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Recall: Memory-Mapped Display Controller

* Memory-Mapped:

— Hardware maps control registers and display
memory into physical address space

» Addresses set by HW jumpers or at boot
time
— Simply writing to display memory (also called
the “frame buffer”) changes image on screen
» Addr: 0x8000F000 — Ox8000FFFF
— Writing graphics description to cmd queue

» Say enter a set of triangles describing some
scene

» Addr: 0x80010000 — 0x8001FFFF

— Writing to the command register may cause
on-board graphics hardware to do something

» Say render the above scene
» Addr: 0x0007F004

0x80020000

0x80010000

0x8000F000

0x0007F004
0x0007F000

Graphics
Command
Queue

Display
Memory

Command
Status

Physical

+ Can protect with address translation
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Transferring Data To/From Controller

* Programmed I/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

» Direct Memory Access:
— Give controller access to memory bus

- ASk It to transfer 1. device driveris told | =
to transfer disk data @ CPU
data blocks to/from to butfer at address X| ‘
. 2. device driver tells i
memory directly

disk controller to
transfer C bytes

from disk to buffer

5. DMA controller
transfers bytes to
buffer X, increasing

memoary address | ca;.:he .

and decreasing C at address X
H H untilC =0
« Sample interaction |, i - s ous DMADUS/

| ! X 1
interrupt = memory bus —| memory i butter |

with DMA controller| iamds emmm®™! |4 convoler
(from OSC book): f3<

PCI bus-

; A controller initiates

IDE disk DMA transter
controller 4. disk controller sends
T ——  each byte to DMA
(2 (Grath controller
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Transferring Data To/From Controller

* Programmed I/O:

— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

» Direct Memory Access:
— Give controller access to memory bus

— Ask it to transfer
data blocks to/from
memory directly

+ Sample interaction
with DMA controller
(from OSC book):

5.

6.

1. device driver is told |
to transfer disk data
to buffer at addrass X|

DMA controlier 2. device driver tells
disk controller to
transfer C bytes

transfers bytes to
buffer X, increasing
memoary address from
and decreasing C
untiC =0

when C = 0, DMA

at address X
DMA#us

CPU ‘
A

disk to buffgy | cat.:he ]
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I/O Device Notifying the OS

* The OS needs to know when:
—The 1/O device has completed an operation
—The I/O operation has encountered an error

* |/O Interrupt:
— Device generates an interrupt whenever it needs service
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
» 1/O device puts completion information in status register
—Pro: low overhead
— Con: may waste many cycles on polling if infrequent or unpredictable
I/O operations
* Actual devices combine both polling and interrupts
— For instance — High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
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Device Drivers
 Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface
— Same kernel I/O system can interact easily with different device
drivers

— Special device-specific configuration supported with the
ioctl() system call

» Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver

» Top half will start I/0 to device, may put thread to sleep until
finished

— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Life Cycle of An I/O Request
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Basic Performance Concepts

Response Time or Latency: Time to perform an
operation(s)

Bandwidth or Throughput: Rate at which
operations are performed (op/s)

—Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

 Start up or “Overhead”: time to initiate an
operation

Most I/O operations are roughly linear in b bytes
— Latency(b) = Overhead + b/TransferCapacity
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Example (Fast Network)

» Consider a 1 Gb/s link (B = 125 MB/s)
— With a startup cost S =1 ms

Performance of gbps link with 1 ms startup

Latency (us)
g
Bandwidth (mB/s)

0 o
[ 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (b)

— Latency(b) =S + b/B
— Bandwidth = b/(S + b/B) = B*b/(B*S + b) = B/(B*S/b + 1)
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Example (Fast Network)

» Consider a 1 Gb/s link (B = 125 MB/s)
— With a startup cost S =1 ms

Performance of gbps link with 1 ms startup

Latency (us)
g
Bandwidth (mB/s)

0 o
[ 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (b)

— Half-power Bandwidth = B/(B*S/b + 1) = B/2
— Half-power point occurs at b=S*B= 125,000 bytes
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Example: at 10 ms startup (like Disk)

Performance of gbps link with 10 ms startup
18,000 50
16,000 45
- 40
14,000
12,000 i E
—_ / / ‘E
) _ = - 30
2 0000 = ~
g s £
i / . 5
8,000
§ / [ 2 E
3
6,000
/ = o
4,000 L 10
/ Half-power b = 1,250,000 bytes!
2,000 ]
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (b)
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What Determines Peak BW for I/O ?

* Bus Speed
— PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
— ULTRA WIDE SCSI: 40 MB/s

— Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire):
1.6 Gb/s full duplex (200 MB/s)

—USB 3.0 -5 Gb/s
— Thunderbolt 3 — 40 Gb/s

» Device Transfer Bandwidth
— Rotational speed of disk
— Write / Read rate of NAND flash
— Signaling rate of network link

* Whatever is the bottleneck in the path...
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Storage Devices

* Magnetic disks
— Storage that rarely becomes corrupted
— Large capacity at low cost
— Block level random access (except for SMR — later!)
— Slow performance for random access
— Better performance for sequential access

* Flash memory
— Storage that rarely becomes corrupted
— Capacity at intermediate cost (5-20x disk)
— Block level random access
— Good performance for reads; worse for random writes
— Erasure requirement in large blocks
— Wear patterns issue
Lec 17.13
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Cover Mounting Holes
{Cover not shown) AL

