
CS162
Operating Systems and
Systems Programming

Lecture 25

Security, Edge Computing
Quantum Computing

May 7th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 25.25/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Chord Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Chord: Globally replicated data
– But – Is it secure?
– Resilient to Denial of Service?

• Replicating in Adjacent nodes of virtual space  Geographic Separation in
physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread
– But – Are all the copies identical and authentic???

Client

Client

Client

Client

Client

14 V14

4

20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14

Lec 25.35/7/19 Kubiatowicz CS162 ©UCB Fall 2019

What is Computer Security Today?
• Computing in the presence of an adversary!

– Adversary is the security field’s defining characteristic
• Reliability, robustness, and fault tolerance

– Dealing with Mother Nature (random failures)
• Security

– Dealing with actions of a knowledgeable attacker
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a computer

security problem!

70-110 million
users

.5 million
hosts ? ??? million

? ??? million
? ??? million56 million

users
83 million users

BlackEnergy
SCADA malware
(Supervisory Control
and Data Acquisition)

Mirai IoT botnet

Lec 25.45/7/19 Kubiatowicz CS162 ©UCB Fall 2019

On The Importance of Data Integrity

• In July (2015), a team of
researchers took total control of a
Jeep SUV remotely

• They exploited a firmware update
vulnerability and hijacked the
vehicle over the Sprint cellular
network

• They could make it speed up, slow
down and even veer off the road

• Machine-to-Machine (M2M)
communication has reached a
dangerous tipping point

– Cyber Physical Systems use models
and behaviors that from elsewhere

– Firmware, safety protocols,
navigation systems,
recommendations, …

– IoT (whatever it is) is everywhere

• Do you know where your data
came from? PROVENANCE

• Do you know that it is ordered
properly? INTEGRITY

• The rise of Fake Data!
– Much worse than Fake News…
– Corrupt the data, make the system

behave very badly

Lec 25.55/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Protection vs. Security
• Protection: mechanisms for controlling access of programs,

processes, or users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mechanisms to prevent misuse
of resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external operational environment
» Most well-constructed system cannot protect information if user

accidentally reveals password – social engineering challenge

Lec 25.65/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Security Requirements
• Authentication

– Ensures that a user is who is claiming to be

• Data integrity
– Ensure that data is not changed from source to destination or

after being written on a storage device

• Confidentiality
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data

Lec 25.75/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Factory

Home

Warehouse/Cloud

Clusters
g

• Smart Manufacturing
• Smart Contracts
• Big Data Analytics
• Machine Learning
• Control

Modern Applications:
Distributed, Ad Hoc, and Vulnerable

Lec 25.85/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Start Here:
Securing Communication via Cryptography

• Cryptography: communication in the presence of
adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent, highly

readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t extract

it, but a friend can

• General premise: there is a key, possession of which allows
decoding, but without which decoding is infeasible

– Thus, key must be kept secret and not guessable

Lec 25.95/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Basic Tool: Using Symmetric Keys

• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks

InternetEncrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext

Lec 25.105/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Symmetric Keys
• Can just XOR plaintext with the

key
– Easy to implement, but easy to break

using frequency analysis
– Unbreakable alternative: XOR with

one-time pad
» Use a different key for each

message

Lec 25.115/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Block Ciphers with Symmetric Keys
• More sophisticated (e.g., block cipher) algorithms

– Works with a block size (e.g., 64 bits)
• Can encrypt blocks separately:

– Same plaintextsame ciphertext
• Much better:

– Add in counter and/or link ciphertext of previous block

Lec 25.125/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Symmetric Key Ciphers - DES & AES
• Data Encryption Standard (DES)

– Developed by IBM in 1970s, standardized by NBS/NIST
– 56-bit key (decreased from 64 bits at NSA’s request)
– Still fairly strong other than brute-forcing the key space

» But custom hardware can crack a key in < 24 hours
– Today many financial institutions use Triple DES

» DES applied 3 times, with 3 keys totaling 168 bits

• Advanced Encryption Standard (AES)
– Replacement for DES standardized in 2002
– Key size: 128, 192 or 256 bits

• How fundamentally strong are they?
– No one knows (no proofs exist)

Lec 25.135/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Why are Data Breaches so Frequent?

• State of the art: AdHoc boundary construction!
– Protection mechanisms are “roll-your-own” and different for each

application
– Use of encrypted channels to “tunnel” across untrusted domains

• Data is typically protected at the Border rather than Inherently
– Large Trusted Computing Base (TCB): huge amount of code must be

correct to protect data
– Make it through the border (firewall, OS, VM, container, etc…) data

compromised!
• What about data integrity and provenance?

