
CS162
Operating Systems and
Systems Programming

Lecture 17

Performance
Storage Devices, Queueing Theory

April 2nd, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 17.23/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Recall: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display
memory into physical address space

» Addresses set by HW jumpers or at boot
time

– Simply writing to display memory (also called
the “frame buffer”) changes image on screen

» Addr: 0x8000F000 — 0x8000FFFF
– Writing graphics description to cmd queue

» Say enter a set of triangles describing some
scene

» Addr: 0x80010000 — 0x8001FFFF
– Writing to the command register may cause

on-board graphics hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical
Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 17.33/28/2019 Kubiatowicz CS162 © UCB Fall 2019

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction
with DMA controller
(from OSC book):

Transferring Data To/From Controller

1

2

3

Lec 17.43/28/2019 Kubiatowicz CS162 © UCB Fall 2019

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction
with DMA controller
(from OSC book):

Transferring Data To/From Controller

4

5

6

Lec 17.53/28/2019 Kubiatowicz CS162 © UCB Fall 2019

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable

I/O operations
• Actual devices combine both polling and interrupts

– For instance – High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Lec 17.63/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device

drivers
– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until

finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 17.73/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.83/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Basic Performance Concepts

• Response Time or Latency: Time to perform an
operation(s)

• Bandwidth or Throughput: Rate at which
operations are performed (op/s)

– Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

• Start up or “Overhead”: time to initiate an
operation

• Most I/O operations are roughly linear in b bytes
– Latency(b) = Overhead + b/TransferCapacity

Lec 17.93/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Example (Fast Network)
• Consider a 1 Gb/s link (B = 125 MB/s)

– With a startup cost S = 1 ms

– Latency(b) = S + b/B
– Bandwidth = b/(S + b/B) = B*b/(B*S + b) = B/(B*S/b + 1)

Lec 17.103/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Example (Fast Network)
• Consider a 1 Gb/s link (B = 125 MB/s)

– With a startup cost S = 1 ms

– Half-power Bandwidth B/(B*S/b + 1) = B/2
– Half-power point occurs at b=S*B= 125,000 bytes

Lec 17.113/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Example: at 10 ms startup (like Disk)

0

5

10

15

20

25

30

35

40

45

50

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Ba
nd

w
id
th

 (m
B/

s)

La
te
nc
y
(u
s)

Length (b)

Performance of gbps link with 10 ms startup

Half-power b = 1,250,000 bytes!

Lec 17.123/28/2019 Kubiatowicz CS162 © UCB Fall 2019

What Determines Peak BW for I/O ?
• Bus Speed

– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire):

1.6 Gb/s full duplex (200 MB/s)
– USB 3.0 – 5 Gb/s
– Thunderbolt 3 – 40 Gb/s

• Device Transfer Bandwidth
– Rotational speed of disk
– Write / Read rate of NAND flash
– Signaling rate of network link

• Whatever is the bottleneck in the path…

Lec 17.133/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access (except for SMR – later!)
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns issue

Lec 17.143/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

Lec 17.153/28/2019 Kubiatowicz CS162 © UCB Fall 2019

The Amazing Magnetic Disk
• Unit of Transfer: Sector

– Ring of sectors form a track
– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm
– Resolution of human eye: 50µm
– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
– Reduces likelihood neighboring

tracks are corrupted during writes
(still a small non-zero chance)

Lec 17.163/28/2019 Kubiatowicz CS162 © UCB Fall 2019

The Amazing Magnetic Disk
• Track length varies across disk

– Outside: More sectors per
track, higher bandwidth

– Disk is organized into
regions of tracks with
same # of sectors/track

– Only outer half of radius is
used

» Most of the disk area in the
outer regions of the disk

• Disks so big that some
companies (like Google)
reportedly only use part of disk
for active data

– Rest is archival data

Lec 17.173/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Shingled Magnetic Recording (SMR)

• Overlapping tracks yields greater density, capacity
• Restrictions on writing, complex DSP for reading
• Examples: Seagate (8TB), Hitachi (10TB)

Lec 17.183/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Review: Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Seek time = 4-8ms
One rotation = 1-2ms
(3600-7200 RPM)

Lec 17.193/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Review: Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller

Media Time
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Lec 17.203/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Typical Numbers for Magnetic Disk
Parameter Info / Range
Space/Density Space: 14TB (Seagate), 8 platters, in 3½ inch form factor!

