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Recall: Use of Erasure Coding in general:
High Durability/overhead ratio!

• Use of Erasure Coding: Exploit law of large numbers for durability!
– Assuming independent failures
– Using, for instance, a Reed-Solomon code

• 6 month repair, FBLPY with 4x increase in total size of data:
– Replication (4 copies): 0.03 (i.e. 3% blocks lost / year)
– Fragmentation (16 of 64 fragments needed): 10-35 (i.e. 10-33% lost / year)

Fraction Blocks Lost 
Per Year (FBLPY)
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Recall: Transactional File Systems
• Better reliability through use of log

– All changes are treated as transactions 
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data 
preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions (using 

logs, etc.)
– Updates to non-directory files (i.e., user stuff) can be done in 

place (without logs), full logging optional
– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

• Full Logging File System
– All updates to disk are done in transactions

Lec 21.44/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

Internet
Connectivity

• The world is a large 
distributed system

– Microprocessors in 
everything

– Vast infrastructure behind 
them

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

MEMS for 
Sensor Nets
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• Centralized System: System in which major functions are 
performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers working 
together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Centralized vs Distributed Systems
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Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through 

network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure 
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Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “A distributed system is one in which the 

failure of a computer you didn’t even know existed
can render your own computer unusable.”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state 

information (using only a network)
– What would be easy in a centralized system becomes 

a lot more difficult
• Trust/Security/Privacy/Denial of Service

– Many new variants of problems arise as a result of distribution
– Can you trust the other members of a distributed application enough to 

even perform a protocol correctly?
– Corollary of Lamport’s quote: “A distributed system is one where you 

can’t do work because some computer you didn’t even know existed is 
successfully coordinating an attack on my system!”

Leslie Lamport
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Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its complexity 

behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them 

into smaller pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for 
different processors to communicate with one another
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Networking Definitions

• Network: physical connection that allows two computers to 
communicate

• Packet: unit of transfer, sequence of bits carried over the 
network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how 
information is to be transmitted
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What Is A Protocol?

• A protocol is an agreement on how to communicate, including:
– Syntax: how a communication is specified & structured

» Format, order messages are sent and received
– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires
• Described formally by a state machine

– Often represented as a message transaction diagram
– Can be a partitioned state machine: two parties synchronizing 

duplicate sub-state machines between them
– Stability in the face of failures!

Protocol ExchangeB
A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage
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Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” ( what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up
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Global Communication: The Problem

• Many different applications
– email, web, P2P, etc.

• Many different network styles and technologies
– Wireless vs. wired vs. optical, etc.

• How do we organize this mess?
– Re-implement every application for every technology?

• No! But how does the Internet design avoid this?

Skype SSH NFS

Packet
Radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP
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Solution: Intermediate Layers

• Introduce intermediate layers that provide set of 
abstractions for various network functionality & 
technologies

– A new app/media implemented only once
– Variation on “add another level of indirection”

• Goal: Reliable communication channels on which to build 
distributed applications

Skype SSH NFS

Packet
radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate 
layers

“Narrow Waist”
Internet Protocol
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The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio
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Implications of Hourglass

Single Internet-layer module (IP):
• Allows arbitrary networks to interoperate

– Any network technology that supports IP can 
exchange packets

• Allows applications to function on all networks
– Applications that can run on IP can use any network

• Supports simultaneous innovations above and below IP
– But changing IP itself, i.e., IPv6, very involved
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Drawbacks of Layering
• Layer N may duplicate layer N-1 functionality 

– E.g., error recovery to retransmit lost data
• Layers may need same information

– E.g., timestamps, maximum transmission unit size
• Layering can hurt performance

– E.g., hiding details about what is really going on
• Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons
– Some dependencies in standards (header 

checksums)
• Headers start to get really big

– Sometimes header bytes >> actual content
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Administrivia
• Last Midterm: 5/2

– Can have 3 handwritten sheets of notes – both sides
– Focus on material from lecture 17-24, but all topics fair game!

