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Recall: Network Layering

« Layering: building complex services from simpler ones

— Each layer provides services needed by higher layers by utilizing
services provided by lower layers

» The physical/link layer is pretty limited
— Packets are of limited size (called the “Maximum Transfer Unit or
MTU: often 200-1500 bytes in size)
— Routing is limited to within a physical link (wire) or perhaps
through a switch
* Our goal in the following is to show how to construct a secure,
ordered, message service routed to anywhere:

Physical Reality: Packets Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered
Unreliable Reliable

Machine-to-machine
Only on local area net
Asynchronous

Process-to-process
Routed anywhere
Synchronous
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Recall: IPv4 Packet Format

* |P Packet Format:

IP Header Size of datagram Flags &
Length (header+data) Fragmentation
] 15 16 I 31 tosplitlarge
IPVer4 —JF—TIHLC [ToS essages

Total length(16-bits)
. 16-bit identification flags| 13-bit frag off

I:\Tee (:::) s)\ pTTL Lerotocol 16-bit header checksum IZ% 'B?at‘g: r

PS) 325t setrce IP address

Type of 3201t destination IP address
transport~3 options (if any) 9
protocol 2 P
Data

* |P Protocol field:
— 8 bits, distinguishes protocols such as TCP, UDP, ICMP
« |P Datagram: an unreliable, unordered, packet sent from
source to destination
— Function of network — deliver datagrams!
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Application
Recall: Internet Transport Protocols
« Datagram service (UDP): IP Protocol 17
— No-frills extension of “best-effort” IP Network
. . . . | Datalink
— Multiplexing/Demultiplexing among processes Physical

Reliable, in-order delivery (TCP): IP Protocol 6
— Connection set-up & tear-down
— Discarding corrupted packets (segments)
— Retransmission of lost packets (segments)
— Flow control
— Congestion control
— More on these in a moment!
Other examples:
— DCCP (33), Datagram Congestion Control Protocol
— RDP (26), Reliable Data Protocol
— SCTP (132), Stream Control Transmission Protocol
Services not available
— Delay and/or bandwidth guarantees
— Sessions that survive change-of-IP-address
— Security/denial of service resilience/...
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Example: UDP Transport Protocol

* The Unreliable Datagram Protocol (UDP)
— Layered on top of basic IP (IP Protocol 17)

— Datagram: an unreliable, unordered, packet sent from source
user — dest user (Call it UDP/IP)

IP Header
(20 bytes)

16-bit destination port
16-bit UDP checksum

16-bit source port
16-bit UDP Iength

UDP Data

— UDP adds minimal header to deliver from process to process
(i.e. the source and destination Ports)
* Important aspect: low overhead!
— Often used for high-bandwidth video streams
— Many uses of UDP considered “anti-social” — none of the “well-
behaved” aspects of (say) TCP/IP
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Application

Application Layer (7 - not 5!)

 Service: any service provided to the end user —"—Tﬁae't‘jo‘r’lf

Interface: depends on the application | Datalink
DL |_Physical |
Protocol: depends on the application

Examples: Skype, SMTP (email), HTTP (Web), Halo,
BitTorrent ...

What happened to layers 5 & 67
— “Session” and “Presentation” layers
— Part of OSI architecture, but not Internet architecture
— Their functionality is provided by application layer
» E.g. RPC is thought of as a “session” layer
» E.g. Encoding is a “Presentation” mechanism. MIME, XDR
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Putting it all together

Application Application
Layer Data Data Layer
Transport Trans. Trans. Transport
Layer e o Layer
Network Net. | Trans. | Net. | Trans. | Network
Layer Hdr. Hdr. Hdr. Hdr. Layer
Datalink Frame | Net. | Trans. Data Frame | Net. | Trans. Data Datalink
Layer Hdr. Hdr. Hdr. Hdr. Hdr. Hdr. Layer
Physical PN Physical
Layer 101010100110101110 [¢=——>» 101010100110101110 Layer
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Five Layers Summary

» Lower three layers implemented everywhere
» Top two layers implemented only at hosts
« Logically, layers interacts with peer’ s corresponding

layer
Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
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Physical Communication

+ Communication goes down to physical network
» Then from network peer to peer
» Then up to relevant layer

Applicaticln Aﬁplication
Transpor 'Iransport
Network Network, Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
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Linux Network Architecture

