
CS162
Operating Systems and
Systems Programming

Lecture 21

End-to-End Argument,
Distributed Decision Making, 2PC

April 18th, 2018
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 21.24/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Use of Erasure Coding in general:
High Durability/overhead ratio!

• Use of Erasure Coding: Exploit law of large numbers for durability!
– Assuming independent failures
– Using, for instance, a Reed-Solomon code

• 6 month repair, FBLPY with 4x increase in total size of data:
– Replication (4 copies): 0.03 (i.e. 3% blocks lost / year)
– Fragmentation (16 of 64 fragments needed): 10-35 (i.e. 10-33% lost / year)

Fraction Blocks Lost
Per Year (FBLPY)

Lec 21.34/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Transactional File Systems
• Better reliability through use of log

– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data
preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions (using

logs, etc.)
– Updates to non-directory files (i.e., user stuff) can be done in

place (without logs), full logging optional
– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

• Full Logging File System
– All updates to disk are done in transactions

Lec 21.44/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

Internet
Connectivity

• The world is a large
distributed system

– Microprocessors in
everything

– Vast infrastructure behind
them

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

MEMS for
Sensor Nets

Lec 21.54/18/19 Kubiatowicz CS162 ©UCB Spring 2019

• Centralized System: System in which major functions are
performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers working
together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Centralized vs Distributed Systems

Lec 21.64/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through

network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

Lec 21.74/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “A distributed system is one in which the

failure of a computer you didn’t even know existed
can render your own computer unusable.”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state

information (using only a network)
– What would be easy in a centralized system becomes

a lot more difficult
• Trust/Security/Privacy/Denial of Service

– Many new variants of problems arise as a result of distribution
– Can you trust the other members of a distributed application enough to

even perform a protocol correctly?
– Corollary of Lamport’s quote: “A distributed system is one where you

can’t do work because some computer you didn’t even know existed is
successfully coordinating an attack on my system!”

Leslie Lamport

Lec 21.84/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its complexity

behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them

into smaller pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 21.94/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Networking Definitions

• Network: physical connection that allows two computers to
communicate

• Packet: unit of transfer, sequence of bits carried over the
network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 21.104/18/19 Kubiatowicz CS162 ©UCB Spring 2019

What Is A Protocol?

• A protocol is an agreement on how to communicate, including:
– Syntax: how a communication is specified & structured

» Format, order messages are sent and received
– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires
• Described formally by a state machine

– Often represented as a message transaction diagram
– Can be a partitioned state machine: two parties synchronizing

duplicate sub-state machines between them
– Stability in the face of failures!

Protocol ExchangeB
A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage

Lec 21.114/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” (what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

Lec 21.124/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Global Communication: The Problem

• Many different applications
– email, web, P2P, etc.

• Many different network styles and technologies
– Wireless vs. wired vs. optical, etc.

• How do we organize this mess?
– Re-implement every application for every technology?

• No! But how does the Internet design avoid this?

Skype SSH NFS

Packet
Radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Lec 21.134/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Solution: Intermediate Layers

• Introduce intermediate layers that provide set of
abstractions for various network functionality &
technologies

– A new app/media implemented only once
– Variation on “add another level of indirection”

• Goal: Reliable communication channels on which to build
distributed applications

Skype SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layers

“Narrow Waist”
Internet Protocol

Lec 21.144/18/19 Kubiatowicz CS162 ©UCB Spring 2019

The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

Lec 21.154/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Implications of Hourglass

Single Internet-layer module (IP):
• Allows arbitrary networks to interoperate

– Any network technology that supports IP can
exchange packets

• Allows applications to function on all networks
– Applications that can run on IP can use any network

• Supports simultaneous innovations above and below IP
– But changing IP itself, i.e., IPv6, very involved

Lec 21.164/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Drawbacks of Layering
• Layer N may duplicate layer N-1 functionality

– E.g., error recovery to retransmit lost data
• Layers may need same information

– E.g., timestamps, maximum transmission unit size
• Layering can hurt performance

– E.g., hiding details about what is really going on
• Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons
– Some dependencies in standards (header

checksums)
• Headers start to get really big

– Sometimes header bytes >> actual content

Lec 21.174/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia
• Last Midterm: 5/2

– Can have 3 handwritten sheets of notes – both sides
– Focus on material from lecture 17-24, but all topics fair game!

• Don’t forget to do your group evaluations!
– Very important to help us understand your group dynamics

• Optional HW4 will come out soon
– Will give you a chance to try out using the language “Go” to

build a two-phase commit protocol
– You will be testing it out for next term

» Not sure that we will be giving out points for it. Stay tuned!