• Don’t forget to do your group evaluations!
– Very important to help us understand your group dynamics

• Optional HW4 will come out soon 
– Will give you a chance to try out using the language “Go” to 

build a two-phase commit protocol
– You will be testing it out for next term

» Not sure that we will be giving out points for it.  Stay tuned!
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End-To-End Argument
• Hugely influential paper: “End-to-End Arguments in 

System Design” by Saltzer, Reed, and Clark (‘84)
• “Sacred Text” of the Internet

– Endless disputes about what it means
– Everyone cites it as supporting their position

• Simple Message: Some types of network functionality can 
only be correctly implemented end-to-end

– Reliability, security, etc.
• Because of this, end hosts:

– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in 
the network
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Example: Reliable File Transfer

• Solution 1: make each step reliable, and then 
concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK
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Discussion
• Solution 1 is incomplete

– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application 

layer with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient
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End-to-End Principle

Implementing complex functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all 

applications, even if they don’t need functionality

• However, implementing in network can enhance 
performance in some cases

– e.g., very lossy link
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Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of 
the system unless it can be completely 
implemented at this level

• Or: Unless you can relieve the burden from 
hosts, don’t bother
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Moderate Interpretation
• Think twice before implementing functionality in the network
• If hosts can implement functionality correctly, implement it 

in a lower layer only as a performance enhancement
• But do so only if it does not impose burden on applications 

that do not require that functionality
• This is the interpretation we are using

• Is this still valid?
– What about Denial of Service?
– What about Privacy against Intrusion?

– Perhaps there are things that must be in the network???
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Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different 
machines 

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two 

receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive
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Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually received 

the message?
– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2
– Very similar to producer/consumer 

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message; 
send(msg1,mbox);

}
Consumer:

int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}
• No need for producer/consumer to keep track of space in 

mailbox: handled by send/receive
– Next time: will discuss fact that this is one of the roles  the 

window in TCP: window is size of buffer on far end
– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message
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Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client  requester, Server  responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];
send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];
receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response Lec 21.284/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value 

from set of proposed values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications! 
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General’s Paradox
• General’s paradox: 

– Constraints of problem: 
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because 
he arrived a couple of days too early
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General’s Paradox (con’t)
• Can messages over an unreliable network be used to 

guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!
– In real life, use radio for simultaneous (out of band) 

communication
• So, clearly, we need something other than simultaneity!
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Two-Phase Commit
• Since we can’t solve the General’s Paradox 

(i.e. simultaneous action), let’s solve a related problem

• Distributed transaction: Two or more machines agree to do 
something, or not do it, atomically 

– No constraints on time, just that it will eventually happen!

• Two-Phase Commit protocol: Developed by 
Turing award winner Jim Gray 

– (first Berkeley CS PhD, 1969)
– Many important DataBase breakthroughs 

also from Jim Gray

Jim Gray
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Two-Phase Commit Protocol
• Persistent stable log on each machine: keep track of whether 

commit has happened
– If a machine crashes, when it wakes up it first checks its log to 

recover state of world at time of crash
• Prepare Phase:

– The global coordinator requests that all participants will promise 
to commit or rollback the transaction

– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log 

and tells everyone to abort; each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the 
coordinator writes "Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Log used to guarantee that all machines either commit or don’t



Lec 21.334/18/19 Kubiatowicz CS162 ©UCB Spring 2019

2PC Algorithm
• One coordinator 
• N workers (replicas) 
• High level algorithm description:

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE‐COMMIT”, then coordinator 

broadcasts “GLOBAL‐COMMIT”
Otherwise coordinator broadcasts “GLOBAL‐ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep track 

of what you are doing
– If a machine crashes, when it wakes up it first checks its log to 

recover state of world at time of crash
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Detailed Algorithm

Coordinator sends VOTE‐REQ to all 
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to 

coordinator
– If not ready, send VOTE‐ABORT to 

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all 
N workers, send GLOBAL‐COMMIT
to all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then 
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm

Lec 21.354/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3
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State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT Recv: VOTE‐REQ

Send: VOTE‐COMMIT

Recv: GLOBAL‐
ABORT Recv: GLOBAL‐COMMIT

Lec 21.384/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Dealing with Worker Failures
• Failure only affects states in which the 

coordinator is waiting for messages
• Coordinator only waits for votes in “WAIT” state
• In WAIT, if doesn’t receive N votes, it times out 

and sends GLOBAL‐ABORT
INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3
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Dealing with Coordinator Failure

• Worker waits for VOTE‐REQ in INIT
– Worker can time out and abort (coordinator handles it)

• Worker waits for GLOBAL‐* message in READY
– If coordinator fails, workers must BLOCK waiting for 

coordinator to recover and send GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

Lec 21.424/18/19 Kubiatowicz CS162 ©UCB Spring 2019

Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for 
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3
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Durability

• All nodes use stable storage to store current 
state

– stable storage is non-volatile storage (e.g. backed by 
disk) that guarantees atomic writes. 