Areal Density: ≥ 1Terabit/square inch! (PMR, Helium, …)
Average seek time Typically 4-6 milliseconds.

Depending on reference locality, actual cost may be
25-33% of this number.

Average rotational
latency

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 8-4 milliseconds

Controller time Depends on controller hardware
Transfer time Typically 50 to 250 MB/s. Depends on:

• Transfer size (usually a sector): 512B – 1KB per
sector

• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or even
faster); now slowing down

Lec 17.213/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms,
– 7200RPM Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
– Transfer rate of 50MByte/s, block size of 4Kbyte

4096 bytes/50×106 (bytes/s) = 81.92 × 10-6 sec 0.082 ms for 1 sector
• Read block from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s 451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s 1.03MB/s

• Read next block on same track:
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s 50MB/sec

• Key to using disk effectively (especially for file systems) is to
minimize seek and rotational delays

Lec 17.223/28/2019 Kubiatowicz CS162 © UCB Fall 2019

(Lots of) Intelligence in the Controller
• Sectors contain sophisticated error correcting codes

– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same

surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve

sequential behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for

disk head movement for sequential ops

• …

Lec 17.233/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Hard Drive Prices over Time

Lec 17.243/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Example of Current HDDs
• Seagate Exos X14 (2018)

– 14 TB hard disk
» 8 platters, 16 heads
» Helium filled: reduce friction and power

– 4.16ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– 6 Gbps SATA /12Gbps SAS interface

» 261MB/s MAX transfer rate
» Cache size: 256MB

– Price: $615 (< $0.05/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40ms seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB, 340,000x more expensive !!)

Lec 17.253/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Solid State Disks (SSDs)

• 1995 – Replace rotating magnetic media with non-volatile memory
(battery backed DRAM)

• 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
– Sector (4 KB page) addressable, but stores 4-64 “pages” per memory

block
– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (0.1-0.2ms access time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!
Lec 17.263/28/2019 Kubiatowicz CS162 © UCB Fall 2019

SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads

Host

Buffer
Manager
(software
Queue)

Flash
Memory
Controller

DRAM

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

SATA

Lec 17.273/28/2019 Kubiatowicz CS162 © UCB Fall 2019

SSD Architecture – Writes
• Writing data is complex! (~200μs – 1.7ms)

–Can only write empty pages in a block
–Erasing a block takes ~1.5ms
–Controller maintains pool of empty blocks by

coalescing used pages (read, erase, write), also
reserves some % of capacity

• Rule of thumb: writes 10x reads, erasure 10x writes

https://en.wikipedia.org/wiki/Solid-state_drive
Lec 17.283/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Some “Current” 3.5in SSDs
• Seagate Nytro SSD: 15TB (2017)

– Dual 12Gb/s interface
– Seq reads 860MB/s
– Seq writes 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $6325 ($0.41/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface
– Seq reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $50K? ($0.50/GB)

Lec 17.293/28/2019 Kubiatowicz CS162 © UCB Fall 2019

HDD vs SSD Comparison

SSD prices drop much faster than HDD
Lec 17.303/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Amusing calculation:
Is a full Kindle heavier than an empty one?

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

– So, erased state lower energy than written state
• Assuming that:

– Kindle has 4GB flash
– ½ of all bits in full Kindle are in high-energy state
– High-energy state about 10-15 joules higher
– Then: Full Kindle is 1 attogram (10-18gram) heavier

(Using E = mc2)
• Of course, this is less than most sensitive scale can

measure (it can measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery

discharge, weight from getting warm, ….
• Source: John Kubiatowicz (New York Times, Oct 24, 2011)

Lec 17.313/28/2019 Kubiatowicz CS162 © UCB Fall 2019

SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD

Lec 17.323/28/2019 Kubiatowicz CS162 © UCB Fall 2019

SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect
on performance

– Limited drive lifetime
» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No
longer
true!

