
CS162
Operating Systems and
Systems Programming

Lecture 2

Introduction to Processes

January 24th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 2.21/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Review: What is an Operating System?
• Referee

– Manage sharing of resources, Protection, Isolation
» Resource allocation, isolation, communication

• Illusionist
– Provide clean, easy to use abstractions of

physical resources
» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 2.31/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Recall: HW Functionality great complexity!

Intel Skylake-X I/O Configuration

Direct Media Interface
(3.93 GBytes/sec)

Really High Speed
I/O (e.g. graphics)

Memory Channels
(High BW DRAM)

High-Speed I/O
devices (PCI Exp)

Disks (8 x SATA)

Slower I/O (USB)

Integrated Ethernet

PCI/e Drives

HD Audio

RAID 0/1/5/10

Smart Connect
(autoupdate)

Intel Management Engine
(ME) and BIOS Support
[remote management]

Lec 2.41/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

New Versions usually (much) larger older versions!

Recall: Increasing Software Complexity

Millions of Lines of Code
(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

Cars getting really complex!

Lec 2.51/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

• A lot of similarity with the Internet of Things?
– Complexity, QoS, Inaccessbility, Power limitations … ?

Lec 2.61/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

Lec 2.71/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

“I think there is a world market
for maybe five computers.” –
Thomas Watson, chairman of
IBM, 1943

Lec 2.81/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

Thomas Watson was often
called “the worlds greatest
salesman” by the time of his
death in 1956

Lec 2.91/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

Lec 2.101/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

– Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, widespread networking

Lec 2.111/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

– Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, Widespread networking

• Rapid change in hardware leads to changing OS
– Batch Multiprogramming Timesharing Graphical UI

Ubiquitous Devices
– Gradual migration of features into smaller machines

• Today
– Small OS: 100K lines / Large: 10M lines (5M browser!)
– 100-1000 people-years

Lec 2.121/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

OS Archaeology

• Because of the cost of developing an OS from scratch, most
modern OSes have a long lineage:

• Multics AT&T Unix BSD Unix Ultrix, SunOS,
NetBSD,…

• Mach (micro-kernel) + BSD NextStep XNU
Apple OS X, iPhone iOS

• MINIX Linux Android OS, Chrome OS, RedHat,
Ubuntu, Fedora, Debian, Suse,…

• CP/M QDOS MS-DOS Windows 3.1 NT 95
98 2000 XP Vista 7 8 10 …

Lec 2.131/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Migration of OS Concepts and Features

Lec 2.141/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Today: Four Fundamental OS Concepts
• Thread

– Single unique execution context: fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with translation)
– Programs execute in an address space that is distinct from the

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual mode operation / Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by controlling
the translation from program virtual addresses to machine
physical addresses

Lec 2.151/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

OS Bottom Line: Run Programs

int main()
{ … ;
}

ed
ito

r

Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e

M
em

ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

• Load instruction and data segments of
executable file into memory

• Create stack and heap
• “Transfer control to program”
• Provide services to program
• While protecting OS and program

Lec 2.161/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Recall (61C): Instruction Fetch/Decode/Execute
The instruction cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

Lec 2.171/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during program execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

Lec 2.181/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

First OS Concept: Thread of Control

• Certain registers hold the context of thread
– Stack pointer holds the address of the top of stack

» Other conventions: Frame pointer, Heap pointer, Data
– May be defined by the instruction set architecture or by

compiler conventions
• Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack
• A thread is executing on a processor when it is resident

in the processor registers.
• PC register holds the address of executing instruction in

the thread
• Registers hold the root state of the thread.

– The rest is “in memory”

Lec 2.191/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Second OS Concept: Program’s Address Space

0x000…

0xFFF…

code

Static Data

heap

stack• Address space the set of accessible
addresses + state associated with
them:

– For a 32-bit processor there are 232 = 4
billion addresses

• What happens when you read or write
to an address?

– Perhaps nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Lec 2.201/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Address Space: In a Picture

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

• What’s in the code segment? Static data segment?
• What’s in the Stack Segment?

– How is it allocated? How big is it?
• What’s in the Heap Segment?

– How is it allocated? How big?

Lec 2.211/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia: Getting started
• Start homework 0 immediately Due next Tuesday (1/29)!

– cs162-xx account, Github account, registration survey
– Vagrant and VirtualBox – VM environment for the course

» Consistent, managed environment on your machine
– Get familiar with all the cs162 tools, submit to autograder via git
– Homework slip days: You have 3 slip days

• Should go to section tomorrow!
• Friday (2/1) is drop day!

– Very hard to drop afterwards…
– Please drop sooner if you are going to anyway Let someone else in!

• Group sign up form out next week (due after drop deadline)
– Start finding groups ASAP
– 4 people in a group!
– Try to attend either same section or 2 sections by same TA

Lec 2.221/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia (Con’t)
• Midterm conflicts:

– There are a couple of people with midterm conflicts – we are
still figuring out what to do (if anything)

• Kubiatowicz Office Hours:
– 1pm-2pm, Monday/Thursday
– May change as need arises (still have a bit of fluidity here)

• Three Free Online Textbooks:
– Click on “Resources” link for a list of “Online Textbooks”
– Can read O'Reilly books for free as long as on campus or VPN

» One book on Git, two books on C
• Webcast: https://CalCentral.Berkeley.edu/ (CalNet sign in)

– Webcast is *NOT* a replacement for coming to class!

