
Section 11: File Systems, Reliability, and Queueing Theory

CS162

April 12, 2019

Contents

1 Warmup 2

2 Vocabulary 3

3 Problems 5
3.1 Extending an inode . 5
3.2 Queuing Theory . 7
3.3 Tying it all together . 8

1

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

1 Warmup

What are the ACID properties? Explain each one and discuss the implications of a system without that
property.

Name 2 different RAID levels that offer redundancy. For each level, explain how a recovery program
could recover data from a degraded array.

Explain the difference between a hard link and a soft link (symbolic link).

How could you implement hard links for the FAT file system? What problem would you encounter?

What is a journaled file system? Explain the purpose of the file system’s “journal”.

Discuss the advantages and drawbacks of memory mapped file accesses compared to traditional disk
accesses for small random file reads and writes to many files of varying size.

2

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

2 Vocabulary

• Unix File System (Fast File System) - The Unix File System is a file system used by many
Unix and Unix-like operating systems. Many modern operating systems use file systems that are
based off of the Unix File System.

• inode - An inode is the data structure that describes the metadata of a file or directory. Each
inode contains several metadata fields, including the owner, file size, modification time, file mode,
and reference count. Each inode also contains several data block pointers, which help the file
system locate the file’s data blocks.

Each inode typically has 12 direct block pointers, 1 singly indirect block pointer, 1 doubly indirect
block pointer, and 1 triply indirect block pointer. Every direct block pointer directly points to a
data block. The singly indirect block pointer points to a block of pointers, each of which points
to a data block. The doubly indirect block pointer contains another level of indirection, and the
triply indirect block pointer contains yet another level of indirection.

• Transaction - A transaction is a unit of work within a database management system. Each
transaction is treated as an indivisible unit which executes independently from other transactions.
The ACID properties are usually used to describe reliable transactions.

• ACID - An acronym standing for the four key properties of a reliable transaction.

Atomicity - the transaction must either occur in its entirety, or not at all.

Consistency - transactions must take data from one consistent state to another, and cannot com-
promise data integrity or leave data in an intermediate state.

3

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

Isolation - concurrent transactions should not interfere with each other; it should appear as if all
transactions are serialized.

Durability - the effect of a committed transaction should persist despite crashes.

• Idempotent - An idempotent operation is an operation that can be repeated without effect after
the first iteration.

• Logging file system - A logging file system (or journaling file system) is a file system in which
all updates are performed via a transaction log (“journal”) to ensure consistency, in case the
system crashes or loses power. Each file system transaction is first written to an append-only
redo log. Then, the transaction can be committed to disk. In the event of a crash, a file system
recovery program can scan the journal and re-apply any transactions that may not have completed
successfully. Each transaction must be idempotent, so the recovery program can safely re-apply
them.

• Queuing Theory Here are some useful symbols: (both the symbols used in lecture and in the
book are listed)

– µ is the average service rate (jobs per second)

– Tser or S is the average service time, so Tser = 1
µ

– λ is the average arrival rate (jobs per second)

– U or u or ρ is the utilization (fraction from 0 to 1), so U = λ
µ = λS

– Tq or W is the average queuing time (aka waiting time) which is how much time a task needs
to wait before getting serviced (it does not include the time needed to actually perform the
task)

– Tsys or R is the response time, and it’s equal to Tq + Tser or W + S

– Lq or Q is the average length of the queue, and it’s equal to λTq (this is Little’s law)

4

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

3 Problems

3.1 Extending an inode

Consider the following inode_disk struct, which is used on a disk with a 512 byte block size.

/* Definition of block_sector_t */

typedef uint32_t block_sector_t;

/* Contents of on-disk inode. Must be exactly 512 bytes long. */

struct inode_disk

{

off_t length; /* File size in bytes. */

block_sector_t direct[12]; /* 12 direct pointers */

block_sector_t indirect; /* a singly indirect pointer */

uint32_t unused[114]; /* Not used. */

};

Why isn’t the file name stored inside the inode_disk struct?

What is the maximum file size supported by this inode design?

How would you design the in-memory representation of the indirect block? (e.g. the disk sector that
corresponds to an inode’s indirect member)

Implement the following function, which changes the size of an inode. If the resize operation fails,
the inode should be unchanged and the function should return false. Use the value 0 for unallocated
block pointers. You do not need to write the inode itself back to disk. You can use these functions:

• “block_sector_t block_allocate()” – Allocates a disk block and returns the sector number. If
the disk is full, then returns 0.

• “void block_free(block_sector_t n)” – Free a disk block.

• “void block_read(block_sector_t n, uint8_t buffer[512])” – Reads the contents of a disk
sector into a buffer.

• “void block_write(block_sector_t n, uint8_t buffer[512])” – Writes the contents of a
buffer into a disk sector.

5

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

bool inode_resize(struct inode_disk *id, off_t size) {

block_sector_t sector; // A variable that may be useful.

}

6

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

3.2 Queuing Theory

Explain intuitively why response time is nonlinear with utilization. Draw a plot of utilization (x axis)
vs response time (y axis) and label the endpoints on the x axis.

If 50 jobs arrive at a system every second and the average response time for any particular job is
100ms, how many jobs are in the system (either queued or being serviced) on average at a particular
moment? Which law describes this relationship?

Is it better to have N queues, each of which is serviced at the rate of 1 job per second, or 1 queue
that is serviced at the rate of N jobs per second? Give reasons to justify your answer.

What is the average queueing time for a work queue with 1 server, average arrival rate of λ, average
service time S, and squared coefficient of variation of service time C?

What does it mean if C = 0? What does it mean if C = 1?

7

CS 162 Spring 2019 Section 11: File Systems, Reliability, and Queueing Theory

3.3 Tying it all together

Assume that you have a disk with the following parameters:

• 1TB in size

• 6000RPM

• Data transfer rate of 4MB/s (4 × 106 bytes/sec)

• Average seek time of 3ms

• I/O controller with 1ms of controller delay

• Block size of 4000 bytes

What is the average rotational delay?

What is the average time it takes to read 1 random block? Assume no queuing delay.

Will the actual measured average time to read a block from disk (excluding queuing delay) tend to
be lower, equal, or higher than this? Why?

Assume that the average I/O operations per second demanded is 50 IOPS. Assume a squared coeffi-
cient of variation of C = 1.5. What is the average queuing time and the average queue length?

8

	Warmup
	Vocabulary
	Problems
	Extending an inode
	Queuing Theory
	Tying it all together

