
CS162
Operating Systems and
Systems Programming

Lecture 18

Queueing Theory,
Disk scheduling & File Systems

April 9th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 18.24/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: I/O Performance

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%

Lec 18.34/9/19 Kubiatowicz CS162 ©UCB Spring 2019

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed 
time to process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per second
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq

Lec 18.44/9/19 Kubiatowicz CS162 ©UCB Spring 2019

A Ideal Linear World

• What does the queue wait time look like during overload?
– Grows unbounded at a rate ~ (TS/TA) till request rate subsides

Offered Load  (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t
0 1

1

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

Offered Load  (TS/TA)

Empty Queue

Saturation

Unbounded

time

Q
ue

ue
 d

el
ay



Lec 18.54/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but:

– Almost all of the requests experience large queue delays
– Even though average utilization is low!

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals

Lec 18.64/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• Elegant mathematical framework if you start with 
exponential distribution

– Probability density function of a continuous random variable 
with a mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Likelihood of an event 
occurring is independent of 
how long we’ve been waiting

So how do we model the burstiness of arrival?

Lots of short arrival 
intervals (i.e., high 
instantaneous rate)

Few long gaps (i.e., low 
instantaneous rate)

x (λ)

mean arrival interval (1/λ)

Lec 18.74/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Background: 
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = p(T)T
– Variance (stddev2) 2 = p(T)(T-m)2 = p(T)T2-m2

– Squared coefficient of variance: C = 2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic  C=0 
– “Memoryless” or exponential  C=1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless 
– Disk response times C  1.5 (majority seeks < average)

Mean 
(m)

mean

Memoryless

Distribution
of service times



Lec 18.84/9/19 Kubiatowicz CS162 ©UCB Spring 2019

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior 

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic 
distribution

Queue

C
ontroller

Disk



Lec 18.94/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• The average number of jobs/tasks in the system (N) is 
equal to arrival time / throughput (λ) times the response 
time (L) 

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in 

service
– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L

Lec 18.104/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Example

λ = 1
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L
• E.g., N = λ x L = 5

Lec 18.114/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time

T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

Job i

L(1)

Lec 18.124/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

What is the system occupancy, i.e., average 
number of jobs in the system?

Job i



Lec 18.134/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

S =  S(1) + S(2) + … + S(k)  = L(1) + L(2) + … + L(k)

S(k)

Lec 18.144/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Average occupancy (Navg) = S/T 

Job i

S= area

Lec 18.154/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = S/T = (L(1) + … + L(k))/T

S(k)

Lec 18.164/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (L(1) + … + L(k))/T = (Ntotal/T)*(L(1) + … + L(k))/Ntotal

S(k)



Lec 18.174/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (Ntotal/T)*(L(1) + … + L(k))/Ntotal = λavg × Lavg

S(k)

Lec 18.184/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = λavg × Lavg

S(k)

Lec 18.194/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia

• Midterm II: Too long!  Sorry!
– Yup, we misjudged that one

• Midterm II Statistics:
– Mean: 58.9, STD: 12.7, Max: 94.0

• Solutions are up
– Regrade requests close on Friday 4/12, 11:59pm

Lec 18.204/9/19 Kubiatowicz CS162 ©UCB Spring 2019

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue =   Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate


Queue ServerService Rate
μ=1/Tser



Lec 18.214/9/19 Kubiatowicz CS162 ©UCB Spring 2019

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue =   Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate


Queue ServerService Rate
μ=1/Tser

Why does response/queueing
delay grow unboundedly even 
though the utilization is < 1 ?

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%

Lec 18.224/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Why unbounded response time?
• Assume deterministic arrival process and service time

– Possible to sustain utilization = 1 with bounded response time!

time

arrival 
time

service
time

Lec 18.234/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Why unbounded response time?
• Assume stochastic arrival process

(and service time)
– No longer possible to achieve 

utilization = 1

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%

time

This wasted time can 
never be reclaimed! 
So cannot achieve u = 1!

