
CS162
Operating Systems and
Systems Programming

Lecture 23

TCP/IP (finished), Distributed Storage,
Key Value Stores

April 25th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 23.24/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by utilizing
services provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer Unit or

MTU: often 200-1500 bytes in size)
– Routing is limited to within a physical link (wire) or perhaps

through a switch
• Our goal in the following is to show how to construct a secure,

ordered, message service routed to anywhere:
Physical Reality: Packets Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered

Unreliable Reliable
Machine-to-machine Process-to-process

Only on local area net Routed anywhere
Asynchronous Synchronous

Insecure Secure

Lec 23.34/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: IPv4 Packet Format
• IP Packet Format:

• IP Protocol field:
– 8 bits, distinguishes protocols such as TCP, UDP, ICMP

• IP Datagram: an unreliable, unordered, packet sent from
source to destination

– Function of network – deliver datagrams!

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address
32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large
messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 23.44/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Recall: Internet Transport Protocols
• Datagram service (UDP): IP Protocol 17

– No-frills extension of “best-effort” IP
– Multiplexing/Demultiplexing among processes

• Reliable, in-order delivery (TCP): IP Protocol 6
– Connection set-up & tear-down
– Discarding corrupted packets (segments)
– Retransmission of lost packets (segments)
– Flow control
– Congestion control
– More on these in a moment!

• Other examples:
– DCCP (33), Datagram Congestion Control Protocol
– RDP (26), Reliable Data Protocol
– SCTP (132), Stream Control Transmission Protocol

• Services not available
– Delay and/or bandwidth guarantees
– Sessions that survive change-of-IP-address
– Security/denial of service resilience/…

Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 23.54/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Example: UDP Transport Protocol
• The Unreliable Datagram Protocol (UDP)

– Layered on top of basic IP (IP Protocol 17)
– Datagram: an unreliable, unordered, packet sent from source

user  dest user (Call it UDP/IP)

– UDP adds minimal header to deliver from process to process
(i.e. the source and destination Ports)

• Important aspect: low overhead!
– Often used for high-bandwidth video streams
– Many uses of UDP considered “anti-social” – none of the “well-

behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 23.64/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Application Layer (7 - not 5!)
• Service: any service provided to the end user
• Interface: depends on the application
• Protocol: depends on the application

• Examples: Skype, SMTP (email), HTTP (Web), Halo,
BitTorrent …

• What happened to layers 5 & 6?
– “Session” and “Presentation” layers
– Part of OSI architecture, but not Internet architecture
– Their functionality is provided by application layer

» E.g. RPC is thought of as a “session” layer
» E.g. Encoding is a “Presentation” mechanism. MIME, XDR

Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 23.74/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Putting it all together

101010100110101110

Transport
Layer

Trans.
Hdr.

Transport
Layer

Trans.
Hdr.

Network
Layer

Trans.
Hdr.

Net.
Hdr.

Network
Layer

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer

Physical
Layer 101010100110101110

Data

Data

Data

Data

Data

Data

Data
Application

Layer
Application

Layer Data

Lec 23.84/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Five Layers Summary

• Lower three layers implemented everywhere
• Top two layers implemented only at hosts
• Logically, layers interacts with peer’s corresponding

layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host BRouter

Network
Datalink
Physical

Lec 23.94/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Physical Communication

• Communication goes down to physical network
• Then from network peer to peer
• Then up to relevant layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Lec 23.104/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Linux Network Architecture

Lec 23.114/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Network Details: sk_buff structure

• Socket Buffers: sk_buff structure
– The I/O buffers of sockets are lists of sk_buff

» Pointers to such structures usually called “skb”
– Complex structures with lots of manipulation routines
– Packet is linked list of sk_buff structures

Lec 23.124/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Network Processing Contexts

Lec 23.134/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Avoiding Interrupts: NAPI

• NAPI (“New API”): Use polling to receive packets
– Only some drivers actually implement this

• Exit hard interrupt context as quickly as possible
– Do housekeeping and free up sent packets
– Schedule soft interrupt for further actions

• Soft Interrupts: Handles reception and delivery
Lec 23.144/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput – even if

some packets get lost
» If transmit at lowest voltage such that error correction just starts

correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two hosts try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver can

process?
• Reliable Message Delivery on top of Unreliable Packets

– Need to make sure that packets actually make it to receiver
» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by process at
destination exactly once and in order

Lec 23.154/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ACK”) when packet received

properly at destination
– Timeout at sender: if no ACK, retransmit

• Some questions:
– If the sender doesn’t get an ACK, does that mean the receiver

didn’t get the original message?
» No

– What if ACK gets dropped? Or if message gets delayed?
» Sender doesn’t get ACK, retransmits, Receiver gets message twice,

ACK each

BA BA

Timeout

Lec 23.164/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• Solution: put sequence number in message to identify re-
transmitted packets

– Receiver checks for duplicate number’s; Discard if detected
• Requirements:

– Sender keeps copy of unACK’d messages
» Easy: only need to buffer messages

– Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?