– Any bits inserted into “secure” environment get trusted as authentic 
manufacturing faults or human injury or exposure of sensitive information

Full OS TCB

Really Large TCB

hh

Really Large TCB

SSL

SSL

SSL

Lec 25.145/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still proving
identity to remote system

– Many of the original UNIX tools sent passwords over the wire
“in clear text”

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

Network

PASS: gina

Lec 25.155/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Authentication via Secret Key
• Main idea: entity proves identity by decrypting a secret

encrypted with its own key
– K – secret key shared only by A and B

• A can asks B to authenticate itself by decrypting a nonce,
i.e., random value, x

– Avoid replay attacks (attacker impersonating client or server)
• Vulnerable to man-in-the middle attack

A B

Notation: E(m,k) –
encrypt message m
with key k

Lec 25.165/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Basic Tool: Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1
» Often, h1 is called the “digest” of M1

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); i.e., can’t easily find other

message with same digest as given message
– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e.

for which H(m1) = H(m2)
– A small change in a message changes many bits of digest/can’t tell

anything about message given its hash
• Best Current Example: SHA-2 (2001)

– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 25.175/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Integrity: Cryptographic Hashes
• Basic building block for integrity: cryptographic hashing

– Associate hash with byte-stream, receiver verifies match
» Assures data hasn’t been modified, either accidentally – or

maliciously
• Approach:

– Sender computes a secure digest of message m using H(x)
» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K | H (K | m))
» HMAC(K, m) is a hash-based message authentication function

– Send digest d and message m to receiver
– Upon receiving m and d, receiver uses shared secret key, K, to

recompute HMAC(K, m) and see whether result agrees with d
• Another use of Hashes: A fixed-length name for data

– Instead of asking for data, ask for hash!
– Hashes can serve as routing addresses

Lec 25.185/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality

Lec 25.195/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Asymmetric Encryption (Public Key)
• Idea: use two different keys, one to encrypt (e) and one

to decrypt (d)
– A key pair

• Crucial property: knowing e does not give away d

• Therefore e can be public: everyone knows it!

• If Alice wants to send to Bob, she fetches Bob’s public
key (say from Bob’s home page) and encrypts with it

– Alice can’t decrypt what she’s sending to Bob …
– … but then, neither can anyone else (except Bob)

Lec 25.205/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Basic Tool: Public Key / Asymmetric Encryption
• Sender uses receiver’s public key

– Advertised to everyone
• Receiver uses complementary private key

– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Lec 25.215/7/19 Kubiatowicz CS162 ©UCB Fall 2019

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired by

anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic

– Provides restricted sender and receiver
• But: how does Alice know that it was Bob who sent her

Bpublic? And vice versa… Story for another time!

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 25.225/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Public Key Cryptography
• Invented in the 1970s

– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

• How can we construct an encryption/decryption algorithm
using a key pair with the public/private properties?

– Answer: Number Theory
• Most fully developed approach: RSA

– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., ssh, SSL/TLS for https)

• Also mature approach: Eliptic Curve Cryptography (ECC)
– Based on curves in a Galois-field space
– Shorter keys and signatures than RSA

Lec 25.235/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Properties of RSA
• Requires generating large, random prime numbers

– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiation of very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange a

(short) symmetric session key
» Use that key then with AES or such

• How difficult is recovering d, the private key?
– Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard
(= brute force only)

» (Though quantum computers could do so in polynomial time!)

Lec 25.245/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple Public Key Authentication
• Each side need only to know the other

side’s public key
– No secret key need be shared

• A encrypts a nonce (random num.) x
– Avoid replay attacks, e.g., attacker

impersonating client or server
• B proves it can recover x, generates

second nonce y
• A can authenticate itself to B in the

same way
• A and B have shared private secrets

on which to build private key!
– We just did secure key distribution!

• Many more details to make this work
securely in practice!

