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Recall: Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by utilizing 
services provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer Unit or 

MTU: often 200-1500 bytes in size)
– Routing is limited to within a physical link (wire) or perhaps 

through a switch
• Our goal in the following is to show how to construct a secure, 

ordered, message service routed to anywhere:
Physical Reality: Packets Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered

Unreliable Reliable
Machine-to-machine Process-to-process

Only on local area net Routed anywhere
Asynchronous Synchronous

Insecure Secure

Lec 23.34/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: IPv4 Packet Format
• IP Packet Format:

• IP Protocol field: 
– 8 bits, distinguishes protocols such as TCP, UDP, ICMP

• IP Datagram: an unreliable, unordered, packet sent from 
source to destination

– Function of network – deliver datagrams!

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address
32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large 
messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes
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Recall: Internet Transport Protocols
• Datagram service (UDP): IP Protocol 17

– No-frills extension of “best-effort” IP
– Multiplexing/Demultiplexing among processes

• Reliable, in-order delivery (TCP): IP Protocol 6
– Connection set-up & tear-down
– Discarding corrupted packets (segments)
– Retransmission of lost packets (segments)
– Flow control
– Congestion control
– More on these in a moment!

• Other examples: 
– DCCP (33),  Datagram Congestion Control Protocol
– RDP (26), Reliable Data Protocol
– SCTP (132), Stream Control Transmission Protocol

• Services not available
– Delay and/or bandwidth guarantees
– Sessions that survive change-of-IP-address
– Security/denial of service resilience/…

Transport
Network
Datalink
Physical

Session
Present.

Application
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Example: UDP Transport Protocol
• The Unreliable Datagram Protocol (UDP)

– Layered on top of basic IP (IP Protocol 17)
– Datagram: an unreliable, unordered, packet sent from source 

user  dest user (Call it UDP/IP)

– UDP adds minimal header to deliver from process to process 
(i.e. the source and destination Ports)

• Important aspect: low overhead!
– Often used for high-bandwidth video streams
– Many uses of UDP considered “anti-social” – none of the “well-

behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)
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Application Layer (7 - not 5!)
• Service: any service provided to the end user
• Interface: depends on the application
• Protocol: depends on the application

• Examples: Skype, SMTP (email), HTTP (Web), Halo, 
BitTorrent …

• What happened to layers 5 & 6?
– “Session” and “Presentation” layers
– Part of OSI architecture, but not Internet architecture
– Their functionality is provided by application layer

» E.g. RPC is thought of as a “session” layer
» E.g. Encoding is a “Presentation” mechanism.  MIME, XDR

Transport
Network
Datalink
Physical

Session
Present.

Application
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Putting it all together
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Five Layers Summary

• Lower three layers implemented everywhere
• Top two layers implemented only at hosts
• Logically, layers interacts with peer’s corresponding 

layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host BRouter

Network
Datalink
Physical
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Physical Communication

• Communication goes down to physical network
• Then from network peer to peer
• Then up to relevant layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter
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Linux Network Architecture
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Network Details: sk_buff structure

• Socket Buffers: sk_buff structure
– The I/O buffers of sockets are lists of sk_buff

» Pointers to such structures usually called “skb”
– Complex structures with lots of manipulation routines
– Packet is linked list of sk_buff structures
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Network Processing Contexts
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Avoiding Interrupts: NAPI

• NAPI (“New API”): Use polling to receive packets
– Only some drivers actually implement this

• Exit hard interrupt context as quickly as possible
– Do housekeeping and free up sent packets
– Schedule soft interrupt for further actions

• Soft Interrupts: Handles reception and delivery
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Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput – even if 

some packets get lost
» If transmit at lowest voltage such that error correction just starts 

correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two hosts try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver can 

process?
• Reliable Message Delivery on top of Unreliable Packets

– Need to make sure that packets actually make it to receiver
» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by process at 
destination exactly once and in order
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Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ACK”) when packet received 

properly at destination
– Timeout at sender:  if no ACK, retransmit

• Some questions:
– If the sender doesn’t get an ACK, does that mean the receiver 

didn’t get the original message?
» No

– What if ACK gets dropped?  Or if message gets delayed?
» Sender doesn’t get ACK, retransmits, Receiver gets message twice, 

ACK each

BA BA

Timeout
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• Solution: put sequence number in message to identify re-
transmitted packets

– Receiver checks for duplicate number’s; Discard if detected
• Requirements:

– Sender keeps copy of unACK’d messages
» Easy: only need to buffer messages

– Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?