Lec 2.231/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

CS 162 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other
groups
Helping debug someone else’s code (in another group)
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from from
prior years

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against
offenders

Lec 2.241/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Multiprogramming - Multiple Threads of Control

OS

Proc
1

Proc
2

Proc
n…

code
Static Data
heap

stack

code
Static Data
heap

stack

code
Static Data
heap

stack

Lec 2.251/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

How can we give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the illusion
of multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 2.261/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

The Basic Problem of Concurrency
• The basic problem of concurrency involves resources:

– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: processes think they have exclusive

access to shared resources
• OS has to coordinate all activity

– Multiple processes, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Simple machine abstraction for processes
– Multiplex these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 2.271/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other thread

(good for sharing, bad for protection)
– Threads can share instructions

(good for sharing, bad for protection)
– Can threads overwrite OS functions?

• This (unprotected) model is common in:
– Embedded applications
– Windows 3.1/Early Macintosh (switch only with yield)
– Windows 95—ME (switch with both yield and timer)

Lec 2.281/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Protection
• Operating System must protect itself from user programs

– Reliability: compromising the operating system generally causes
it to crash

– Security: limit the scope of what processes can do
– Privacy: limit each process to the data it is permitted to access
– Fairness: each should be limited to its appropriate share of

system resources (CPU time, memory, I/O, etc)
• It must protect User programs from one another
• Primary Mechanism: limit the translation from program

address space to physical memory space
– Can only touch what is mapped into process address space

• Additional Mechanisms:
– Privileged instructions, in/out instructions, special registers
– syscall processing, subsystem implementation

» (e.g., file access rights, etc)

Lec 2.291/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Third OS Concept: Process
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Why processes?
– Protected from each other!
– OS Protected from them
– Processes provides memory protection
– Threads more efficient than processes (later)

• Fundamental tradeoff between protection and efficiency
• Communication easier within a process
• Communication harder between processes

• Application instance consists of one or more processes

Lec 2.301/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 2.311/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Fourth OS Concept: Dual Mode Operation
• Hardware provides at least two modes:

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• What is needed in the hardware to support “dual mode” operation?
– A bit of state (user/system mode bit)
– Certain operations / actions only permitted in system/kernel mode

» In user mode they fail or trap
– User Kernel transition sets system mode AND saves the user PC

» Operating system code carefully puts aside user state then performs
the necessary operations

– Kernel User transition clears system mode AND restores
appropriate user PC

» return-from-interrupt

Lec 2.321/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 2.331/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.341/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound
1100…

1000…
Base

>=

<

Program
address

0010…

1010…

Lec 2.351/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound
1100…

1000…
Base

>=

<

Program
address

0010…

1010…

• Requires relocating loader
• Still protects OS and isolates program
• No addition on address path

Addresses translated
when program loaded

Lec 2.361/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Another idea: Address Space Translation
• Program operates in an address space that is distinct from

the physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

Lec 2.371/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple address translation with Base and Bound
code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated
on-the-fly

1010…

0100…

Lec 2.381/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Tying it together: Simple B&B: OS loads process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Lec 2.391/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: OS gets ready to execute process

• Privileged Inst:
set special
registers

• RTU

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Lec 2.401/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: User Code Running

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

• How does
kernel switch
between
processes?

• First question:
How to return to
system?

0001…

Lec 2.411/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

3 types of Mode Transfer
• Syscall

– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– e. g., Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, …

• All 3 are an UNPROGRAMMED CONTROL TRANSFER
– Where does it go?

Lec 2.421/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

How do we get the system target address of
the “unprogrammed control transfer?”

Lec 2.431/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Interrupt Vector

• Where else do you see this dispatch pattern?

interrupt number (i)

intrpHandler_i () {
….
}

Address and properties
of each interrupt handler

Lec 2.441/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to

return to
system?

0000 1234

Lec 2.451/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and
set up system
stack?

IntrpVector[i]

Lec 2.461/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

0001 0124

1000 …

1100 …

0000 1234

regs
00FF…

RTU

Lec 2.471/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

000 0248

1000 …

1100 …

0000 1234

regs
00FF…

RTU

Lec 2.481/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Running Many Programs ???
• We have the basic mechanism to

– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from

each other
• Questions ???
• How do we decide which user process to run?
• How do we represent user processes in the OS?
• How do we pack up the process and set it aside?
• How do we get a stack and heap for the kernel?
• Aren’t we wasting are lot of memory?
• …

Lec 2.491/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Process Control Block
• Kernel represents each process as a process control

block (PCB)
– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure containing
the PCBs

• Scheduling algorithm selects the next one to run

Lec 2.501/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Scheduler

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Lec 2.511/24/2019 Kubiatowicz CS162 ©UCB Spring 2019

Conclusion: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space with Translation
– Programs execute in an address space that is distinct from the

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by controlling
the translation from program virtual addresses to machine
physical addresses