A B

Notation: E(m,k) –
encrypt message m
with key k

Lec 25.255/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Non-Repudiation: RSA Crypto & Signatures
• Suppose Alice has published public key KE

• If she wishes to prove who she is, she can send a message x
encrypted with her private key KD (i.e., she sends E(x, KD))

– Anyone knowing Alice’s public key KE can recover x, verify that
Alice must have sent the message

» It provides a signature
– Alice can’t deny it: non-repudiation

• Could simply encrypt a hash of the data to sign a document
that you wanted to be in clear text

• Note that either of these signature techniques work perfectly
well with any data (not just messages)

– Could sign every datum in a database, for instance

Lec 25.265/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Public Key Crypto & Signatures

I will pay
Bob $500

I will pay
Bob $500

Lec 25.275/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Digital Certificates

• How do you know KE is Alice’s public key?
• Trusted authority (e.g., Verisign) signs binding

between Alice and KE with its private key KVprivate
– C = E({Alice, KE}, KVprivate)
– C: digital certificate

• Alice: distribute her digital certificate, C
• Anyone: use trusted authority’s KVpublic, to extract

Alice’s public key from C
– D(C, KVpublic) =

D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}

Lec 25.285/7/19 Kubiatowicz CS162 ©UCB Fall 2019

The Data-Centric Vision:
Cryptographically Hardened Data Containers

• Inspiration: Shipping Containers
– Invented in 1956. Changed

everything!
– Ships, trains, trucks, cranes handle

standardized format containers
– Each container has a unique ID
– Can ship (and store) anything

• Can we use this idea to help
security of our systems?

– Want Unique Name
– Want Universal Transport
– Want to Hold Anything
– Want Locking (integrity of contents)
– Want Privacy

• DataCapsule (DC):
– Standardized metadata wrapped around

opaque data transactions
– Uniquely named (via HASH) and

globally findable
– Every transaction explicitly sequenced

in a hash-chain history
– Provenance enforced through

signatures
– All Data Encrypted Except When in Use

• Underlying infrastructure assists
and improves performance

– Anyone can verify validity, membership,
and sequencing of transactions (like
blockchain)

Fiber


 
Hole

Hash Ptr
SignatureMetadata Container

Lec 25.295/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Refactoring of Applications around
Security, Integrity, and Provenance of Information

• Goal: A thin Standardized entity that can
be easily adopted and have immediate
impact

– Can be embedded in edge environments
– Can be exploited in the cloud
– Natural adjunct to Secure Enclaves for

computation

• DataCapsules  bottom-half of a
blockchain?

– Or a GIT-style version history
– Simplest mode: a secure log of information
– Universal unique name  permanent

reference

• Applications writers think in terms of
traditional storage access patterns:

– File Systems, Data Bases, Key-Value stores
– Called Common Access APIs (CAAPIs)
– DataCapsules are always the Ground Truth

File System, Stream,
SQL, Key-value,…

Home Control, Smart Office
Industrial Internet, …

Global
Data Plane

TCP/IP, UDP/IP,
Others (non-IP), …

Ethernet, WI-FI,
Bluetooth, 802.15.4, AVB,…

Application
Common Access

APIs (CAAPI)

Network

Physical

DataCapsules /
Secure Routing

Lec 25.305/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Global Data Plane (GDP) and the
Secure Datagram Routing Protocol

• Flat Address Space Routing
– Route queries to DCs by names,

independent of location (e.g. no IP)
– Example: use Chord to map names to

locations!
– DCs move, network deals with it

• Black Hole Elimination
– Only servers authorized by owner of DC

may advertise DC service
• Routing only through domains you trust!

– Secure Delegated Flat Address Routing

• Secure Multicast Protocol
– Only clients/DC storage servers with

proper (delegation) certificates may join
• Queries (messages) are Fibers

– Self-verifying chunks of DataCapsules
– Writes include appropriate credentials
– Reads include proofs of membership

• Incremental deployment as an overlay
– Prototype tunneling protocol (“GDPinUDP”)
– Federated infrastructure w/routing

certificates

C1

C2

Trust Domain #1 (EDGE)

C5C6

C3

C4

Trust Domain #2 (EDGE)

C7

Service
Provider

Lec 25.315/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Why the Global Data Plane (GDP) ?
• Yes, you could:

– Provide your own infrastructure for everything
– Provide your own storage servers
– Provide your own networking, location resolvers, intermediate rendezvous points

• But: Why?
– Standardization is what made the IP infrastructure so powerful
– Utilize 3rd-party infrastructure owned (and constantly improved) by others
– Sharing is much harder with stovepiped solutions!

• The Global Data Plane provides standardized infrastructure support
– It provides a standardized substrate for secure flat routing and publish-subscribe

multicast
– It provides a provides the ability to reason about infrastructure providers (Trust

Domains)
– It frees DataCapsules from being tied to a particular physical location
–  Analogous to ships, planes, trains, and cranes that support shipping containers

• The GDP routes conversations between endpoints such as DataCapsules,
sensors, actuators, services, clients, etc.

