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Recall: Lifecycle of a Process

• As a process executes, it changes state:
– new:  The process is being created
– ready:  The process is waiting to run
– running:  Instructions are being executed
– waiting:  Process waiting for some event to occur
– terminated:  The process has finished execution
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Recall: Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI, “pi.txt” ));
ThreadFork(PrintClassList, “classlist.txt”));

}

• What does ThreadFork() do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time 

CPU1 CPU2
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Recall: Multithreaded Stack Switching
• Consider the following code 

blocks:
proc A() {

B();
}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2 threads 
running same code:

– Threads S and T
– Assume S and T have been 

running for a while

Thread S

St
ac

k 
gr

ow
th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch
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What happens when thread blocks on I/O?

• What happens when a thread requests a block of data 
from the file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack grow
th
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External Events
• What happens if thread never does any I/O, never 

waits, and never yields control?
– Could the ComputePI program grab all resources and 

never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop 

the running code and jump to kernel
– Timer: like an alarm clock that goes off every some 

milliseconds

• If we make sure that external events occur frequently 
enough, can ensure dispatcher runs
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...
add  $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

Raise priority 
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler


Transfer Network Packet 

from hardware
to Kernel Buffers


Restore registers
Clear current Int
Disable All Ints
Restore priority 

(clear Mask)
RTI

“In
te

rru
pt

 H
an

dl
er

”
Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

Ex
te

rn
al

 In
te

rru
pt

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...
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Use of Timer Interrupt to Return Control
• Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack grow
th
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ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that creates a 
new thread and places it on ready queue

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable)
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How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack
– PC return address  OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and 
fcnArgPtr, respectively

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of ThreadRoot() 

really gets started
ThreadRoot stub

Initial Stack

Stack grow
th
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How does Thread get started?

• Eventually, run_new_thread() will select this TCB and 
return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k 
gr

ow
th A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread
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What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping 

– Includes things like recording 
start time of thread

– Other statistics
• Stack will grow and shrink with 

execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code
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Administrivia
• Waitlist was closed last Friday/Early Drop passed Friday

• Recommendation: Read assigned readings before lecture

• Group sign up this week 
– Get finding groups ASAP – deadline Friday 2/8 at 11:59PM
– 4 people in a group! 

• Continue to attend whichever section is convenient
– Next week, we start official section attendance!

• TA preference signup form due Tuesday 2/12 at 11:59PM
– Everyone in a group must have the same TA!  

» Preference given to same section
– Participation: Get to know your TA!
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Thread Abstraction

• Illusion: Infinite number of processors
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Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable speed

– Programs must be designed to work with any schedule
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Programmer vs. Processor View
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Programmer vs. Processor View
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Programmer vs. Processor View
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Possible Executions
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Thread Lifecycle
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Per Thread Descriptor 
(Kernel Supported Threads)

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter (PC), pointer 

to stack (SP)
– Scheduling info: state, priority, CPU time
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process (PCB) – user threads
– … (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
– In Array, or Linked List, or …
– I/O state (file descriptors, network connections, etc)
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Multithreaded Processes

• Process Control Block (PCBs) points to multiple Thread 
Control Blocks (TCBs):

• Switching threads within a block is a simple thread switch
• Switching threads across blocks requires changes to 

memory and I/O address tables
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Examples multithreaded programs
• Embedded systems 

– Elevators, planes, medical systems, smart watches
– Single program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with 

concurrent requests by multiple users
– But no protection needed within kernel

• Database servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 6.242/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Example multithreaded programs (con’t)
• Network servers

– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation systems

• Parallel programming (more than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program at 

a time
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A Typical Use Case

Client Browser
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render 

portion

Web Server
- fork process for each client connection
- thread to get request and issue response
- fork threads to read data, access DB, etc
- join and respond
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Some Numbers
• Frequency of performing context switches: 10-100ms
• Context switch time in Linux: 3-4 secs (Intel i7 & E5)

– Thread switching faster than process switching (100 ns)
– But switching across cores ~2x more expensive than within-core

• Context switch time increases sharply with size of working set*
– Can increase 100x or more 

*The working set is subset of memory used by process in a time 
window

• Moral: context switching depends mostly on cache limits and 
the process or thread’s hunger for memory 
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Some Numbers

• Many process are multi-threaded, so thread context 
switches may be either within-process or across-processes
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Kernel Use Cases
• Thread for each user process

• Thread for sequence of steps in processing I/O

• Threads for device drivers

• …
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Putting it Together: Process

Memory

I/O State
(e.g., file, 
socket 
contexts)

CPU state 
(PC, SP, 
registers..)

Sequential 
stream of 
instructions

A(int tmp) {
if (tmp<2)

B();
printf(tmp);

}
B() {

C();
}
C() {
A(2);

}
A(1);
…

(Unix) Process

Resources
Stack

Stored in 
OS
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Putting it Together: Processes

…

Process 1 Process 2 Process N

CPU 
sched.