Lec 21.184/18/19 Kubiatowicz CS162 ©UCB Spring 2019

End-To-End Argument
• Hugely influential paper: “End-to-End Arguments in

System Design” by Saltzer, Reed, and Clark (‘84)
• “Sacred Text” of the Internet

– Endless disputes about what it means
– Everyone cites it as supporting their position

• Simple Message: Some types of network functionality can
only be correctly implemented end-to-end

– Reliability, security, etc.
• Because of this, end hosts:

– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in
the network

Lec 21.194/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Example: Reliable File Transfer

• Solution 1: make each step reliable, and then
concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 21.204/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Discussion
• Solution 1 is incomplete

– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application

layer with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient

Lec 21.214/18/19 Kubiatowicz CS162 ©UCB Spring 2019

End-to-End Principle

Implementing complex functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all

applications, even if they don’t need functionality

• However, implementing in network can enhance
performance in some cases

– e.g., very lossy link

Lec 21.224/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of
the system unless it can be completely
implemented at this level

• Or: Unless you can relieve the burden from
hosts, don’t bother

Lec 21.234/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Moderate Interpretation
• Think twice before implementing functionality in the network
• If hosts can implement functionality correctly, implement it

in a lower layer only as a performance enhancement
• But do so only if it does not impose burden on applications

that do not require that functionality
• This is the interpretation we are using

• Is this still valid?
– What about Denial of Service?
– What about Privacy against Intrusion?

– Perhaps there are things that must be in the network???

Lec 21.244/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different
machines

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two

receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 21.254/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually received

the message?
– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 21.264/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}
Consumer:

int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}
• No need for producer/consumer to keep track of space in

mailbox: handled by send/receive
– Next time: will discuss fact that this is one of the roles the

window in TCP: window is size of buffer on far end
– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 21.274/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client requester, Server responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];
send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];
receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response Lec 21.284/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value

from set of proposed values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

Lec 21.294/18/19 Kubiatowicz CS162 ©UCB Spring 2019

General’s Paradox
• General’s paradox:

– Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

Lec 21.304/18/19 Kubiatowicz CS162 ©UCB Spring 2019

General’s Paradox (con’t)
• Can messages over an unreliable network be used to

guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!
– In real life, use radio for simultaneous (out of band)

communication
• So, clearly, we need something other than simultaneity!

Lec 21.314/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Two-Phase Commit
• Since we can’t solve the General’s Paradox

(i.e. simultaneous action), let’s solve a related problem

• Distributed transaction: Two or more machines agree to do
something, or not do it, atomically

– No constraints on time, just that it will eventually happen!

• Two-Phase Commit protocol: Developed by
Turing award winner Jim Gray

– (first Berkeley CS PhD, 1969)
– Many important DataBase breakthroughs

also from Jim Gray

Jim Gray
Lec 21.324/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Two-Phase Commit Protocol
• Persistent stable log on each machine: keep track of whether

commit has happened
– If a machine crashes, when it wakes up it first checks its log to

recover state of world at time of crash
• Prepare Phase:

– The global coordinator requests that all participants will promise
to commit or rollback the transaction

– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log

and tells everyone to abort; each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the
coordinator writes "Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Log used to guarantee that all machines either commit or don’t

Lec 21.334/18/19 Kubiatowicz CS162 ©UCB Spring 2019

2PC Algorithm
• One coordinator
• N workers (replicas)
• High level algorithm description:

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE‐COMMIT”, then coordinator

broadcasts “GLOBAL‐COMMIT”
Otherwise coordinator broadcasts “GLOBAL‐ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep track

of what you are doing
– If a machine crashes, when it wakes up it first checks its log to

recover state of world at time of crash

Lec 21.344/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Detailed Algorithm

Coordinator sends VOTE‐REQ to all
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to

coordinator
– If not ready, send VOTE‐ABORT to

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all
N workers, send GLOBAL‐COMMIT
to all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm

Lec 21.354/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3

Lec 21.364/18/19 Kubiatowicz CS162 ©UCB Spring 2019

State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 21.374/18/19 Kubiatowicz CS162 ©UCB Spring 2019

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT Recv: VOTE‐REQ

Send: VOTE‐COMMIT

Recv: GLOBAL‐
ABORT Recv: GLOBAL‐COMMIT

Lec 21.384/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Dealing with Worker Failures
• Failure only affects states in which the

coordinator is waiting for messages
• Coordinator only waits for votes in “WAIT” state
• In WAIT, if doesn’t receive N votes, it times out

and sends GLOBAL‐ABORT
INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 21.394/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

Lec 21.404/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Dealing with Coordinator Failure

• Worker waits for VOTE‐REQ in INIT
– Worker can time out and abort (coordinator handles it)

• Worker waits for GLOBAL‐* message in READY
– If coordinator fails, workers must BLOCK waiting for

coordinator to recover and send GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 21.414/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

Lec 21.424/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3

Lec 21.434/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Durability

• All nodes use stable storage to store current
state

– stable storage is non-volatile storage (e.g. backed by
disk) that guarantees atomic writes.

