
CS162
Operating Systems and
Systems Programming

Lecture 8

Locks, Semaphores, Monitors

February 14th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 8.22/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 8.32/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Review: Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of

code for each thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide higher-level primitives than atomic
load & store

– Build even higher-level programming abstractions on this
hardware support

Lec 8.42/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

– lock.Acquire() – wait until lock is free, then grab
– lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting

for the lock and both see it’s free, only one succeeds to grab
the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

• Of course, you can make this even simpler: suppose you
are out of ice cream instead of milk

– Skip the test since you always need more ice cream ;-)

Lec 8.52/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?
• We are going to implement various higher-level

synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are load

and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 8.62/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Goals for Today
• Explore several implementations of locks
• Continue with Synchronization Abstractions

– Semaphores, Monitors, and Condition variables
• Very Quick Introduction to scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Lec 8.72/14/19 Kubiatowicz CS162 ©UCB Spring 2019

How to Implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– What about putting a task to sleep?

» What is the interface between the hardware and scheduler?
– Complexity?

» Done in the Intel 432
» Each feature makes HW more complex and slow

Lec 8.82/14/19 Kubiatowicz CS162 ©UCB Spring 2019

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 8.92/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

Lec 8.102/14/19 Kubiatowicz CS162 ©UCB Spring 2019

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section (inside
Acquire()) is very short

– User of lock can take as long as they like in their own critical
section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical
Section

Lec 8.112/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Lec 8.122/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.132/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.142/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.152/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.162/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 8.172/14/19 Kubiatowicz CS162 ©UCB Spring 2019

How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you call

sleep:
– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire and

re-enables interrupts
Thread A Thread B

.

.
disable ints

sleep
sleep return
enable ints

.

.

.
disable int

sleep
sleep return
enable ints

.

.
Lec 8.182/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia
• Midterm Thursday 2/28

– No class on day of midterm
– 8-10PM – no conflict with data science!

• Project 1 Design Document due next Wednesday 2/20
• Project 1 Design reviews upcoming

– High-level discussion of your approach
» What will you modify?
» What algorithm will you use?
» How will things be linked together, etc.
» Do not need final design (complete with all semicolons!)

– You will be asked about testing
» Understand testing framework
» Are there things you are doing that are not tested by tests we give

you?
• Do your own work!

– Please do not try to find solutions from previous terms
– We will be on the look out for anyone doing this…today

Lec 8.192/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Atomic Read-Modify-Write Instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and
would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value and write a new value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence

protocol)
– Unlike disabling interrupts, can be used on both uniprocessors and

multiprocessors

Lec 8.202/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}
• swap (&address, register) { /* x86 */

temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;

}
• compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) { // If memory still == reg1,
M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}
}

• load-linked&store-conditional(&address) { /* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}

Lec 8.212/14/19 Kubiatowicz CS162 ©UCB Spring 2019

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Here is an atomic add to linked-list function:
addToQueue(&object) {

do { // repeat until no conflict
ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next
New

Object
Lec 8.222/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Implementing Locks with test&set
• Another flawed, but simple solution:

int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is

now busy. It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change)

It returns 1, so while loop continues.
– When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes

value ping-pong around in cache (using lots of network BW)

Lec 8.232/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock

(no one wins!)
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock no progress!
• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may wait for

an arbitrary long time!
– Thus even if busy-waiting was OK for locks, definitely not ok

for other primitives
– Homework/exam solutions should avoid busy-waiting!

Lec 8.242/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Multiprocessor Spin Locks: test&test&set
• A better solution for multiprocessors:

int mylock = 0; // Free
Acquire() {

do {
while(mylock); // Wait until might be free

} while(test&set(&mylock)); // exit if get lock
}

Release() {
mylock = 0;

}
• Simple explanation:

– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

Lec 8.252/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy‐wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy‐wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 8.262/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Locks using Interrupts vs. test&set
Compare to “disable interrupt” solution

Basically we replaced:
– disable interrupts while (test&set(guard));
– enable interrupts guard = 0;

int value = FREE;
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 8.272/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Recap: Locks using interrupts
int value = 0;
Acquire() {
// Short busy-wait time
disable interrupts;
if (value == 1) {

put thread on wait-queue;
go to sleep() //??

} else {
value = 1;
enable interrupts;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

If one thread in critical
section, no other
activity (including OS)
can run!

Lec 8.282/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Recap: Locks using test & set
int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while(test&set(guard));
if (value == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
guard = 0;

}

lock.Acquire();
…
critical section;
…
lock.Release();

int value = 0;
Acquire() {
while(test&set(value));

}

Release() {
value = 0;

}

Threads waiting to
enter critical section
busy-wait

Lec 8.292/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Higher-level Primitives than Locks
• Goal of last couple of lectures:

– What is right abstraction for synchronizing threads that
share memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find
bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash
every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state

– This lecture and the next presents a some ways of
structuring sharing

Lec 8.302/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Semaphores
• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value
and supports the following two operations:

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

Lec 8.312/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write

value, except to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V –

even if they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 8.322/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore”.
• Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which

must wait for thread to terminate:
Initial value of semaphore = 0
ThreadJoin {

semaphore.P();
}
ThreadFinish {

semaphore.V();
}

Lec 8.332/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Producer-Consumer with a Bounded Buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

Producer ConsumerBuffer

Lec 8.342/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine

and somebody comes up and tries to stick their money into the
machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 8.352/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Full Solution to Bounded Buffer
Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
emptySlots.P(); // Wait until space
mutex.P(); // Wait until machine free
Enqueue(item);
mutex.V();
fullSlots.V(); // Tell consumers there is

// more coke
}
Consumer() {

fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptySlots.V(); // tell producer need more
return item;

}

Lec 8.362/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might

affect scheduling efficiency
• What if we have 2 producers

or 2 consumers?
– Do we need to change anything?

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

Producer(item) {
mutex.P();
emptySlots.P();
Enqueue(item);
mutex.V();
fullSlots.V();

}
Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

Lec 8.372/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up; just think of trying to do

the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables

Lec 8.382/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something
inside a critical section

– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Lec 8.392/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}
• Not very interesting use of “Monitor”

– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

Lec 8.402/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Condition Variables
• How do we change the RemoveFromQueue() routine to wait

until something is on the queue?
– Could do this by keeping a count of the number of things on the

queue (with semaphores), but error prone
• Condition Variable: a queue of threads waiting for something

inside a critical section
– Key idea: allow sleeping inside critical section by atomically

releasing lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of lock –

IGNORE HIM (this is only an optimization)

Lec 8.412/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}

Lec 8.422/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 8.432/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (1/2)
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various

synchronization primitives
• Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable

Lec 8.442/14/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (2/2)
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