• Alternating-bit protocol:
– Send one message at a time; don’t send

next message until ACK received
– Sender keeps last message; receiver tracks

sequence number of last message received
• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency  throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

BA

How to Deal with Message Duplication?

Lec 23.174/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• Windowing protocol (not quite TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» ACK says “received all packets up

to sequence number X”/send more
• ACKs serve dual purpose:

– Reliability: Confirming packet received
– Ordering: Packets can be reordered

at destination
• What if packet gets garbled/dropped?

– Sender will timeout waiting for ACK packet
» Resend missing packets  Receiver gets packets out of order!

– Should receiver discard packets that arrive out of order?
» Simple, but poor performance

– Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex

• What if ACK gets garbled/dropped?
– Timeout and resend just the un-acknowledged packets

BA
Better Messaging: Window-based Acknowledgements

N=5 Q
ueue

Lec 23.184/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Administrivia
• Last Midterm: 5/2

– Can have 3 handwritten sheets of notes – both sides
– Focus on material from lecture 17-24, but all topics fair game!

• Midterm Time is now: 5-7PM
– It is earlier, during class period (+30 minutes)
– Please let us know if you conflict situation changed
– Watch Piazza for room assignments

• Please come to class on 4/30!
– HKN evaluations!

• Don’t forget to do your group evaluations!
– Very important to help us understand your group dynamics
– Important to do this for Project 3 as well!

» Even though it will be after Midterm 3!

Lec 23.194/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different

machines over Internet (read, write, flush)
• TCP Details

– Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself

– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)

» “Window” reflects storage at receiver – sender shouldn’t overrun
receiver’s buffer space

» Also, window should reflect speed/capacity of network – sender
shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:

..zyxwvuts gfedcba

Lec 23.204/25/19 Kubiatowicz CS162 ©UCB Fall 2019

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ACK’d
» sent and not ACK’d
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ACK’d (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not ACK’d

Sent
ACK’d

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 23.214/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 23.224/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long  wastes time if message lost
» Too short  retransmit even though ACK will arrive shortly

– Stability problem: more congestion  ACK is delayed 
unnecessary timeout  more traffic  more congestion

» Closely related to window size at sender: too big means putting
too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate that the

slowest link can accommodate
– Sender uses an adaptive algorithm to decide size of N

» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput) by 1 for
each ACK received

– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 23.234/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem:
Cannot have all three at same time

– Otherwise known as “Brewer’s Theorem”

Network

Lec 23.244/25/19 Kubiatowicz CS162 ©UCB Fall 2019

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file
in the world has unique name

» Location Transparency: servers
can change and files can move
without involving user

Network
Read File

Data
ServerClient

Lec 23.254/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system

calls into remote requests
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view of
file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client

Lec 23.264/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t
need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client

Lec 23.274/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Failures

• What if server crashes? Can client wait until server comes
back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek?

Then, when client does “read”, it will fail
– Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)
• Stateless protocol: A protocol in which all information

required to process a request is passed with request
– Server keeps no state about client, except as hints to help

improve performance (e.g. a cache)
– Thus, if server crashes and restarted, requests can continue

where left off (in many cases)
• What if client crashes?

– Might lose modified data in client cache

Crash!

Lec 23.284/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file
descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s
disk before results are returned to the client

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice

changes! (more on this later)

Lec 23.294/25/19 Kubiatowicz CS162 ©UCB Fall 2019

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such as ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each

operation stands on its own
• Idempotent: Performing requests multiple times has same

effect as performing it exactly once
– Example: Server crashes between disk I/O and message send,

client resend read, server does operation again
– Example: Read and write file blocks: just re-read or re-write file

block – no side effects
– Example: What about “remove”? NFS does operation twice and

second time returns an advisory error
• Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of reading a
file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are

talking over network)
Lec 23.304/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 23.314/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another

CPU reads file?
• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same

as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy;

otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 23.324/25/19 Kubiatowicz CS162 ©UCB Fall 2019

NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 23.334/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the

file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 23.344/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new

version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone
“who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 23.354/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Implementation of NFS

Lec 23.364/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be

used for different types of file systems
– The API is to the VFS interface, rather than any specific type of

file system
• In linux, “VFS” stands for “Virtual Filesystem Switch”

Lec 23.374/25/19 Kubiatowicz CS162 ©UCB Fall 2019

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.