User Application and Configuration Code

aseds jausay | ssedsassn

cm =m

send() socket

recv() socket

Socket Library

Linux TCP/IP Protocol Stack
netif_rx()
insert
ether_setup()| netif_wake_queue() sh_buff
| [ T
Format Header Dutbound Paclket Inbound Packet

A r

[m_int0) J opero |

Network Driver

|

Write Packet Read Packet
!

| |
rovnisn0
'y
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Network Interface Hardware
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Network Details: sk _buff structure

struct sk_buff_head

next
prev
len=4
lock
v T 1 v
next * next = next > next
prev [ prev ﬂ I_ pev |« prev
— st list list list  |—
sk sk sk sk
struct sk_buff struct sk_buff struct sk_buff struct sk_buff

» Socket Buffers: sk_buff structure
— The 1/O buffers of sockets are lists of sk buff
» Pointers to such structures usually called “skp”
— Complex structures with lots of manipulation routines
— Packet is linked list of sk buff structures
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Network Processing Contexts

Timer hardware
interrupt (e.g. HPET)

Timer driver

Timer softirq

Application

Raise timer softirg

Softirq context
Interrupt context

4/25/19

Retransmit timer

(3) -
¥ TCcp A
@ [
Delayed ACK timer IP/Ethernet
Keepalive timer, ...
Transmit Queue Dev '?)";ﬁl
A
Raise tx ) Raise rx
softirg (V) softirq
v
w NIC Driver
(5)

NIC interrupt
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User process context
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Avoiding Interrupts: NAPI

) Kernel Drniver s Driver
User t 0 Softirg i Upper
irq (interrupt)  interrupt napi pol
program P handler P! P layers
handler handler handler
NIC
interrupt | do_IRQO
Free sent packets
napi_schedule()
-
do_softirq()
net_m_action()
netif_receive_skb(
S
| First received packet
| Second received packet
¢ " J
txecuytion
resumes ¢

* NAPI (“New API”): Use polling to receive packets
— Only some drivers actually implement this

« Exit hard interrupt context as quickly as possible
— Do housekeeping and free up sent packets
— Schedule soft interrupt for further actions

» Soft Interrupts: Handles rece%tion and delivery
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Reliable Message Delivery: the Problem

« All physical networks can garble and/or drop packets
— Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput — even if
some packets get lost

» If transmit at lowest voltage such that error correction just starts
correcting errors, get best power/bit

— Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two hosts try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver can
process?
* Reliable Message Delivery on top of Unreliable Packets
— Need to make sure that packets actually make it to receiver
» Every packet received at least once
» Every packet received at most once

— Can combine with ordering: every packet received by process at
destination exactly once and in order
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Using Acknowledgements
ACTIR A B

Packet b ket
> Timeout { e
RCK

* How to ensure transmission of packets?
— Detect garbling at receiver via checksum, discard if bad

— Receiver acknowledges (by sending “ACK”) when packet received
properly at destination

— Timeout at sender: if no ACK, retransmit
+ Some questions:
— If the sender doesn’t get an ACK, does that mean the receiver
didn’t get the original message?
» No
— What if ACK gets dropped? Or if message gets delayed?

» Sender doesn’t get ACK, retransmits, Receiver gets message twice,
ACK each
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How to Deal with Message Duplication?

» Solution: put sequence number in message to identify re-
transmitted packets
— Receiver checks for duplicate number’s; Discard if detected
* Requirements:
— Sender keeps copy of unACK’d messages
» Easy: only need to buffer messages
— Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?
+ Alternating-bit protocol:
— Send one message at a time; don’t send A I?t#l B
next message until ACK received 0

— Sender keeps last message; receiver tracks
sequence number of last message received

* Pros: simple, small overhead
» Con: Poor performance

— Wire can hold multiple messages; want to
fill up at (wire latency x throughput)

» Con: doesn’t work if network can delay
or duplicate messages arbitrarily

4/25/19 Kubiatowicz CS162 ©UCB Fall 2019

%

Lo

%
[NOIS

Lec 23.16




Better Messaging: Window-based Acknowledgements

Windowing protocol (not quite TCP): AEENB
— Send up to N packets without ack ki
N=5 { 2

» Allows pipelining of packets
» Window size (N) < queue at destination —
— Each packet has sequence number
» Receiver acknowledges each packet g
» ACK says “received all packets up D
to sequence number X"/send more <
ACKs serve dual purpose: o
— Reliability: Confirming packet received
— Ordering: Packets can be reordered
at destination
» What if packet gets garbled/dropped?
— Sender will timeout waiting for ACK packet
» Resend missing packets = Receiver gets packets out of order!
— Should receiver discard packets that arrive out of order?
» Simple, but poor performance
— Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
What if ACK gets garbled/dropped?
— Timeout and resend just the un-acknowledged packets
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* Please come to class on 4/30!

