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Recall: Multithreaded Stack Switching
• Consider the following code 

blocks:
proc A() {

B();
}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2 threads 
running same code:

– Threads S and T
– Assume S and T have been 

running for a while

Thread S
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Recall: How does Thread get started?

• Eventually, run_new_thread() will select this TCB and 
return into beginning of ThreadRoot()

– This really starts the new thread
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B(while)
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Other Thread
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Starting today: Pintos Projects

• Pintos:
– Real OS
– Emulated machine

• Working in Groups 
of four (4)

– Work as one!
– 10x homework

• Three Projects
– P1: threads & 

scheduler
– P2: user process
– P3: file system

…
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MT Kernel 1T Process ala Pintos/x86

• Each user process/thread associated with a kernel thread, described by 
a 4KB page object containing TCB and kernel stack for the kernel thread
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tid
status
stack

priority
list

magic #

In User thread, w/ Kernel thread waiting

• x86 CPU holds interrupt SP in register
• During user thread execution, associated kernel thread is “standing by”
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In Kernel Thread: No User Component

• Kernel threads execute with small stack in thread structure
• Pure kernel threads have no corresponding user-mode thread
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User → Kernel (exceptions, syscalls)

• Mechanism to resume k-thread goes through interrupt vector
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Kernel → User

• Interrupt return (iret) restores user stack, IP, and PL
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Pintos Interrupt Processing
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User → Kernel via interrupt vector

• Interrupt transfers control through the Interrupt Vector  (IDT in x86)
• iret restores user stack and priority level (PL)
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Switch to Kernel Thread for Process
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Pintos Interrupt Processing
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Timer may trigger thread switch
• thread_tick

– Updates thread counters
– If quanta exhausted, sets yield flag

• thread_yield
– On path to rtn from interrupt
– Sets current thread back to READY
– Pushes it back on ready_list
– Calls schedule to select next thread to run upon iret

• Schedule
– Selects next thread to run
– Calls switch_threads to change regs to point to stack for 

thread to resume
– Sets its status to RUNNING
– If user thread, activates the process
– Returns back to intr_handler
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Thread Switch (switch.S)

• switch_threads: save regs on current small stack, change 
SP, return from destination threads call to switch_threads
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Pintos Return from Processing

Hardware 
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• iret restores user stack and priority level (PL)
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Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie,
Unix V6, slp.c:

“If the new process paused because it was swapped out, set the 
stack level to the last call to savu(u_ssav). This means that the 
return which is executed immediately after the call to aretu actually 
returns from the last routine which did the savu.” 

“You are not expected to understand this.”

Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) as 
per The Unix Heritage Society(tuhs.org); gif by Eddie Koehler. 

Included by Ali R. Butt in CS3204 from Virginia Tech
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Administrivia
• Project 1 available today!

– Get started looking at it with your group
• TA preference signup form due Today (Tuesday 2/12) 

at 11:59PM
– Everyone in a group must have the same TA!  

» Preference given to same section
• Starting This Friday: 

– Attend your new (permanent) section
– Get to know your TA!
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Goals for Rest of Today
• Synchronization Operations
• Higher-level Synchronization Abstractions

– Semaphores, monitors, and condition variables
• Programming paradigms for concurrent programs
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Recall: Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving: 

FIFO, Random, …
– Dispatcher can choose to run each thread to completion or 

time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing
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Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way, programs 

must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that bugs 
can be intermittent

– Sometimes called “Heisenbugs”

Lec 7.232/12/19 Kubiatowicz CS162 ©UCB Spring 2019

Why allow cooperating threads?
• Advantage 1: Share resources

– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity 
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend
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High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
connection = AcceptCon();
ProcessFork(ServiceWebPage(), connection);

}
• What are some disadvantages of this technique?
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Threaded Web Server
• Instead, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(), connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI scripts, 
other things

– Threads are much cheaper to create than processes, so this 
has a lower per-request overhead

• What about Denial of Service attacks or digg / Slashdot 
effects?
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Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads, 

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool
queue
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ATM Bank Server

• ATM server requirements:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money
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ATM bank server example
• Suppose we wanted to implement a server process to 

handle requests from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk I/O */
acct‐>balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• How could we speed this up?

– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)
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Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven 

style
• Example

BankServer() {
while(TRUE) {

event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which 

could be blocking?
– This technique is used for programming GPUs (Graphics 

Processing Unit)
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Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without having 

to “deconstruct” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct‐>balance += amount;
StoreAccount(acct);  /* Involves disk I/O */

}

• Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load r1, acct‐>balance
load r1, acct‐>balance
add r1, amount2
store r1, acct‐>balance

add r1, amount1
store r1, acct‐>balance
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Problem is at the Lowest Level
• Most of the time, threads are working on separate data, 

so scheduling doesn’t matter:
Thread A Thread B

x = 1; y = 2;
• However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x? 

• Or, what are the possible values of x below?
Thread A Thread B

x = 1; x = 2;
– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010 → scheduling order 
ABABABBA yields 3! Lec 7.322/12/19 Kubiatowicz CS162 ©UCB Spring 2019

Atomic Operations
• To understand a concurrent program, we need to know 

what the underlying indivisible operations are!
• Atomic Operation: an operation that always runs to 

completion or not at all
– It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle
– Fundamental building block – if no atomic operations, then 

have no way for threads to work together
• On most machines, memory references and assignments 

(i.e. loads and stores) of words are atomic
– Consequently – weird example that produces “3” on previous 

slide can’t happen
• Many instructions are not atomic

– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array
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Another Concurrent Program Example
• Two threads, A and B, compete with each other

– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but 
incrementing and decrementing are not atomic 

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What if both threads have their own CPU running at same 

speed?  Is it guaranteed that it goes on forever?
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Hand Simulation Multiprocessor Example
• Inner loop looks like this:

Thread A Thread B
r1=0 load r1, M[i]

r1=0 load r1, M[i]
r1=1 add r1, r1, 1

r1=-1 sub r1, r1, 1
M[i]=1 store r1, M[i]

M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off.  A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?  With Hyperthreads?
– Yes!  Unlikely, but if you are depending on it not happening, it 

will and your system will break…
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• Threaded programs must work for all interleavings of thread 
instruction sequences

– Cooperating threads inherently non-deterministic and non-
reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the 

death of several patients
» A series of race conditions on 

shared variables and poor 
software design

» “They determined that data entry speed during editing was the 
key factor in producing the error condition: If the prescription data 
was edited at a fast pace, the overdose occurred.”

Correctness Requirements
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Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between 

problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime
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Definitions
• Synchronization: using atomic operations to ensure 

cooperation between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything useful 

with only reads and writes

• Mutual Exclusion: ensuring that only one thread does a 
particular thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can 
execute at once. Only one thread at a time will get into this 
section of code

– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of 

describing the same thing
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More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and 
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the 

refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet
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Too Much Milk: Correctness Properties
• Need to be careful about correctness of concurrent 

programs, since non-deterministic
– Impulse is to start coding first, then when it doesn’t work, 

pull hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much 
milk” problem???

– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and store 
operations as building blocks
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Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory 
read/write are atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}
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Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory 
read/write are atomic):

Thread A Thread B
if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}
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Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory 
read/write are atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?  
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note 

but before buying milk!
• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 7.432/12/19 Kubiatowicz CS162 ©UCB Spring 2019

Too Much Milk: Solution #1½ 
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk
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Too Much Milk Solution #2
• How about labeled notes?  

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to 
think that the other is going to buy

• Really insidious: 
– Extremely unlikely this would happen, but will at worse 

possible time
– Probably something like this in UNIX
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Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”
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Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X  if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that: 
– It is safe to buy, or
– Other will buy, ok to quit

• At X: 
– If no note B, safe for A to buy, 
– Otherwise wait to find out what will happen

• At Y: 
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit
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Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “leave note A” happens before “if (noNote A)”
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leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

• “leave note A” happens before “if (noNote A)”
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leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for 
note B to 
be 
remove

• “leave note A” happens before “if (noNote A)”
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Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”
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Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”
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Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X 

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for 
note B to 
be 
remove
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Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for 

each thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide higher-level primitives than atomic load &
store

– Build even higher-level programming abstractions on this hardware
support
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Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

– lock.Acquire() – wait until lock is free, then grab
– lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting 

for the lock and both see it’s free, only one succeeds to grab 
the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and 
Release() called a “Critical Section”

• Of course, you can make this even simpler: suppose you are 
out of ice cream instead of milk

– Skip the test since you always need more ice cream ;-) 

Lec 7.552/12/19 Kubiatowicz CS162 ©UCB Spring 2019

Hardware

Higher-
level 
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level 
synchronization primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load 
and store

– Need to provide primitives useful at user-level

Load/Store    Disable Ints Test&Set
Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs
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Summary
• Concurrent threads are a very useful abstraction

– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing 
shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become 

completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various 

synchronization primitives