Lec 17.333/28/2019 Kubiatowicz CS162 © UCB Fall 2019

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n)

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

of ops

Fixed overhead

time per op

Lec 17.343/28/2019 Kubiatowicz CS162 © UCB Fall 2019

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n)
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 17.353/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed
time to process, with plenty of time between …

• Service rate (μ = 1/TS) - operations per second
• Arrival rate: (λ = 1/TA) - requests per second
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq

Lec 17.363/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded at a rate ~ (Ts/TA) till request rate

subsides

Offered Load (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t
0 1

1

time

Q
ue

ue
 d

el
ay

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

Offered Load (TS/TA)

Empty Queue

Saturation

Unbounded

Lec 17.373/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the requests

experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals

Lec 17.383/28/2019 Kubiatowicz CS162 © UCB Fall 2019

• Elegant mathematical framework if you start with
exponential distribution

– Probability density function of a continuous random variable
with a mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Likelihood of an event
occurring is independent of
how long we’ve been waiting

So how do we model the burstiness of arrival?

Lots of short arrival
intervals (i.e., high
instantaneous rate)

Few long gaps (i.e., low
instantaneous rate)

x (λ)

mean arrival interval (1/λ)

Lec 17.393/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Background:
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = p(T)T
– Variance (stddev2) 2 = p(T)(T-m)2 = p(T)T2-m2

– Squared coefficient of variance: C = 2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic C=0
– “Memoryless” or exponential C=1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless
– Disk response times C 1.5 (majority seeks < average)

Mean
(m)

mean

Memoryless

Distribution
of service times

Lec 17.403/28/2019 Kubiatowicz CS162 © UCB Fall 2019

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic
distribution

Queue

C
ontroller

Disk

Lec 17.413/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Law

• In any stable system
– Average arrival rate = Average departure rate

• The average number of jobs/tasks in the system (N) is
equal to arrival time / throughput (λ) times the response
time (L)

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in

service
– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L

Lec 17.423/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Example

λ = 1
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L
• E.g., N = λ x L = 5

Lec 17.433/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time

T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

Job i

L(1)

Lec 17.443/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

What is the system occupancy, i.e., average
number of jobs in the system?

Job i

Lec 17.453/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

S = S(1) + S(2) + … + S(k) = L(1) + L(2) + … + L(k)

S(k)

Lec 17.463/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Average occupancy (Navg) = S/T

Job i

S= area

Lec 17.473/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = S/T = (L(1) + … + L(k))/T

S(k)

Lec 17.483/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (L(1) + … + L(k))/T = (Ntotal/T)*(L(1) + … + L(k))/Ntotal

S(k)

Lec 17.493/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (Ntotal/T)*(L(1) + … + L(k))/Ntotal = λavg × Lavg

S(k)

Lec 17.503/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = λavg × Lavg

S(k)

Lec 17.513/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Little Queuing Theory: Some Results (1/2)
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and

memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = 2/m2

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ = Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = Tq (by Little’s law)

Arrival Rate

Queue Server
Service Rate
μ=1/Tser

Lec 17.523/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Little Queuing Theory: Some Results (2/2)

• Parameters that describe our system:
– : mean number of arriving customers/second = 1/TA
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = 2/m2

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ = Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = Tq (by Little’s law)

• Results (M: Poisson arrival process, 1 server):
– Memoryless service time distribution (C = 1): Called an M/M/1 queue

» Tq = Tser x u/(1 – u)
– General service time distribution (no restrictions): Called an M/G/1 queue

» Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate

Queue Server
Service Rate
μ=1/Tser

Lec 17.533/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Little Queuing Theory: An Example (1/2)
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller + seek + rotation + transfer)

• Questions:
– How utilized is the disk (server utilization)? Ans:, u = Tser
– What is the average time spent in the queue? Ans: Tq
– What is the number of requests in the queue? Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser

Lec 17.543/28/2019 Kubiatowicz CS162 © UCB Fall 2019

A Little Queuing Theory: An Example (2/2)
• Questions:

– How utilized is the disk (server utilization)? Ans:, u = Tser
– What is the average time spent in the queue? Ans: Tq
– What is the number of requests in the queue? Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser

• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = x Tq=10/s x .005s = 0.05s
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 17.553/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Queuing Theory Resources
• Resources page contains Queueing Theory Resources

(under Readings):
– Scanned pages from Patterson and Hennessy book that gives

further discussion and simple proof for general equation:
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III

Lec 17.563/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Summary
• Disk Performance:

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage

density
• Devices have complex interaction and performance characteristics

– Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW * T/(S+T)

– HDD: Queuing time + controller + seek + rotation + transfer
– SDD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and
reliability

– Relative to performance characteristics of underlying device
• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency

Tq = Tser x ½(1+C) x u/(1 – u))