4/25/19

Administrivia

Last Midterm: 5/2

— Can have 3 handwritten sheets of notes — both sides
— Focus on material from lecture 17-24, but all topics fair game!

Midterm Time is now: 5-7PM

— Itis earlier, during class period (+30 minutes)
— Please let us know if you conflict situation changed
— Watch Piazza for room assignments

— HKN evaluations!
» Don’t forget to do your group evaluations!
— Very important to help us understand your group dynamics

— Important to do this for Project 3 as well!
» Even though it will be after Midterm 3!
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Transmission Control Protocol (TCP)

Stream in: /\ /\ Stream out:

[Zyxwvuts | (Router) (Router) | -T.T m?
> A4 A4

» Transmission Control Protocol (TCP)
— TCP (IP Protocol 6) layered on top of IP
— Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
» TCP Details
— Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
— Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» “Window” reflects storage at receiver — sender shouldn’t overrun
receiver’'s buffer space
» Also, window should reflect speed/capacity of network — sender
shouldn’t overload network
— Automatically retransmits lost packets
— Adjusts rate of transmission to avoid congestion
» A “good citizen”
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» Sender has three regions:

* Receiver has three regions:

4/25/19

TCP Windows and Sequence Numbers

——Sequence Numbers ——
Sent Sent Notyet Sender
ACK'd not ACK'd sent g
Received Received Notyet .
Givento app | Buiiered received Receiver

— Sequence regions
» sent and ACK’d
» sent and not ACK’'d

» not yet sent

—Window (colored region) adjusted by sender

— Sequence regions
» received and ACK’d (given to application)
» received and buffered

» not yet received (or discarded because out of order)
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Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
pa| 82 | |ba|lbao|Be|bae pe
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Congestion Avoidance

» Congestion
— How long should timeout be for re-sending messages?
» Too long — wastes time if message lost
» Too short — retransmit even though ACK will arrive shortly
— Stability problem: more congestion = ACK is delayed =
unnecessary timeout = more traffic = more congestion

» Closely related to window size at sender: too big means putting
too much data into network

* How does the sender’s window size get chosen?
— Must be less than receiver’s advertised buffer size
— Try to match the rate of sending packets with the rate that the
slowest link can accommodate
— Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
» TCP solution: “slow start” (start sending slowly)
— If no timeout, slowly increase window size (throughput) by 1 for
each ACK received
— Timeout = congestion, so cut window size in half
— “Additive Increase, Multiplicative Decrease”
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Network-Attached Storage and the CAP Theorem

+ Consistency:

— Changes appear to everyone in the same serial order
Availability:

— Can get a result at any time
Partition-Tolerance

— System continues to work even when network becomes partitioned

» Consistency, Availability, Partition-Tolerance (CAP) Theorem:
Cannot have all three at same time

— Otherwise known as “Brewer’s Theorem”
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~ Distributed File System
= Read File

Client
+ Distributed File System:
— Transparent access to files stored on a remote disk

Server

* Naming choices (always an issue):

mount

kubi:/ '!cme
(Q users

— Hostname:localname: Name files explicitly
» No location or migration transparency
— Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server

— A single, global name space: every file
in the world has unique name
» Location Transparency: servers
can change and files can move
without involving user
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Simple Distributed File System

Client
* Remote Disk: Reads and writes forwarded to server
— Use Remote Procedure Calls (RPC) to translate file system
calls into remote requests
— No local caching/can be caching at server-side
« Advantage: Server provides completely consistent view of
file system to multiple clients
* Problems? Performance!
— Going over network is slower than going to local memory
— Lots of network traffic/not well pipelined