• Information protected in DataCapsules, but freed from physical limitations by
the GDP

– Correctness and Provenance enforced by DataCapsules
– Performance, QoS, and Delegation of Trust handled by the GDP

Lec 25.325/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Reasoning about the infrastructure: Trust Domains

• Should We Change the Trust Model of the Internet?
– Perhaps this is a violation of the End-To-End Principle?

• Trust Domains: Groups of Resources owned by single entity
– Reflect the ownership, trustworthiness, and degree of maintence
– Carry unique economic, political, or incentive structure of the owner
– Pay-for-service, federated utility model

• Trust for:
– Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Service

(SES)
– Conversations routed according to DataCapsule owner’s Trust Preferences

Global (Tier-1) Domain
(Trusted Service Provider)

Edge Domain #2
(e.g. Remote Status/CTRL)

Edge Domain #1
(e.g. Factory)

SES

SES

SES

Location
Services

Location
Services

Global
Location
Services

GDP Peering (Adv, Route)

Mobile Domain

Location
Services

SES

Lec 25.335/7/19 Kubiatowicz CS162 ©UCB Fall 2019

How to make DataCapsule Vision a Reality?

• Active Routing/Switching
Components

– Federated/Utility storage infrastructure
– Edge-local support for multicast
– Data Location Services

• Owned by service provider (trust
domain)

– Secure boot/validated code in
DataCapsule

– Multiple providers may own equipment
in single physical environment

• Multi-Tenant Secure Computation
Services

– Secure Enclaves on Demand with
specified attributes (e.g. GPU, special
accelerator, etc.)

– Standardized packaging (e.g. Docket)
– Trustable computation through

attestation, key exchange, resistance
to physical attacks

• Computation is fungible:
– Executable and state stored in

DataCapsules!

hGuestOS
(-Kernel)

virtual
dev drivers

Ctrl Plane:
Attest,

Instantiate

GuestOS
(-Kernel)

virtual
dev drivers

GDP
Routing,

Switching,
Location

GuestOS
(-Kernel)

virtual
dev drivers

Storage
and

Replica
Service

Global Data Plane SVCs

Multicore x86, memory, network, persistent
memory/spinning storage

control
interface

virtual
x86 CPU

unencrypted
memory

virtual
devices

virtual
disks

GuestOS
(-Kernel)

Virtual
dev drivers

Client Edge
Comp

w/keys

GuestOS
(-Kernel)

Virtual
dev drivers

Client Edge
Comp

w/o keys

control
interface

virtual
x86 CPU

encrypted
memory

unencrypted
memory

virtual
devices

Enclave
Support

Multicore x86+SGX, memory, network,
persistent memory/spinning storage

GuestOS
(-Kernel)

virtual
dev drivers

Ctrl Plane:
Broker,
Attest,

Instantiate
GuestOS
(-Kernel)

Virtual
dev drivers

CAAPI
w/keys

GuestOS
(-Kernel)

Virtual
dev drivers

CAAPI
w/keys

GuestOS
(-Kernel)

virtual
dev drivers

CAAPI
w/keys

GuestOS
(-Kernel)

Virtual
dev drivers

Client Edge
Comp

w/o keys

GuestOS
(-Kernel)

virtual
dev drivers

Client Edge
Comp

w/o keys
GuestOS
(-Kernel)

Virtual
dev drivers

Client Edge
Comp

w/keys

GuestOS
(-Kernel)

virtual
dev drivers

Client Edge
Comp

w/keys

Secure Enclave Services (Docker PKG)

Lec 25.345/7/19 Kubiatowicz CS162 ©UCB Fall 2019

DataCapsule Infrastructure
Initially Build Network As an Overlay!

Large Edge Domain

Cloud Domain

Global Domain

SES

SES

SES

Cloud Service

h

Combined
GDP EndPT

GDP
Switch

GDP
Switch

GDP
Switch

GDP
Switch

Global
GDP
Switch

GDP
Switch

Small Edge Domain

DC Service

DC Service

DC Service

Location
Services

Global
Location
Services

Location
Services

Lec 25.355/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Fog Robotics on the Global Data Plane:
SwarmLab/RiseLab/Robotics

ℝC2
Top-Level
Location

Domain
Locatio

n

Trust Domain 2

Tier 1
Trust Domain

Replica
DataCapsules

Domain
Locatio

n

Trust Domain 1

GDP
Routers

DataCapsules

Edge
Computing

Edge
Computing

Edge
Computing

Lec 25.365/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Training Data

Model
Building

And
Refinement

Training
Data Sets

Model.pb

Edge Network
(Trust Domain)

Edge Training
(Secure Execution)

Model
Refinement

Initial
Image

Model.pb
Updated
Model.pb

Updated
Image

Updated
Model

Cloud Based
Model Development

(w/ Secure Distribution)

Initial
Model

Working
Model

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Logs

Working
Model

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Logs

Training Models for Robots at the Edge

• Proprietary model developed in the cloud
– Secure distribution to the edge for use!