• Alternating-bit protocol:
– Send one message at a time; don’t send

next message until ACK received
– Sender keeps last message; receiver tracks 

sequence number of last message received
• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency  throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

BA

How to Deal with Message Duplication?
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• Windowing protocol (not quite TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» ACK says “received all packets up

to sequence number X”/send more
• ACKs serve dual purpose: 

– Reliability: Confirming packet received
– Ordering: Packets can be reordered

at destination
• What if packet gets garbled/dropped?  

– Sender will timeout waiting for ACK packet
» Resend missing packets  Receiver gets packets out of order!

– Should receiver discard packets that arrive out of order?  
» Simple, but poor performance

– Alternative: Keep copy until sender fills in missing pieces? 
» Reduces # of retransmits, but more complex

• What if ACK gets garbled/dropped?  
– Timeout and resend just the un-acknowledged packets

BA
Better Messaging: Window-based Acknowledgements

N=5 Q
ueue
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Administrivia
• Last Midterm: 5/2

– Can have 3 handwritten sheets of notes – both sides
– Focus on material from lecture 17-24, but all topics fair game!

• Midterm Time is now: 5-7PM
– It is earlier, during class period (+30 minutes)
– Please let us know if you conflict situation changed
– Watch Piazza for room assignments

• Please come to class on 4/30!
– HKN evaluations!

• Don’t forget to do your group evaluations!
– Very important to help us understand your group dynamics
– Important to do this for Project 3 as well!

» Even though it will be after Midterm 3!
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Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different 

machines over Internet (read, write, flush)
• TCP Details

– Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself

– Uses window-based acknowledgement protocol (to minimize 
state at sender and receiver)

» “Window” reflects storage at receiver – sender shouldn’t overrun 
receiver’s buffer space

» Also, window should reflect speed/capacity of network – sender 
shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen” 

Router Router
Stream in: Stream out:

..zyxwvuts gfedcba
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TCP Windows and Sequence Numbers

• Sender has three regions: 
– Sequence regions

» sent and ACK’d
» sent and not ACK’d
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions: 

– Sequence regions
» received and ACK’d (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not ACK’d

Sent
ACK’d

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver
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Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60 

Seq:340 A:380/20 

Seq:380 A:400/0  

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!
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Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long  wastes time if message lost
» Too short  retransmit even though ACK will arrive shortly

– Stability problem: more congestion  ACK is delayed 
unnecessary timeout  more traffic  more congestion

» Closely related to window size at sender: too big means putting 
too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate that the 

slowest link can accommodate
– Sender uses an adaptive algorithm to decide size of N

» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until 

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput) by 1 for 
each ACK received 

– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”
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Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: 
Cannot have all three at same time

– Otherwise known as “Brewer’s Theorem”

Network
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mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System: 
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes 
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file 
in the world has unique name

» Location Transparency: servers 
can change and files can move 
without involving user

Network
Read File

Data
ServerClient
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system 

calls into remote requests 
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view of 
file system to multiple clients

• Problems?  Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client
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Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t 
need to do any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client
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Failures

• What if server crashes? Can client wait until server comes 
back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek? 

Then, when client does “read”, it will fail
– Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)
• Stateless protocol: A protocol in which all information 

required to process a request is passed with request
– Server keeps no state about client, except as hints to help 

improve performance (e.g. a cache)
– Thus, if server crashes and restarted, requests can continue 

where left off (in many cases)
• What if client crashes?