— Server can be a %Etl nec
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Use of caching to reduce network load

o
read(f1) -»V1 cache / é i[BEQJ
read(f1)—»V1 . <
read(f1)—>V1

Return (Data)
read(f1)—»>V1 Client

cache

write(f1) ->OK | [y
read(f1)—V2 PIiE

* |dea: Use caching to reduce network load
— In practice: use buffer cache at source and destination
» Advantage: if open/read/write/close can be done locally, don’t
need to do any network traffic...fast!
* Problems:
— Failure:
» Client caches have data not committed at server

— Cache consistency!
» Client caches not consistent with server/each other
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Client

Failures Crash! %

« What if server crashes? Can client wait until server comes
back up and continue as before?
— Any data in server memory but not on disk can be lost
— Shared state across RPC: What if server crashes after seek?
Then, when client does “read”, it will fail
— Message retries: suppose server crashes after it does UNIX “rm
foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-
phase commit protocol, but NFS takes a more ad hoc approach)
+ Stateless protocol: A protocol in which all information
required to process a request is passed with request
— Server keeps no state about client, except as hints to help
improve performance (e.g. a cache)
— Thus, if server crashes and restarted, requests can continue
where left off (in many cases)
« What if client crashes?
— Might lose modified data in client cache

4/25/19 Kubiatowicz CS162 ©UCB Fall 2019 Lec 23.27

Network File System (NFS)

* Three Layers for NFS system
— UNIX file-system interface: open, read, write, close calls + file
descriptors
— VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
— NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
— Reading/searching a directory
— manipulating links and directories
— accessing file attributes/reading and writing files
« Write-through caching: Modified data committed to server’'s
disk before results are returned to the client
— lose some of the advantages of caching
— time to perform write() can be long

— Need some mechanism for readers to eventually notice
changes! (more on this later)
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NFS Continued

* NFS servers are stateless; each request provides all
arguments require for execution
— E.g. reads include information for entire operation, such as
ReadAt (inumber,position), not Read (openfile)
— No need to perform network open() or close() on file — each
operation stands on its own
 ldempotent: Performing requests multiple times has same
effect as performing it exactly once
— Example: Server crashes between disk /0 and message send,
client resend read, server does operation again
— Example: Read and write file blocks: just re-read or re-write file
block — no side effects
— Example: What about “remove”™? NFS does operation twice and
second time returns an advisory error
» Failure Model: Transparent to client system
— Is this a good idea? What if you are in the middle of reading a
file and server crashes?
— Options (NFS Provides both):
» Hang until server comes back up (next week?)

» Return an error. (Of course, most applications don’t know they are
talking over network)

NFS Cache consistency

* NFS protocol: weak consistency
— Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

cache /F{;ll/:k:\

cache

— What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arblt}J

Server|cache

Client
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Sequential Ordering Constraints NFS Pros and Cons
» What sort of cache coherence might we expect?
—i.e. what if one CPU changes file, and before it's done, another * NFS Pros:
c CPUl feasdts Ille?'th @ onts = A" — Simple, Highly portable
» Example: Start with file contents =
P . * NFS Cons:
Client 1: [Readigets A |[Write B ] (LG8 s o — Sometimes inconsistent!
Client 2: [Foonl el e ) Dh o — Doesn'’t scale to large # clients
Client 3: [Read: parts of B or 4 ‘ » Must keep checking to see if caches out of date
Time - » Server becomes bottleneck due to polling traffic
* What would we actually want?
— Assume we want distributed system to behave exactly the same
as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy
— For NFS:
» If read starts more than 30 seconds after write, get new copy;
otherwise, could get partial update
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Andrew File System

Andrew File System (AFS, late 80’s) —» DCE DFS (commercial
product)
Callbacks: Server records who has copy of file

— On changes, server immediately tells all with old copy

— No polling bandwidth (continuous checking) needed
Write through on close

— Changes not propagated to server until close()

— Session semantics: updates visible to other clients only after the
file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

In AFS, everyone who has file open sees old version
— Don’t get newer versions until reopen file
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Andrew File System (con'’t)

Data cached on local disk of client as well as memory
— On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
— On write followed by close:

» Send copy to server; tells all clients with copies to fetch new
version from server on next open (using callbacks)

What if server crashes? Lose all callback state!

— Reconstruct callback information from client: go ask everyone
“who has which files cached?”