OS

CPU
(1 core)

1 process 
at a time

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

• Switch overhead: high
– CPU state: low
– Memory/IO state: 

high
• Process creation: high
• Protection

– CPU: yes
– Memory/IO: yes

• Sharing overhead: high
(involves at least a 
context switch)
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Putting it Together: Threads
Process 1

CPU 
sched.

OS

CPU
(1 core)

1 thread 
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead: 
medium

– CPU state: low

• Thread creation: 
medium

• Protection
– CPU: yes
– Memory/IO: no

• Sharing overhead: 
low(ish) (thread switch 
overhead low)

CPU
state

CPU
state

CPU
state

CPU
state
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Kernel versus User-Mode Threads
• We have been talking about kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different 

things

• Downside of kernel threads: a bit expensive
– Need to make a crossing into kernel mode to schedule

• Lighter weight option: User level Threads
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User-Mode Threads
• Lighter weight option:

– User program provides scheduler and 
thread package

– May have several user threads per kernel 
thread

– User threads may be scheduled 
non-preemptively relative to each other 
(only switch on yield())

– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…
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Some Threading Models

Simple One-to-One
Threading Model

Many-to-One Many-to-Many
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Threads in a Process
• Threads are useful at user-level: parallelism, hide I/O latency, 

interactivity
• Option A (early Java): user-level library, one multi-threaded 

process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call I/O

• Option B (SunOS, Linux/Unix variants): many single-threaded 
processes

– User-level library does thread multiplexing
• Option C (Windows): scheduler activations

– Kernel allocates processes to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel mode
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Putting it Together: Multi-Cores
Process 1

CPU 
sched. OS

IO
state

Mem.

…

threads

Process N

IO
state

Mem.

…

threads

…

• Switch overhead: low
(only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead: low
(thread switch 
overhead low, may not 
need to switch at all!)

Core 1 Core 2 Core 3 Core 4 CPU

4 threads at 
a time

CPU
state

CPU
state

CPU
state

CPU
state
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Simultaneous MultiThreading/Hyperthreading
• Hardware technique 

– Superscalar processors can
execute multiple instructions
that are independent

– Hyperthreading duplicates 
register state to make a
second “thread,” allowing 
more instructions to run

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– Intel, SPARC, Power (IBM)
– A virtual core on AWS’ EC2 is basically a hyperthread

Colored blocks show 
instructions executed
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Putting it Together: Hyper-Threading
Process 1

CPU 
sched. OS

IO
state

Mem.

…

threads

Process N

IO
state

Mem.

…

threads

…

• Switch overhead 
between hardware-
threads: very-low
(done in hardware)

• Contention for 
ALUs/FPUs may hurt 
performance

Core 1

CPU
Core 2 Core 3 Core 4

8 threads at 
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state
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Classification

• Most operating systems have either
– One or many address spaces
– One or many threads per address space

Mach, OS/2, Linux
Windows 10

Win NT to XP, Solaris, 
HP-UX, OS X

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early 
Macintosh

Many

One

# threads
Per AS:

ManyOne

# 
of

 a
dd

r
sp

ac
es

:
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Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving: 

FIFO, Random, …
– Dispatcher can choose to run each thread to completion or 

time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing
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Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way, programs 

must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that bugs 
can be intermittent

– Sometimes called “Heisenbugs”
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Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources, network, 
etc

– Extreme example: buggy device driver causes thread A to crash 
“independent thread” B

• You probably don’t realize how much you depend on 
reproducibility:

– Example: Evil C compiler
» Modifies files behind your back by inserting errors into C program 

unless you insert debugging code
– Example: Debugging statements can overrun stack

• Non-deterministic errors are really difficult to find
– Example: Memory layout of kernel+user programs

» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys
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Why allow cooperating threads?
• People cooperate; computers help/enhance people’s lives, so 

computers must cooperate
– By analogy, the non-reproducibility/non-determinism of people is 

a notable problem for “carefully laid plans”
• Advantage 1: Share resources

– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity 
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend
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High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?
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Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI scripts, 
other things

– Threads are much cheaper to create than processes, so this 
has a lower per-request overhead

• Question: would a user-level (say one-to-many) thread 
package make sense here?

– When one request blocks on disk, all block…
• What about Denial of Service attacks or digg / Slash-dot 

effects?
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Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads, 

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool
queue
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ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money
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ATM bank server example
• Suppose we wanted to implement a server process to 

handle requests from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• How could we speed this up?

– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)
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Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven 

style
• Example

BankServer() {
while(TRUE) {

event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which 

could be blocking?
– This technique is used for graphical programming
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Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without 

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance
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Summary
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Various textbooks talk about processes 
– When this concerns concurrency, really talking about thread 

portion of a process
– When this concerns protection, talking about address space 

portion of a process
• Concurrent threads are a very useful abstraction

– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing 
shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become 

completely inconsistent