Lec 18.244/9/19 Kubiatowicz CS162 ©UCB Spring 2019

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, u = Tser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) =  x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) =  x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms



Lec 18.254/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Queuing Theory Resources
• Resources page contains Queueing Theory Resources 

(under Readings):
– Scanned pages from Patterson and Hennessy book that gives 

further discussion and simple proof for general equation: 
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources: 
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III!

Lec 18.264/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Optimize I/O Performance

• How to improve performance?
– Make everything faster 
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time = 
Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%

Lec 18.274/9/19 Kubiatowicz CS162 ©UCB Spring 2019

When is Disk Performance Highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy 

backed (reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work 

in the meantime

Lec 18.284/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Disk Scheduling (1/2)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be 

to random spots on the disk  Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include 

rotational delay in calculation, since 
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but 
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1
4

2

D
isk H

ead

3



Lec 18.294/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest 
request in the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 18.304/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 18.314/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: How do we Hide I/O Latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process 
to sleep until data is ready

– When write data (e.g., write() system call), put process to 
sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of 

bytes successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return 

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return 

immediately; later kernel takes data and notifies user 

Lec 18.324/9/19 Kubiatowicz CS162 ©UCB Spring 2019

I/O & Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …



Lec 18.334/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: C Low level I/O
• Operations on File Descriptors – as OS object 

representing the state of a file
– User has a “handle” on the descriptor 

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int create (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
Lec 18.344/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: C Low Level Operations

• When write returns, data is on its way to disk and can be 
read, but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
‐ returns bytes read, 0 => EOF, ‐1 => error

ssize_t write (int filedes, const void *buffer, size_t size)
‐ returns bytes written

off_t lseek (int filedes, off_t offset, int whence)
‐ set the file offset
* if whence == SEEK_SET: set file offset to “offset”
* if whence == SEEK_CRT: set file offset to crt location + “offset”
* if whence == SEEK_END: set file offset to file size + “offset”

int fsync (int fildes) 
– wait for i/o of filedes to finish and commit to disk

void sync (void) – wait for ALL to finish and commit to disk

Lec 18.354/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Building a File System

• File System: Layer of OS that transforms block interface of 
disks (or other block devices) into Files, Directories, etc.

• File System Components
– Naming: Interface to find files by name, not by blocks
– Disk Management: collecting disk blocks into files
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite 

crashes, media failures, attacks, etc.

Lec 18.364/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: User vs. System View of a File

• User’s view: 
–Durable Data Structures

• System’s view (system call interface):
–Collection of Bytes (UNIX)
–Doesn’t matter to system what kind of data structures 

you want to store on disk!
• System’s view (inside OS):

–Collection of blocks (a block is a logical transfer unit, 
while a sector is the physical transfer unit)

–Block size  sector size; in UNIX, block size is 4KB



Lec 18.374/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc()  buffers something like 4096 

bytes, even if interface is one byte at a time
• From now on, file is a collection of blocks

File
System

Lec 18.384/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Disk Management Policies (1/2)

• Basic entities on a disk:
– File: user-visible group of blocks arranged sequentially in 

logical space
– Directory: user-visible index mapping names to files

• Access disk as linear array of sectors.  Two Options: 
– Identify sectors as vectors [cylinder, surface, sector], sort in 

cylinder-major order, not used anymore
– Logical Block Addressing (LBA): Every sector has integer 

address from zero up to max number of sectors
– Controller translates from address  physical position

» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

Lec 18.394/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Disk Management Policies (2/2)
• Need way to track free disk blocks

– Link free blocks together  too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the logical 

file structure
– Optimize placement of files’ disk blocks to match access 

and usage patterns

Lec 18.404/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Designing a File System …
• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the 
actual file resource are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to allocate / free blocks 
– Such that access remains efficient



Lec 18.414/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Components of a File System

File path

Directory 
Structure

File Index 
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector,  4K block

Lec 18.424/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Components of a file system

• Open performs Name Resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to file descriptor and to blocks

file name
offset directory

file number
offset index structure

Storage block

Lec 18.434/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Directories

Lec 18.444/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Directory

• Basically a hierarchical structure

• Each directory entry is a collection of
– Files
– Directories

» A link to another entries

• Each has a name and attributes
– Files have data

• Links (hard links) make it a DAG, not just a tree
– Softlinks (aliases) are another name for an entry



Lec 18.454/9/19 Kubiatowicz CS162 ©UCB Spring 2019

I/O & Storage Layers

streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

…

Data blocks

#4 - handle

Directory Structure

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service

Lec 18.464/9/19 Kubiatowicz CS162 ©UCB Spring 2019

File

• Named permanent storage

• Contains
– Data

» Blocks on disk somewhere
– Metadata (Attributes)

» Owner, size, last opened, …
» Access rights

• R, W, X
• Owner, Group, Other (in Unix systems)
• Access control list in Windows system

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle

Lec 18.474/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures

Lec 18.484/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• Read/write system calls:
–Use file handle to locate inode
–Perform appropriate reads or writes 

In-Memory File System Structures



Lec 18.494/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!
• Assume (for now) we have a 

way to translate a path to 
a “file number”

– i.e., a directory structure
• Disk Storage is a collection of Blocks

– Just hold file data (offset o = < B, x >)
• Example: file_read 31, < 2, x >

– Index into FAT with file number
– Follow linked list to block
– Read the block from disk 

into memory

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory
Lec 18.504/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root 

of block list for the file
• File offset (o = < B, x >)
• Follow list to get block #
• Unused blocks  Marked free (no 

ordering, must scan to find)

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

free

31:

File number

Lec 18.514/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root 

of block list for the file
• File offset (o = < B, x > )
• Follow list to get block #
• Unused blocks  Marked free (no 

ordering, must scan to find)
• Ex: file_write(31, < 3, y >)

– Grab free block
– Linking them into file

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

memory

FAT Properties

File 31, Block 3
free

31:

File number

Lec 18.524/9/19 Kubiatowicz CS162 ©UCB Spring 2019

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root 

of block list for the file
• Grow file by allocating free blocks 

and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

File 63, Block 1

File 63, Block 063:

free
31:

File 1 number

File 2 number



Lec 18.534/9/19 Kubiatowicz CS162 ©UCB Spring 2019

File 31, Block 3

• FAT32 (32 instead of 12 bits) used in Windows, USB drives, 
SD cards, … 

• Where is FAT stored?
– On Disk, on boot cache in memory,

second (backup) copy on disk
• What happens when you format a disk?

– Zero the blocks, Mark FAT entries “free”
• What happens when you 

quick format a disk?
– Mark all entries in FAT as free

• Simple
– Can implement in

device firmware

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number

Lec 18.544/9/19 Kubiatowicz CS162 ©UCB Spring 2019

File 31, Block 3

• Time to find block (large files) ??

• Block layout for file ???

• Sequential Access ???

• Random Access ???

• Fragmentation ???
– MSDOS defrag tool

• Small files ???

• Big files ???

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment – Issues 

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number

Lec 18.554/9/19 Kubiatowicz CS162 ©UCB Spring 2019

What about the Directory?

• Essentially a file containing 
<file_name: file_number> mappings

• Free space for new entries

• In FAT: file attributes are kept in directory (!!!)

• Each directory a linked list of entries

• Where do you find root directory ( “/” )?

Lec 18.564/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Directory Structure (cont’d)
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs.  Search linearly – ok since 
directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to 
a directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute 
path (say CWD=“/my/book” can resolve “count”)



Lec 18.574/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Many Huge FAT Security Holes!

• FAT has no access rights

• FAT has no header in the file blocks

• Just gives an index into the FAT 
– (file number = block number)

Lec 18.584/9/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary
• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser  ½(1+C)  u/(1 – u))

• File System:
– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• File Allocation Table (FAT) Scheme

– Linked-list approach 
– Very widely used: Cameras, USB drives, SD cards
– Simple to implement, but poor performance and no security 

• Look at actual file access patterns – many small files, but large 
files take up all the space!