AFS Pro: Relative to NFS, less server load:
— Disk as cache = more files can be cached locally
— Callbacks = server not involved if file is read-only

For both AFS and NFS: central server is bottleneck!
— Performance: all writes—server, cache misses—server
— Availability: Server is single point of failure
— Cost: server machine’s high cost relative to workstation

4/25/19 Kubiatowicz CS162 ©UCB Fall 2019 Lec 23.34

Implementation of NFS

client server

system-calls interface

VFS interface

—-{ VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR
‘ network ‘
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Enabling Factor: Virtual Filesystem (VFS)
<>

inf = open("/floppy/TEST", O_RDONLY, 0);
outf = open("/tmp/test",
0_WRONLY |0_CREAT|0_TRUNC, 0800);

do {

i = read(inf, buf, 4006);

write(outf, buf, i);
} while (i);
close(outf);

f [ close(inf);
Exi2 MS-DGi

Stmp/test Sfloppy/TEST

VES

» VFS: Virtual abstraction similar to local file system
— Provides virtual superblocks, inodes, files, etc
— Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the API) to be
used for different types’of file systems

— The APl is to the VFS interface, rather than any specific type of
file system

* In linux, “VFS” stands for “Virtual Filesystem Switch”
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VFS Common File Model in Linux

< H
diskfil ) B
Superblock inode —
- o object object fd
; — +» f_dentry
dentrycache e - {_inode
I Process | Iv—b( File object ) SO e 27
—» 1_sh
10 obi T dentry dentry
I Process 2 i—b( File object )- : abject object
I
| Process 3 i—b( File object ) b SO

,,,,,,,,,,,

* Four primary object types for VFS:

— superblock object: represents a specific mounted filesystem

— inode object: represents a specific file

— dentry object: represents a directory entry

— file object: represents open file associated with process
» There is no specific directory object (VFS treats directories as files)
* May need to fit the model by faking it

— Example: make it look like directories are files

— Example: make it look like have inodes, superblocks, etc.
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Linux VFS
. . filesystem’s
write() sys_write() write method
user-space VFS filesystem p:‘?‘;;:aal

* An operations object is contained within each primary object
type to set operations of specific filesystems

— “super_operations”: methods that kernel can invoke on a specific
filesystem, i.e. write inode () and sync fs ().

— “inode_operations”: methods that kernel can invoke on a specific
file, such as create () and 1ink ()

— “dentry_operations”: methods that kernel can invoke on a specific
directory entry, such as d_compare () ord delete ()

— “file_operations”: methods that process can invoke on an open file,
such as read () and write ()

* There are a lot of operations!
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Key Value Storage

+ Handle huge volumes of data, e.g., PBs
— Store (key, value) tuples

» Simple interface
— put(key, value); // insert/write “value” associated with “key”

—value = get(key); // get/read data associated with “key”

» Used sometimes as a simpler but more scalable
“‘database”
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Key Values: Examples

* Amazon: amazon

— Key: customerlD
— Value: customer p

» Facebook, Twitter: ‘-_il
— Key: UserlD

— Value: user profile (e.g., posting history, photos, friends,

56

history, credit card, ..)

* iCloud/iTunes:
— Key: Movie/song hame
— Value: Movie, Song
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Key-value storage systems in real life

Amazon

— DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

— Simple Storage System (S3)

BigTable/HBase/Hypertable: distributed, scalable data storage

Cassandra: “distributed data management system” (developed by
Facebook)

Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

eDonkey/eMule: peer-to-peer sharing system
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Key Value Store

* Also called Distributed Hash Tables (DHT)

» Main idea: partition set of key-values across many
machines

key, value
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Challenges

L B S

Fault Tolerance: handle machine failures without losing
data and without degradation in performance

Scalability:
— Need to scale to thousands of machines
— Need to allow easy addition of new machines

» Consistency: maintain data consistency in face of node
failures and message losses
» Heterogeneity (if deployed as peer-to-peer systems):
— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s
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Important Questions

* put(key, value):
— where do you store a new (key, value) tuple?

+ get(key):
— where is the value associated with a given “key” stored?