– Might lose modified data in client cache

Crash!
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Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file 
descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s 
disk before results are returned to the client 

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice 

changes! (more on this later)
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NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such as ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each 

operation stands on its own
• Idempotent: Performing requests multiple times has same 

effect as performing it exactly once
– Example: Server crashes between disk I/O and message send, 

client resend read, server does operation again
– Example: Read and write file blocks: just re-read or re-write file 

block – no side effects
– Example: What about “remove”?  NFS does operation twice and 

second time returns an advisory error 
• Failure Model: Transparent to client system

– Is this a good idea?  What if you are in the middle of reading a 
file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are 

talking over network)
Lec 23.304/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds 
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but 
other clients use old version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another 

CPU reads file?
• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same 

as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; 

otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial 

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the 

file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new 

version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone 
“who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Implementation of NFS
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Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be 

used for different types of file systems
– The API is to the VFS interface, rather than any specific type of 

file system
• In linux, “VFS” stands for “Virtual Filesystem Switch”
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VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry 
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.
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Linux VFS

• An operations object is contained within each primary object 
type to set operations of specific filesystems

– “super_operations”: methods that kernel can invoke on a specific 
filesystem, i.e. write_inode() and sync_fs().

– “inode_operations”: methods that kernel can invoke on a specific 
file, such as create() and link()

– “dentry_operations”: methods that kernel can invoke on a specific 
directory entry, such as d_compare() or d_delete()

– “file_operations”: methods that process can invoke on an open file, 
such as read() and write()

• There are a lot of operations!

write() sys_write() filesystem’s
write method

user-space VFS filesystem physical
media
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Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated with “key”
– value = get(key); // get/read data associated with “key”

• Used sometimes as a simpler but more scalable 
“database”
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, 

…)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by 
Facebook)

• Memcached: in-memory key-value store for small chunks of 
arbitrary data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many 

machines
key, value

…
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Challenges

• Fault Tolerance: handle machine failures without losing 
data  and without degradation in performance

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of node 
failures and message losses 

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…
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Important Questions
• put(key, value): 

– where do you store a new (key, value) tuple?
• get(key): 

– where is the value associated with a given “key” stored?

• And, do the above while providing 
– Fault Tolerance
– Scalability
– Consistency
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Directory-Based Architecture (1/4)
• Have a node maintain the mapping between keys and 

the machines (nodes) that store the values
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)
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Directory-Based Architecture (2/4)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and 
the machines (nodes) that store the values
associated with the keys
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Directory-Based Architecture (3/4)
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3
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Directory-Based Architecture (4/4)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node
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Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages: 

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can 

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go through  

master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative
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Fault Tolerance (1/3)
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter

to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)
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Fault Tolerance (2/3)
• Again, we can have 

– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14
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Fault Tolerance (3/3)
• Or we can use recursive query and iterative 

replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

K14 V14
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Scalability
• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value is 

stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different 

masters/directories
» How do you partition? 
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Scalability: Load Balancing
• Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage 
available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes
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Consistency
• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every 

node? 
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need 

to make sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need 

to make sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need 

to make sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order

• What does get(K14) return?
• Undefined!

Lec 23.594/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes 

(gets/puts) to replicas appear as if there was a 
single underlying replica (single system image)

– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all 
updates will propagate through the system

– One of the weakest form of consistency; used by many 
systems in practice

– Must eventually converge on single value/key 
(coherence)

• And many others: causal consistency, sequential 
consistency, strong consistency, …
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Quorum Consensus
• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W 

replicas
– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1? 
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Quorum Consensus Example
• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)
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Quorum Consensus Example
• Now, issuing get() to any two nodes out of three will 

return the answer

N1 N2 N3 N4

K14 V14K14 V14
get(K14)

nill
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Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number 
of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in the 
system!

• Solution: Consistent Hashing
– Provides mechanism to divide [key,value] pairs amongst 

a (potentially large!) set of machines (nodes) on network
• Associate to each node a unique id in an uni-dimensional 

space 0..2m-1  Wraps around: Call this “the ring!”
– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the 

smallest ID larger than Key
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Key to Node Mapping Example
• Paritioning example with

m = 8  ID space: 0..63
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the 
mapping [14, V14] maps to 
node with ID=15
– Node with smallest ID larger 

than 14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure 

hash such as SHA-256 to 
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Summary (1/2)
• Distributed File System: 

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface for 

different types of file systems
• Cache Consistency: Keeping client caches consistent with one 

another
– If multiple clients, some reading and some writing, how do stale 

cached copies get updated?
– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of 

changes
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Summary (2/2)
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance


