
CS162
Operating Systems and
Systems Programming

Lecture 3

Processes (con’t), Fork,
Introduction to I/O

January 29th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 3.21/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ translation
– Programs execute in an address space that is distinct from the

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual Mode operation/protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by controlling
the translation from program virtual addresses to machine
physical addresses

Lec 3.31/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?

– Multiplex in time!
– Multiple “virtual CPUs”

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 3.41/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 3.51/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated
on-the-fly

1010…

0100…

Lec 3.61/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to

return to
system?

0000 1234

Lec 3.71/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and
set up system
stack?

IntrpVector[i]

Lec 3.81/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

0001 0124

1000 …

1100 …

0000 1234

regs
00FF…

RTU

Lec 3.91/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

000 0248

1000 …

1100 …

0000 1234

regs
00FF…

RTU

Lec 3.101/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Running Many Programs
• We have the basic mechanism to

– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from

each other
• Questions ???

– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?

Lec 3.111/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Process Control Block
• Kernel represents each process as a process control

block (PCB)
– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure containing
the PCBs

• Scheduling algorithm selects the next one to run

Lec 3.121/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Scheduler

• Scheduling: Mechanism for deciding which
processes/threads receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Lec 3.131/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique

– Superscalar processors can
execute multiple instructions
that are independent.

– Hyperthreading duplicates
register state to make a
second “thread,” allowing
more instructions to run.

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

Lec 3.141/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Also Recall: The World Is Parallel
• Intel Skylake (2017)

– 28 Cores
– Each core has two

hyperthreads!
– So: 54 Program Counters(PCs)

• Scheduling here means:
– Pick which core
– Pick which thread

• Space of possible scheduling
much more interesting

– Can afford to dedicate certain
cores to housekeeping tasks

– Or, can devote cores to
services (e.g. Filesystem)

Lec 3.151/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Is Branch and Bound a
Good-Enough Protection Mechanism?

• NO: Too simplistic for real systems
• Inflexible/Wasteful:

– Must dedicate physical memory for potential future use
– (Think stack and heap!)

• Fragmentation:
– Kernel has to somehow fit whole processes into contiguous

block of memory
– After a while, memory becomes fragmented!

• Sharing:
– Very hard to share any data between Processes or between

Process and Kernel
– Need to communicate indirectly through the kernel…

Lec 3.161/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Better: x86 – segments and stacks

CS EIP

SS ESP

DS
ECXES
EDX
ESI
EDI

EAX
EBX

code

Static Data
heap

stack

code

Static Data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length
and access rights
associated with each
segment

Lec 3.171/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Alternative: Address Mapping

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 3.181/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Administrivia: Getting started
• Kubiatowicz Office Hours:

– 1-2pm, Monday & Thursday
• Homework 0 Due Today!

– Get familiar with the cs162 tools
– configure your VM, submit via git
– Practice finding out information:

» How to use GDB? How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

• Should be going to sections now – Important information there
– Any section will do until groups assigned

• THIS Friday is Drop Deadline! HARD TO DROP LATER!
– If you know you are going to drop, please do so to leave room for

others on waitlist!

Lec 3.191/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Administrivia (Con’t)
• Group sign up via autograder form next week

– Get finding groups of 4 people ASAP
– Priority for same section; if cannot make this work, keep same TA
– Remember: Your TA needs to see you in section!

• Midterm 1 conflicts
– We will handle these conflicts after have final class roster
– I know about one problem with Midterm 1 scheduling, and it can

be dealt with. Have I missed any others?
– Watch for queries by HeadTA to collect information

Lec 3.201/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: 3 types of Kernel Mode Transfer
• Syscall

– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero,

…

Lec 3.211/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 3.221/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Implementing Safe Kernel Mode Transfers
• Important aspects:

– Controlled transfer into kernel (e.g., syscall table)
– Separate kernel stack

• Carefully constructed kernel code packs up the user process
state and sets it aside

– Details depend on the machine architecture

• Should be impossible for buggy or malicious user program to
cause the kernel to corrupt itself

Lec 3.231/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Need for Separate Kernel Stacks
• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel memory)
plus User stack (located in user memory)

– Syscall handler copies user args to kernel space before
invoking specific function (e.g., open)

– Interrupts (???)