• Edge Computing Domain makes local updates to models
– Also secure, doesn’t leak private information outside Edge Network

Lec 25.375/7/19 Kubiatowicz CS162 ©UCB Fall 2019

BREAK

Lec 25.385/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t quite
know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing:
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in time

proportional to square-root of n.
– Materials simulation: exponential classically, linear-time QM

Lec 25.395/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Current “Arms Race” of Quantum Computing

• Big companies looking at Quantum Computing Seriously
– Google, IBM, Microsoft

• Current Goal: Quantum Supremacy
– Show that Quantum Computers faster than Classical ones
– “If a quantum processor can be operated with low enough error, it would be able

to outperform a classical supercomputer on a well-defined computer science
problem, an achievement known as quantum supremacy.”

Google: Superconducting
Devices up 72-qubits

IBM: Superconducting
Devices up to 50 qubits

Lec 25.405/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” when
defined with respect to an external magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>

Lec 25.415/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Kane Proposal II
(First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit
Control Gates

Lec 25.425/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as: = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like,
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect? Options:
– This is just statistical – given a large number of protons, a

fraction of them (|C0|2) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things until

you try to look at it
• Reality: second choice!

– There are experiments to prove it!

Lec 25.435/7/19 Kubiatowicz CS162 ©UCB Fall 2019

A register can have many values!
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: = (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: = (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure
before ready!
– Solution: Quantum Error Correction Codes!

Lec 25.445/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Spooky action at a distance

• Consider the following simple 2-bit state:
= C00|00>+ C11|11>

– Called an “EPR” pair for “Einstein, Podolsky, Rosen”
• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other (and vice

versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?

Lec 25.455/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Model:
Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally probable.
– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform”

computation being done in unitary transformation

Unitary
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Lec 25.465/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Shor’s Factoring Algorithm
• The Security of RSA Public-key cryptosystems depends on

the difficulty of factoring a number N=pq (product of two
primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy

Lec 25.475/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related


k

/
\k /

\xk
k

/
\k /

\1

 /
\

/
\x

y
r yw

0w 

w1r

 () /
\x

r
0

r r
1 k

0w 
w

1r
Quantum
Fourier

Transform

Lec 25.485/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build  quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer design
off to classical designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s
(millions?) of working logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when they are
mapped to a physical substrate?

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD

Lec 25.495/7/19 Kubiatowicz CS162 ©UCB Fall 2019

• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:  = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model

Lec 25.505/7/19 Kubiatowicz CS162 ©UCB Fall 2019

• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]]

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

QEC
Ancilla

Correct
Errors

Correct

Syndrom
e

Com
putation

Lec 25.515/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Outline
• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 25.525/7/19 Kubiatowicz CS162 ©UCB Fall 2019

MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum computer

implementation technologies
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists in the
microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement

Lec 25.535/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between

electrodes
• Quantum gates performed by lasers

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause
Ions to migrate

• Care must be taken to avoid
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT Lec 25.545/7/19 Kubiatowicz CS162 ©UCB Fall 2019

An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations

Lec 25.555/7/19 Kubiatowicz CS162 ©UCB Fall 2019

H
H
H

q0
q1
q2
q3
q4
q5
q6

Q
ub

its

Time

Ion Trap Physical Layout

• Input: Gate level quantum circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
– Initial locations of ions
– Movement/gate schedule
– Control for schedule

q0

q3

q4

q5
q6

q1

q2

Lec 25.565/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Outline
• Quantum Computering
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 25.575/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling

Lec 25.585/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Important Measurement Metrics
• Traditional CAD Metrics:

– Area
» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea

Lec 25.595/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Normal
Monte Carlo:

n times

• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout heuristics!

» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

» Smaller modules evaluated via vector Monte Carlo
» Teleportation infrastructure evaluated via fidelity of EPR bits

• Finally – Compute ADCR for particular result

How to evaluate a circuit?