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY
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Blocking for Coordinator to Recover
• A worker waiting for global decision can ask fellow 

workers about their state
– If another worker is in ABORT or 

COMMIT state then coordinator 
must have sent GLOBAL-*

» Thus, worker can safely 
abort or commit, respectively

– If another worker is still in 
INIT state then both workers 
can decide to abort 

– If all workers are in ready, need to BLOCK (don’t know if 
coordinator wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Distributed Decision Making Discussion (1/2)
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one 

or more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
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Distributed Decision Making Discussion (2/2)
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes "prepared to commit" record to its log, sends 

a "yes" vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has 

voted "yes" on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, 

pages pinned in memory, etc) until learns fate of update
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Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail 

or block and still make progress.
• PAXOS: An alternative used by Google and others that does 

not have 2PC blocking problem
– Develop by Leslie Lamport (Turing Award Winner)
– No fixed leader, can choose new leader on fly, deal with failure
– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)
– Simpler to describe complete protocol 

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
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Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General and n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 
lieutenants such that the following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal lieutenants 

obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!
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Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one 
malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some 
subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision
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Is a BlockChain a Distributed Decision 
Making Algorithm?

• BlockChain: a chain of blocks connected by hashes to root block
– The Hash Pointers are unforgeable (assumption)
– The Chain has no branches except perhaps for heads
– Blocks are considered “authentic” part of chain when they have 

authenticity info in them
• How is the head chosen?

– Some consensus algorithm
– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is 

chosen by solving hard problem
» This is the job of “miners” who try to find “nonce” info that makes 

hash over block have specified number of zero bits in it
» The result is a “Proof of Work” (POW)
» Selected blocks above (green) have POW in them and can be 

included in chains
– Longest chain wins

Hash Ptr
Root
Block

The “Block Chain”

Tentative Head #2

Tentative Head #1
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Is a Blockchain a Distributed Decision 
Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain
– Could be Commit/Abort decision
– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)
• Anyone in world can verify the result of decision making!

Hash Ptr
Root
Block

Miner:
Tries to solve 
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve 
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve 
POW problem

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Proposal

Proposal

Epidemic 
Replication

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain
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Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: 

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");
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RPC Implementation
• Request-response message passing (under covers!)
• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

– Server-side stub is responsible for “unmarshalling” arguments 
and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects, 

copying arguments passed by reference, etc. 
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RPC Information Flow
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RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language 

(IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for result, 

unpack result and return to caller
» Code for server to unpack message, call procedure, pack 

results, send them off
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RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ 
languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids 

unnecessary conversions)

• How does client know which mbox to send to?
– Need to translate name of remote service into network 

endpoint (Remote machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a 

network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
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RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service  mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single 

machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on 

same machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while 

others keep working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit
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Problems with RPC: Performance

• Cost of Procedure call « same-machine RPC « network 
RPC

• Means programmers must be aware that RPC is not free 
–Caching can help, but may make failure handling 

complex
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Cross-Domain Communication/
Location Transparency

• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces 
on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)
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Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of 

software (client or server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a 
separate machine from X server; Neither has to run on the machine 
with the frame buffer.
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Summary (1/2)
• Protocol: Agreement between two parties as to how 

information is to be transmitted
• E2E argument encourages us to keep Internet communication 

simple
– If higher layer can implement functionality correctly, implement it 

in a lower layer only if:
» it improves the performance significantly for application that 

need that functionality, and
» it does not impose burden on applications that do not require 

that functionality
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if 
asked (prepare)

– Next, ask everyone to commit
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Summary (2/2)
• Byzantine General’s Problem: distributed decision making 

with malicious failures
– One general, n-1 lieutenants: some number of them may be 

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• BlockChain protocols
– Could be used for distributed decision making

• Remote Procedure Call (RPC): Call procedure on remote 
machine

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user 

programming (in stub)