Lec 3.241/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Before

Lec 3.251/29/19 Kubiatowicz CS162 ©UCB Fall 2019

During

Lec 3.261/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Kernel System Call Handler
• Vector through well-defined syscall entry points!

– Table mapping system call number to handler
• Locate arguments

– In registers or on user (!) stack
• Copy arguments

– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– Into user memory

Lec 3.271/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Hardware support: Interrupt Control

• Interrupt processing not visible to the user process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work

» wake up an existing OS thread

Lec 3.281/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Hardware support: Interrupt Control

• OS kernel may enable/disable interrupts
– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupts
– Mask off (disable) certain interrupts, eg., lower priority
– Certain Non-Maskable-Interrupts (NMI)

» e.g., kernel segmentation fault
» Also: Power about to fail!

Lec 3.291/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 3.301/29/19 Kubiatowicz CS162 ©UCB Fall 2019

How do we take interrupts safely?
• Interrupt vector

– Limited number of entry points into kernel
• Kernel interrupt stack

– Handler works regardless of state of user code
• Interrupt masking

– Handler is non-blocking
• Atomic transfer of control

– “Single instruction”-like to change:
» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Lec 3.311/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Putting it together: web server

Request

Reply
(retrieved by web server)

Client Web Server

Lec 3.321/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Putting it together: web server

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy
from user buffer
to network buffer

Network
interface Disk interface

12. format outgoing
packet and DMA

6. disk
request

10. network
socket
write

1.network
socket
read

2. copy arriving
packet (DMA)

syscall

wait

interrupt

3. kernel
copy

RTU

5. file
readsyscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply

Lec 3.331/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Can a process create a process ?
• Yes! Unique identity of process is the “process ID” (or PID)
• fork() system call creates a copy of current process with a

new PID
• Return value from fork(): integer

– When > 0:
» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Memory, File Descriptors (next topic), etc…

Lec 3.341/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Create Process: fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[])
{
pid_t cpid, mypid;

pid_t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);

cpid = fork();
if (cpid > 0) { /* Parent Process */

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror("Fork failed");
exit(1);

}
exit(0);

}

Lec 3.351/29/19 Kubiatowicz CS162 ©UCB Fall 2019

UNIX Process Management
• UNIX fork – system call to create a copy of the

current process, and start it running
– No arguments!

• UNIX exec – system call to change the program being
run by the current process

• UNIX wait – system call to wait for a process to finish

• UNIX signal – system call to send a notification to
another process

• UNIX man pages: fork(2), exec(3), wait(2),
signal(3)

Lec 3.361/29/19 Kubiatowicz CS162 ©UCB Fall 2019

UNIX Process Management

Lec 3.371/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Parent wait for child: fork2.c

int status;
pid_t = tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…

Lec 3.381/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Process Races: fork3.c

• Question: What does this program print?
• Does it change if you add in one of the sleep() statements?

int i;
cpid = fork();
if (cpid > 0) {

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<10; i++) {
printf("[%d] parent: %d\n", mypid, i);
// sleep(1);

}
} else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-10; i--) {
printf("[%d] child: %d\n", mypid, i);
// sleep(1);

}
}

Lec 3.391/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of

programs to do some task
– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1

Lec 3.401/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Signals – infloop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
printf("Caught signal %d - phew!\n",signum);
exit(1);

}

int main() {
signal(SIGINT, signal_callback_handler);

while (1) {}
}

Lec 3.411/29/19 Kubiatowicz CS162 ©UCB Fall 2019

How Does the Kernel Provide Services?
• You said that applications request services from the

operating system via syscall, but …
• I’ve been writing all sort of useful applications and I

never ever saw a “syscall” !!!

• That’s right.
• It was buried in the programming language runtime

library (e.g., libc.a)
• … Layering

Lec 3.421/29/19 Kubiatowicz CS162 ©UCB Fall 2019

OS Run-Time Library

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…
OS library OS library OS library

Lec 3.431/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 3.441/29/19 Kubiatowicz CS162 ©UCB Fall 2019

A Kind of Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call

Interface
Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs)802.11 a/g/n/acSCSI ThunderboltGraphics
PCI

Hardware

Software

System

User
OS

Application / Service

Lec 3.451/29/19 Kubiatowicz CS162 ©UCB Fall 2019

Summary
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Interrupts
– Hardware mechanism for regaining control from user
– Notification that events have occurred
– User-level equivalent: Signals

• Native control of Process
– Fork, Exec, Wait, Signal

