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Recall: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ translation
– Programs execute in an address space that is distinct from the 

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of 
an address space and one or more threads of control

• Dual Mode operation/protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs 

and user programs are isolated from one another by controlling 
the translation from program virtual addresses to machine 
physical addresses
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Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor.  How do we provide the 
illusion of multiple processors?

– Multiplex in time!
– Multiple “virtual CPUs”

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 
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Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?
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Recall: Simple address translation with Base and Bound
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Simple B&B: User => Kernel
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Simple B&B: Interrupt
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stack?
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Simple B&B: Switch User Process
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Simple B&B: “resume”
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Running Many Programs
• We have the basic mechanism to 

– switch between user processes and the kernel, 
– the kernel can switch among user processes,
– Protect OS from user processes and processes from 

each other
• Questions ???

– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?
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Process Control Block
• Kernel represents each process as a process control 

block (PCB)
– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure containing 
the PCBs

• Scheduling algorithm selects the next one to run
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Scheduler

• Scheduling: Mechanism for deciding which 
processes/threads receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if ( readyProcesses(PCBs) ) {
nextPCB = selectProcess(PCBs);
run( nextPCB );

} else {
run_idle_process();

}
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Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique 

– Superscalar processors can
execute multiple instructions
that are independent.

– Hyperthreading duplicates 
register state to make a
second “thread,” allowing 
more instructions to run.

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show 
instructions executed
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Also Recall: The World Is Parallel
• Intel Skylake (2017)

– 28 Cores 
– Each core has two 

hyperthreads!
– So: 54 Program Counters(PCs)

• Scheduling here means:
– Pick which core
– Pick which thread

• Space of possible scheduling
much more interesting

– Can afford to dedicate certain 
cores to housekeeping tasks

– Or, can devote cores to 
services (e.g. Filesystem)
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Is Branch and Bound a 
Good-Enough Protection Mechanism?

• NO: Too simplistic for real systems
• Inflexible/Wasteful: 

– Must dedicate physical memory for potential future use
– (Think stack and heap!)

• Fragmentation: 
– Kernel has to somehow fit whole processes into contiguous 

block of memory
– After a while, memory becomes fragmented!

• Sharing: 
– Very hard to share any data between Processes or between 

Process and Kernel
– Need to communicate indirectly through the kernel…
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Better: x86 – segments and stacks
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Alternative: Address Mapping
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Administrivia: Getting started
• Kubiatowicz Office Hours:

– 1-2pm, Monday & Thursday
• Homework 0 Due Today!

– Get familiar with the cs162 tools
– configure your VM, submit via git
– Practice finding out information: 

» How to use GDB?  How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

• Should be going to sections now – Important information there
– Any section will do until groups assigned

• THIS Friday is Drop Deadline!  HARD TO DROP LATER!
– If you know you are going to drop, please do so to leave room for 

others on waitlist!
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Administrivia (Con’t)
• Group sign up via autograder form next week 

– Get finding groups of 4 people ASAP
– Priority for same section; if cannot make this work, keep same TA
– Remember: Your TA needs to see you in section!

• Midterm 1 conflicts
– We will handle these conflicts after have final class roster
– I know about one problem with Midterm 1 scheduling, and it can 

be dealt with.  Have I missed any others?
– Watch for queries by HeadTA to collect information
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Recall: 3 types of Kernel Mode Transfer
• Syscall

– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, 

…
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Recall: User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception
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Implementing Safe Kernel Mode Transfers
• Important aspects:

– Controlled transfer into kernel (e.g., syscall table)
– Separate kernel stack

• Carefully constructed kernel code packs up the user process 
state and sets it aside

– Details depend on the machine architecture

• Should be impossible for buggy or malicious user program to 
cause the kernel to corrupt itself
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Need for Separate Kernel Stacks
• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel memory) 
plus User stack (located in user memory)

– Syscall handler copies user args to kernel space before 
invoking specific function (e.g., open)

– Interrupts (???)
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Before
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During
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Kernel System Call Handler
• Vector through well-defined syscall entry points!

– Table mapping system call number to handler
• Locate arguments

– In registers or on user (!) stack
• Copy arguments

– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back 
– Into user memory
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Hardware support: Interrupt Control

• Interrupt processing not visible to the user process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work

» wake up an existing OS thread 
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Hardware support: Interrupt Control

• OS kernel may enable/disable interrupts
– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupts
– Mask off (disable) certain interrupts, eg., lower priority
– Certain Non-Maskable-Interrupts (NMI)

» e.g., kernel segmentation fault
» Also: Power about to fail!
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Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line 
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt 
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable
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How do we take interrupts safely?
• Interrupt vector

– Limited number of entry points into kernel
• Kernel interrupt stack

– Handler works regardless of state of user code
• Interrupt masking

– Handler is non-blocking
• Atomic transfer of control

– “Single instruction”-like to change: 
» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred
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Putting it together: web server

Request

Reply
(retrieved by web server)

Client Web Server
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Putting it together: web server
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Can a process create a process ?
• Yes! Unique identity of process is the “process ID” (or PID)
• fork() system call creates a copy of current process with a 

new PID
• Return value from fork(): integer

– When > 0: 
» Running in (original) Parent process
» return value is pid of new child

– When = 0: 
» Running in new Child process

– When < 0:
» Error!  Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Memory, File Descriptors (next topic), etc…
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Create Process: fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[])
{
pid_t cpid, mypid;

pid_t pid = getpid();         /* get current processes PID */
printf("Parent pid: %d\n", pid);

cpid = fork();
if (cpid > 0) { /* Parent Process */

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

}  else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror("Fork failed");
exit(1);

}
exit(0);

}
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UNIX Process Management
• UNIX fork – system call to create a copy of the 

current process, and start it running
– No arguments!

• UNIX exec – system call to change the program being 
run by the current process

• UNIX wait – system call to wait for a process to finish

• UNIX signal – system call to send a notification to 
another process

• UNIX man pages: fork(2), exec(3), wait(2), 
signal(3)
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UNIX Process Management
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Parent wait for child: fork2.c

int status;
pid_t = tcpid;
…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

}  else if (cpid == 0) {      /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…
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Process Races: fork3.c

• Question: What does this program print?
• Does it change if you add in one of the sleep() statements?

int i;
cpid = fork();
if (cpid > 0) {

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<10; i++) {
printf("[%d] parent: %d\n", mypid, i);
// sleep(1);

}
}  else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-10; i--) {
printf("[%d] child: %d\n", mypid, i);
// sleep(1);

}
} 
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Shell

• A shell is a job control system 
– Allows programmer to create and manage a set of 

programs to do some task
– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1
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Signals – infloop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
printf("Caught signal %d - phew!\n",signum);
exit(1);

}

int main() {
signal(SIGINT, signal_callback_handler);

while (1) {}
}
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How Does the Kernel Provide Services?
• You said that applications request services from the 

operating system via syscall, but …
• I’ve been writing all sort of useful applications and I 

never ever saw a “syscall” !!!

• That’s right.  
• It was buried in the programming language runtime 

library (e.g., libc.a)
• … Layering
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OS Run-Time Library
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Recall: UNIX System Structure
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Kernel Mode

Hardware

Applications
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A Kind of Narrow Waist
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Summary
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Interrupts
– Hardware mechanism for regaining control from user
– Notification that events have occurred
– User-level equivalent: Signals

• Native control of Process
– Fork, Exec, Wait, Signal