* And, do the above while providing
— Fault Tolerance
— Scalability
— Consistency
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Directory-Based Architecture (1/4)

* Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

put(K14, V14) =---=-oeeeee . K5 | N2
E 14| N3
o
& [K105[N50
w o
s
s /l
Q ¥
K5 V5 K14 V14 KT05[V105
N1 N2 N3 N50

Kubiatowicz CS162 ©UCB Fall 2019 Lec 23.45

4/25/19

Directory-Based Architecture (2/4)

+ Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

get(K14) ~--------oe > K5 | N2
VAL o 14 [ N3
« K105 N50

K5 | V5 K14| V14 KT05[V105,
N1 N2 N3 N50
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Directory-Based Architecture (3/4)

* Having the master relay the requests - recursive query
* Another method: iterative query (this slide)
— Return node to requester and let requester contact node

Master/Directory
put(K14, V14) ---==--moooeee > K5 [ N2
N3 - oo E 4 [ N3
N K105[N50
Py,
\{(/i74
79
K5 V5 K14 V14 K105[V105
N, N, N, Nso
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Directory-Based Architecture (4/4)

» Having the master relay the requests - recursive query
* Another method: iterative query (this slide)
— Return node to requester and let requester contact node

Master/Directory
get(K14) ~=------ceee >
€ K5 | N2
R E 4| N3
V4 K105N50
v\\ Sl ge,m'
=%
K5 V5 K14 | V14 KT105|V105]
N, Ny N3 Nso
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Fault Tolerance (1/3)

Discussion: Iterative vs. Recursive Query
Master/Directory Master/Directo
get(K14)==-=-----~ >
get(K14y == ===-=---- > N3*-m-mmmoe e
VA4 €= mmmm e e K12 N3 RT3 N3
N E Vo E
R . ;\P,’iyl/ \\:\\f{')
ecursive &% lterative -0
RTZ V1% KTV
N2 N3 N50 N1 N2 N3 N50

N1

* Recursive Query:

— Advantages:
» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

* Replicate value on several nodes
» Usually, place replicas on different racks in a datacenter

to guard against rack failures
Master/Directory

pUt(K14, VA4) ==--moemee . T
N1, N3 <-mmmmmmo E 14 N1TN3
by K105[N50
“‘{(/fﬂz
put(K14, v14)*~:‘k74)
I XU 4
K14 V14 K5 V5 K14 V14 K105[V105

N3 N50

serialize puts()/gets()
— Disadvantages: scalability bottleneck, as all “Values” go through
master/directory
* lterative Query
— Advantages: more scalable N N
— Disadvantages: slower, harder to enforce data consistency k z
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Fault Tolerance (2/3) Fault Tolerance (3/3)
* Again, we can have » Or we can use recursive query and iterative
— Recursive replication (previous slide) replication...
— lterative replication (this slide)
Master/Directory Master/Directory
PUt(K14, V14) ---==cmmemmmee > T PUt(K14, VA4) ~---mmmmeeo . =15
N1, N3 *-mmmmmmee 4 N1N3 4 N1N3
¥
NS ~bup K105[N50 - K;\OS N50
il Ry, utkK‘A’\M,)— S e
& 9 astetteny S
NK -
Q¥ e P -
K14 V14 K5 [ V5 K14 VT4 KT05[V105 K14 V14 K5 [ V5 K14 V14 KT05[V105
N1 N2 NS N50 N1 N2 NS N50
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Scalability

« Storage: use more nodes

* Number of requests:

— Can serve requests from all nodes on which a value is
stored in parallel

— Master can replicate a popular value on more nodes

* Master/directory scalability:
— Replicate it

— Partition it, so different keys are served by different
masters/directories

» How do you partition?
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Scalability: Load Balancing

» Directory keeps track of the storage availability at each node

— Preferentially insert new values on nodes with more storage
available

* What happens when a new node is added?

— Cannot insert only new values on new node. Why?

— Move values from the heavy loaded nodes to the new node
* What happens when a node fails?

— Need to replicate values from fail node to other nodes
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Consistency

* Need to make sure that a value is replicated correctly

* How do you know a value has been replicated on every
node?

— Wait for acknowledgements from every node
» What happens if a node fails during replication?
— Pick another node and try again
What happens if a node is slow?
— Slow down the entire put()? Pick another node?
* In general, with multiple replicas
— Slow puts and fast gets
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Consistency (cont'd)

« If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order

. put(K14, V14) and put(K14, V14”)

Master/Directory reach N1 & N3 in reverse order
put(K14, V14’) ~._
. K5 [ N2
put(K14, V14”) E K14 NT,N3
K105 N5Q
- Ve
s‘\ //’ \\‘ =
L 7
A% P
9" \ é\
& v __‘P}
K14 V14 K5 [ V5 K14 V14 KT05[V105,
N N N
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Consistency (cont’'d)