Lec 23.384/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Linux VFS

• An operations object is contained within each primary object
type to set operations of specific filesystems

– “super_operations”: methods that kernel can invoke on a specific
filesystem, i.e. write_inode() and sync_fs().

– “inode_operations”: methods that kernel can invoke on a specific
file, such as create() and link()

– “dentry_operations”: methods that kernel can invoke on a specific
directory entry, such as d_compare() or d_delete()

– “file_operations”: methods that process can invoke on an open file,
such as read() and write()

• There are a lot of operations!

write() sys_write() filesystem’s
write method

user-space VFS filesystem physical
media

Lec 23.394/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated with “key”
– value = get(key); // get/read data associated with “key”

• Used sometimes as a simpler but more scalable
“database”

Lec 23.404/25/19 Kubiatowicz CS162 ©UCB Fall 2019

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends,

…)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples

Lec 23.414/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by
Facebook)

• Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

• eDonkey/eMule: peer-to-peer sharing system

• …

Lec 23.424/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many

machines
key, value

…

Lec 23.434/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Challenges

• Fault Tolerance: handle machine failures without losing
data and without degradation in performance

• Scalability:
– Need to scale to thousands of machines
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of node
failures and message losses

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

Lec 23.444/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Important Questions
• put(key, value):

– where do you store a new (key, value) tuple?
• get(key):

– where is the value associated with a given “key” stored?

• And, do the above while providing
– Fault Tolerance
– Scalability
– Consistency

Lec 23.454/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Directory-Based Architecture (1/4)
• Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

Lec 23.464/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Directory-Based Architecture (2/4)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Lec 23.474/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Directory-Based Architecture (3/4)
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3

Lec 23.484/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Directory-Based Architecture (4/4)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

Lec 23.494/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages:

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go through

master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

Lec 23.504/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Fault Tolerance (1/3)
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter

to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)

Lec 23.514/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Fault Tolerance (2/3)
• Again, we can have

– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

Lec 23.524/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Fault Tolerance (3/3)
• Or we can use recursive query and iterative

replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

K14 V14

Lec 23.534/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Scalability
• Storage: use more nodes

• Number of requests:
– Can serve requests from all nodes on which a value is

stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different

masters/directories
» How do you partition?

Lec 23.544/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Scalability: Load Balancing
• Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage
available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

Lec 23.554/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Consistency
• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every

node?
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets

Lec 23.564/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’

• put(K14, V14’) and put(K14, V14’’)
reach N1 & N3 in reverse order

Lec 23.574/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 & N3 in reverse order

Lec 23.584/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 & N3 in reverse order

• What does get(K14) return?
• Undefined!

Lec 23.594/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes

(gets/puts) to replicas appear as if there was a
single underlying replica (single system image)

– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all
updates will propagate through the system

– One of the weakest form of consistency; used by many
systems in practice

– Must eventually converge on single value/key
(coherence)

• And many others: causal consistency, sequential
consistency, strong consistency, …

Lec 23.604/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Quorum Consensus
• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W

replicas
– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1?

Lec 23.614/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Quorum Consensus Example
• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Lec 23.624/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Quorum Consensus Example
• Now, issuing get() to any two nodes out of three will

return the answer

N1 N2 N3 N4

K14 V14K14 V14
get(K14)

nill

Lec 23.634/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number
of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in the
system!

• Solution: Consistent Hashing
– Provides mechanism to divide [key,value] pairs amongst

a (potentially large!) set of machines (nodes) on network
• Associate to each node a unique id in an uni-dimensional

space 0..2m-1  Wraps around: Call this “the ring!”
– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the

smallest ID larger than Key

Lec 23.644/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Key to Node Mapping Example
• Paritioning example with

m = 8  ID space: 0..63
– Node 8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the
mapping [14, V14] maps to
node with ID=15
– Node with smallest ID larger

than 14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure

hash such as SHA-256 to
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”

Lec 23.654/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Summary (1/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface for

different types of file systems
• Cache Consistency: Keeping client caches consistent with one

another
– If multiple clients, some reading and some writing, how do stale

cached copies get updated?
– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of

changes

Lec 23.664/25/19 Kubiatowicz CS162 ©UCB Fall 2019

Summary (2/2)
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