Vector
Monte Carlo:
single pass

Lec 25.605/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Quantum CAD flow
QEC Insert

Circuit
Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit

O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC
OptimizationFault

Tolerant

ADCR computation

Lec 25.615/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Example Place and Route Heuristic:
Collapsed Dataflow

• Gate locations placed in dataflow order
– Qubits flow left to right
– Initial dataflow geometry folded and sorted
– Channels routed to reflect dataflow edges

• Too many gate locations, collapse dataflow
– Using scheduler feedback, identify latency critical edges
– Merge critical node pairs
– Reroute channels

• Dataflow mapping allows pipelining of computation!

q0
q1
q2
q3

q0
q1
q2
q3

q0
q1
q2
q3

Lec 25.755/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Outline
• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 25.765/7/19 Kubiatowicz CS162 ©UCB Fall 2019

• Standard idea: correct after every gate, and long
communication, and long idle time

– This is the easiest for people to analyze
• This technique is suboptimal (at least in some domains)

– Not every bit has same noise level!
• Different idea: identify critical Qubits

– Try to identify paths that feed into noisiest output bits
– Place correction along these paths to reduce maximum noise

H

Reducing QEC Overhead

H Correct Correct

Correct

Correct

CorrectCorrect

Correct

HH Correct

Lec 25.775/7/19 Kubiatowicz CS162 ©UCB Fall 2019

4

3

4

1

1

2

1

1

2

3

3

1

2

1

2

1

Simple Error Propagation Model

• EDist model of error propagation:
– Inputs start with EDist = 0
– Each gate propagates max input EDist to outputs
– Gates add 1 unit of EDist, Correction resets EDist to 1

• Maximum EDist corresponds to Critical Path
– Back track critical paths that add to Maximum EDist

• Add correction to keep EDist below critical threshold

Error Distance
(EDist) Labels

Maximum EDist
propagation:

4=max(3,1)+1
H Correct

Correct

Lec 25.785/7/19 Kubiatowicz CS162 ©UCB Fall 2019

QEC Optimization

• Modified version of retiming
algorithm: called
“recorrection:”

– Find minimal placement
of correction operations that
meets specified MAX(EDist) 
EDistMAX

• Probably of success not
always reduced for
EDistMAX > 1

– But, operation count and area
drastically reduced

• Use Actual Layouts and
Fault Analysis

– Optimization pre-layout,
evaluated post-layout

EDistMAX
iteration

QEC
Optimization

EDistMAX

Partitioning
and

Layout

Fault
Analysis

Optimized
Layout

Input
Circuit

1024-bit QRCA and QCLA adders

Lec 25.795/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Recorrection in presence of
different QEC codes

• 500 Gate Random Circuit (r=0.5)
• Not all codes do equally well with Recorrection

– Both [[23,1,7]] and [[7,1,3]] reasonable candidates
– [[25,1,5]] doesn’t seem to do as well

• Cost of communication and Idle errors is clear here!
• However – real optimization situation would vary EDist to

find optimal point

Pr
ob

ab
ili
ty

 o
f

Su
cc

es
s

Move Error Rate per Macroblock
EDistMAX=3

Pr
ob

ab
ili
ty

 o
f

Su
cc

es
s

Idle Error Rate per CNOT Time
EDistMAX=3

Lec 25.805/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Outline
• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 25.815/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude in

some circuit configurations

ADCRoptimal for
1024-bit QCLA

ADCRoptimal for
1024-bit QRCA and QCLA

Lec 25.825/7/19 Kubiatowicz CS162 ©UCB Fall 2019

• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC ancilla

generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed to

optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility

Area Breakdown for Adders

Lec 25.835/7/19 Kubiatowicz CS162 ©UCB Fall 2019

Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time

Lec 25.845/7/19 Kubiatowicz CS162 ©UCB Fall 2019

1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2

Lec 25.855/7/19 Kubiatowicz CS162 ©UCB Fall 2019

In Conclusion
• Cryptography is a mechanism that is helpful for

enforcing a security policy
– Encryption, Hashing, Digital Signatures

• It’s all about the Data!
– Hardening the Data while freeing it to reside anywhere
– Edge Computing Enabled by DataCapsules

• Quantum Computing
– Computing using interesting properties of Physics
– Achieving Quantum Supremacy: Proof that Quantum

Computers are more powerful than Classical Ones
» Not there yet!

• Most interesting Applications of Quantum Computing:
– Materials Simulation
– Optimization problems
– Machine learning?