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

Lec 21.444/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Blocking for Coordinator to Recover
• A worker waiting for global decision can ask fellow

workers about their state
– If another worker is in ABORT or

COMMIT state then coordinator
must have sent GLOBAL-*

» Thus, worker can safely
abort or commit, respectively

– If another worker is still in
INIT state then both workers
can decide to abort

– If all workers are in ready, need to BLOCK (don’t know if
coordinator wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 21.454/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Decision Making Discussion (1/2)
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one

or more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places

Lec 21.464/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Decision Making Discussion (2/2)
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes "prepared to commit" record to its log, sends

a "yes" vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted "yes" on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,

pages pinned in memory, etc) until learns fate of update

Lec 21.474/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail

or block and still make progress.
• PAXOS: An alternative used by Google and others that does

not have 2PC blocking problem
– Develop by Leslie Lamport (Turing Award Winner)
– No fixed leader, can choose new leader on fly, deal with failure
– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)
– Simpler to describe complete protocol

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 21.484/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General and n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that the following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal lieutenants

obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!

Lec 21.494/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one
malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some
subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 21.504/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Is a BlockChain a Distributed Decision
Making Algorithm?

• BlockChain: a chain of blocks connected by hashes to root block
– The Hash Pointers are unforgeable (assumption)
– The Chain has no branches except perhaps for heads
– Blocks are considered “authentic” part of chain when they have

authenticity info in them
• How is the head chosen?

– Some consensus algorithm
– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is

chosen by solving hard problem
» This is the job of “miners” who try to find “nonce” info that makes

hash over block have specified number of zero bits in it
» The result is a “Proof of Work” (POW)
» Selected blocks above (green) have POW in them and can be

included in chains
– Longest chain wins

Hash Ptr
Root
Block

The “Block Chain”

Tentative Head #2

Tentative Head #1

Lec 21.514/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Is a Blockchain a Distributed Decision
Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain
– Could be Commit/Abort decision
– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)
• Anyone in world can verify the result of decision making!

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Proposal

Proposal

Epidemic
Replication

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Lec 21.524/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls:

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");

Lec 21.534/18/19 Kubiatowicz CS162 ©UCB Spring 2019

RPC Implementation
• Request-response message passing (under covers!)
• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

– Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects,

copying arguments passed by reference, etc.

Lec 21.544/18/19 Kubiatowicz CS162 ©UCB Spring 2019

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etw

orkN
et

w
or

k

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 21.554/18/19 Kubiatowicz CS162 ©UCB Spring 2019

RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters Request Message
– Result Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language

(IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for result,

unpack result and return to caller
» Code for server to unpack message, call procedure, pack

results, send them off

Lec 21.564/18/19 Kubiatowicz CS162 ©UCB Spring 2019

RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/
languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids

unnecessary conversions)

• How does client know which mbox to send to?
– Need to translate name of remote service into network

endpoint (Remote machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a

network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

Lec 21.574/18/19 Kubiatowicz CS162 ©UCB Spring 2019

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 21.584/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single

machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on

same machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while

others keep working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

Lec 21.594/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Problems with RPC: Performance

• Cost of Procedure call « same-machine RPC « network
RPC

• Means programmers must be aware that RPC is not free
–Caching can help, but may make failure handling

complex

Lec 21.604/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Cross-Domain Communication/
Location Transparency

• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces
on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 21.614/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of

software (client or server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a
separate machine from X server; Neither has to run on the machine
with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 21.624/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (1/2)
• Protocol: Agreement between two parties as to how

information is to be transmitted
• E2E argument encourages us to keep Internet communication

simple
– If higher layer can implement functionality correctly, implement it

in a lower layer only if:
» it improves the performance significantly for application that

need that functionality, and
» it does not impose burden on applications that do not require

that functionality
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if
asked (prepare)

– Next, ask everyone to commit

Lec 21.634/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (2/2)
• Byzantine General’s Problem: distributed decision making

with malicious failures
– One general, n-1 lieutenants: some number of them may be

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n 3f+1

• BlockChain protocols
– Could be used for distributed decision making

• Remote Procedure Call (RPC): Call procedure on remote
machine

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user

programming (in stub)

