ran C (rows 2-6), B (rows 8-13), then A (rows 15-20). Program C has a lot of context switches
(cs), but no swap or IO activity. Both program A and B have a lot of disk I/O, but program A is
read-only IO (bi) and program B is the only one that should be swapping to disk (so).

7

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

If you have extra available physical memory, Linux will use it to cache files on disk for performance
benefits. This disk cache may also include parts of the swapfile. Why would caching the swapfile be
better than paging-in those pages immediately?

If the system’s memory needs grow, the disk cache must shrink. If we avoid paging-in those cached
parts of the swapfile, we can immediately evict the swapfile from memory without needing to modify
any page tables.

If I remove the line “memset(x, 0xCC, size);” from program B, I notice that the vmstat output does
not have a spike in swap (si and so) nor in io (bi and bo). My system doesn’t have enough physical
memory for a 5GB array. Yet, the array is not swapped out to disk. Where does the array go? Why
did the memset make a difference?

The memory returned by malloc is sparsely allocated. It won’t actually be allocated until I begin
using it. The memset will force the kernel to materialize those pages, because I write to them.

Program B has a 5GB array, but the whole thing just contains 0xCCCCCCCC. Based on this observation,
can you think of a way to reduce program B’s memory footprint without changing any of program B’s
code? (What can the kernel do to save memory?)

The kernel could compress pages in memory. It’s usually faster to uncompress memory than it is
to page-in from disk. If the entire array is the same byte repeated over and over, then the kernel
could achieve very good compression ratios on the array. The kernel must mark infrequently-used
pages as invalid, so that it has a chance to uncompress those pages inside the page fault exception
handler.

8

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

2.5 Wait and Exit

This problem is designed to help you with implementing wait and exit in your project. Recall that wait
suspends execution of the parent process until the child process specified by the parameter id exits, upon
which it returns the exit code of the child process. In Pintos, there is a 1:1 mapping between processes
and threads.

2.5.1 Thinking about what you need to do

”wait” requires communication between a process and its children, usually implemented through shared
data. The shared data might be added to struct thread, but many solutions separate it into a separate
structure. At least the following must be shared between a parent and each of its children:

- Child’s exit status, so that ”wait” can return it.
- Child’s thread id, for ”wait” to compare against its argument.
- A way for the parent to block until the child dies (usually a semaphore).
- A way for the parent and child to tell whether the other is already dead, in a race-free fashion (to

ensure that their shared data can be freed).

2.5.2 Code

Data structures to add to thread.h for waiting logic:

Pseudocode:

process_wait (tid_t child_tid) {

iterate through list of child processes

if child process tid matches tid parameter, call sema_down

on the semaphore associated with that child process (when

child process exits, it will sema_up on that same semaphore,

waking up the parent process)

--- after waking ---

set exit code to terminated child process’s exit code

decrease ref_cnt of child //why? need to free memory, "zombie processes"

return exit_code

}

process_exit (void) {

sema_up on semaphore that parent might be sleeping on

remove all child processes from child process list

decrement ref_cnt

}

Code:

struct wait_status

{

struct list_elem elem; /* ‘children’ list element. */

struct lock lock; /* Protects ref_cnt. */

int ref_cnt; /* 2=child and parent both alive,

1=either child or parent alive,

9

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

0=child and parent both dead. */

tid_t tid; /* Child thread id. */

int exit_code; /* Child exit code, if dead. */

struct semaphore dead; /* 1=child alive, 0=child dead. */

};

struct wait_status *wait_status; /* This process’s completion state. */

struct list children; /* Completion status of children. */

Implement wait:

- Find the child in the list of shared data structures.

(If none is found, return -1.)

- Wait for the child to die, by downing a semaphore in the

shared data.

- Obtain the child’s exit code from the shared data.

- Destroy the shared data structure and remove it from the

list.

- Return the exit code.

Implement exit:

- Save the exit code in the shared data.

- Up the semaphore in the data shared with our parent

process (if any). In some kind of race-free way (such

as using a lock and a reference count or pair of boolean

variables in the shared data area), mark the shared data

as unused by us and free it if the parent is also dead.

- Iterate the list of children and, as in the previous

step, mark them as no longer used by us and free them if

the child is also dead.

- Terminate the thread.

10

CS 162 Spring 2019 Section 8: Cache, Clock Algorithm, and Demand Paging

3 Calling Conventions and Argument Passing

3.1 Calling Conventions

Sketch the stack frame of helper before it returns.

void helper(char* str, int len) {

char word[len];

strncpy(word, str, len);

printf("%s", word);

return;

}

int main(int argc, char *argv[]) {

char* str = "Hello World!";

helper(str, 13);

}

13

str

return address

saved EBP

!

d

l

...

l

e

H

11

	Vocabulary
	Problems
	Caching
	Clock Algorithm
	Demand Paging
	Virtual Memory
	Wait and Exit
	Thinking about what you need to do
	Code

	Calling Conventions and Argument Passing
	Calling Conventions