« If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order

put(K14, V14’) and put(K14, V14”)
Master/Directory

PUL(K14, V14') ~._

reach N1 & N3 in reverse order
N K5 [ NZ
put(K14, V14”) -, KT4NT.N3
K105[N50
A
49 Lo =
q\“/q\@ A
p\bn ,\bu,/ ‘\\ P\\\ >
\)\.\1\ \)\g(\ Vg &
- \\ )\\ )P
« & \‘5* 3
K14 _|V14 K5 V5 K14 V14 KT05|V105

Ny

N N N
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Consistency (cont'd)

+ If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order

put(K14, V14’) and put(K14, V14”)
Master/Directory

PUL(K14, V14') ~._

reach N1 & N3 in reverse order
- K5 NZ *  What does get(K14) return?
put(K14, V14”) - K14 NT.N3 +  Undefined!
KT05[N5Q
Ve S
4% Py —
P A
B0 B VL P
\)\.\1\ \)\g(\ Vg &
2 VS >
. YRV R
&~ 3 - ;
R14_[V1& K5 [ V5 K14 V14 KT05[V105

N,

N N N
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Large Variety of Consistency Models

» Atomic consistency (linearizability): reads/writes
(gets/puts) to replicas appear as if there was a
single underlying replica (single system image)
—Think “one updated at a time”

— Transactions

» Eventual consistency: given enough time all
updates will propagate through the system

— One of the weakest form of consistency; used by many
systems in practice

— Must eventually converge on single value/key
(coherence)

* And many others: causal consistency, sequential
consistency, strong consistency,
4/25/19
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Quorum Consensus

» Improve put() and get() operation performance

Define a replica set of size N

— put() waits for acknowledgements from at least W
replicas

— get() waits for responses from at least R replicas
-W+R >N

* Why does it work?

—There is at least one node that contains the update

* Why might you use W+R > N+1?
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Quorum Consensus Example

* N=3, W=2, R=2
* Replica set for K14: {N1, N2, N4}
* Assume put() on N3 fails

Quorum Consensus Example

* Now, issuing get() to any two nodes out of three will
return the answer

S LA o ot
Al N e, | |
0% > % - a !
D\A'}‘L <! \%\2 {:\b‘\ lﬁ :
N e 3 VR N\ ¥ =12
N4 g TG S 2
N a N L =
v v | i !
x X < » v
K14 V14 K14 V14 K14 V14 K14 V14
N, N, N, N, N, N, N, N,
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Scaling Up Directory Key to Node Mapping Example
* Challenge:

— Directory contains a number of entries equal to number
of (key, value) tuples in the system

— Can be tens or hundreds of billions of entries in the
system!

+ Solution: Consistent Hashing

— Provides mechanism to divide [key,value] pairs amongst
a (potentially large!) set of machines (nodes) on network

» Associate to each node a unique id in an uni-dimensional
space 0..2M-1 = Wraps around: Call this “the ring!”

— Partition this space across n machines
—Assume keys are in same uni-dimensional space

—Each [Key, Value] is stored at the node with the
smallest ID larger than Key
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« Paritioning example with
m =8 - ID space: 0..63
— Node 8 maps keys [5,8]
— Node 15 maps keys [9,15]
— Node 20 maps keys [16, 20]

- i\.l-ode 4 maps keys [59, 4]

» For this example, the /
mapping [14, V14] maps to !
node with ID=15 :
— Node with smallest ID larger

than 14 (the key)

« In practice, m=256 or more! |}

— Uses cryptographically secure
hash such as SHA-256 to
generate the node IDs

“The Ring” 7l

\\\\\ 35 22 g ,/,/
&
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Summary (1/2)
* Distributed File System:
— Transparent access to files stored on a remote disk
— Caching for performance
« VFS: Virtual File System layer

— Provides mechanism which gives same system call interface for
different types of file systems

« Cache Consistency: Keeping client caches consistent with one
another

— If multiple clients, some reading and some writing, how do stale
cached copies get updated?

— NFS: check periodically for changes

— AFS: clients register callbacks to be notified by server of
changes
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Summary (2/2)

» Key-Value Store:

— Two operations
» put(key, value)
» value = get(key)

— Challenges
» Fault Tolerance = replication
» Scalability > serve get()’s in parallel; replicate/cache hot tuples
» Consistency - quorum consensus to improve put() performance
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