Hard Disk Drives (HDDs)

Base Casting

Spindle

Slider {and Head)
Actuator Arm
Actuater Axis
Mounting
Actuater

Platters

™ Ribbon Cable
(attaches heads
to Logic Board)

F

SCS1 Interface
Connector

Western Digital Drive
http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)
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Cm |

e Read/Write Head
Side View

IBM/Hitachi Microdrive
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The Amazing Magnetic Disk

* Unit of Transfer: Sector
— Ring of sectors form a track
— Stack of tracks form a cylinder
— Heads position on cylinders e

Platter

Surface

* Disk Tracks ~ 1um (micron) wide
— Wavelength of light is ~ 0.5um

— Resolution of human eye: 50um

— 100K tracks on a typical 2.5 disk

Arm Assembly

» Separated by unused guard regions
— Reduces likelihood neighboring

. h Zl,
tracks are corrupted during writes Motor E;
(still a small non-zero chance)
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The Amazing Magnetic Disk

» Track length varies across disk

— Outside: More sectors per
track, higher bandwidth

— Disk is organized into surface
regions of tracks with Platrer
same # of sectors/track Surface

— Only outer half of radius is
used

» Most of the disk area in the
outer regions of the disk

 Disks so big that some
companies (like Google)
reportedly only use part of disk
for active data

— Rest is archival data
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Shingled Magnetic Recording (SMR)

Conventional Writes

| ) ————
I

SMR Writes
H

it
-l Track N
Track N+1

Track N +

» Overlapping tracks yields greater density, capacity
* Restrictions on writing, complex DSP for reading
» Examples: Seagate (8TB), Hitachi (10TB)

Review: Magnetic Disks

Track

« Cylinders: all the tracks under the Sector
head at a given point on all surface

* Read/write data is a three-stage process:

Head
Cylinder

T~Platter

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Seek

e Seek time = 4-8ms
P ’LQ_\ One rotation = 1-2ms
Ol L (3600-7200 RPM)
2050 |‘ =] ! alency
N oeares
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Review: Magnetic Disks Typical Numbers for Magnetic Disk
Track
Cvlinders: all the tracks under th Sector Parameter Info / Range
ylinaers: a © rgc S under the Space/Density Space: 14TB (Seagate), 8 platters, in 3%z inch form factor!
head at a given point on all surface Areal Density: > 1Terabit/square inch! (PMR, Helium, ...)
Head Average seek time  Typically 4-6 milliseconds.
. Read/write data is a three-stage process: Cylinder Depending on reference locality, actual cost may be
' ~platter 25-33% of this number.

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

o)
H

Software
—1 Queue >
(Device Driver)

| Media Time
'] (Seek+Rot+Xfer)

1senbay

Jajjouo

alemple
1nsay
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Average rotational
latency

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 8-4 milliseconds

Controller time

Depends on controller hardware

Transfer time

Typlcally 50 to 250 MB/s. Depends on:
Transfer size (usually a sector): 512B — 1KB per
sector
» Rotation speed: 3600 RPM to 15000 RPM
» Recording density: bits per inch on a track
+ Diameter: ranges from 1into 5.25in

Cost

Used to drop by a factor of two every 1.5 years (or even
faster); now slowing down

3/28/2019
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Disk Performance Example

* Assumptions:
— Ignoring queuing and controller times for now
— Avg seek time of 5ms,
— 7200RPM = Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms

— Transfer rate of 50MByte/s, block size of 4Kbyte =
4096 bytes/50%108 (bytes/s) = 81.92 x 10 sec = 0.082 ms for 1 sector

+ Read block from random place on disk:

— Seek (bms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms

— Approx 9ms to fetch/put data: 4096 bytes/9.082x102%s = 451KB/s
* Read block from random place in same cylinder:

— Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms

— Approx 4ms to fetch/put data: 4096 bytes/4.082x103s = 1.03MB/s
* Read next block on same track:

— Transfer (0.082ms): 4096 bytes/0.082x103 s = 50MB/sec

+ Key to using disk effectively (especially for file systems) is to
minimize seek and rotational delays
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(Lots of) Intelligence in the Controller

Sectors contain sophisticated error correcting codes
— Disk head magnet has a field wider than track
— Hide corruptions due to neighboring track writes

L]

Sector sparing

— Remap bad sectors transparently to spare sectors on the same
surface

Slip sparing
— Remap all sectors (when there is a bad sector) to preserve
sequential behavior

Track skewing

— Sector numbers offset from one track to the next, to allow for
disk head movement for sequential ops
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Hard Drive Prices over Time
Dlsk cost-per-byte

10*
L actual data points 1990-2013
10%} e | — linear fit to data points 1990-2010
— range of industry projections 2013-2020
107} |
10'}
0
o 10°}
9
¥ 107}
107}
107}
10}
0-5 L 4 L
1990 1995 2000 2005 2010 2015 2020

Year
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Example of Current HDDs

» Seagate Exos X14 (2018)
— 14 TB hard disk
» 8 platters, 16 heads
» Helium filled: reduce friction and power
— 4.16ms average seek time
— 4096 byte physical sectors

— 7200 RPMs i
— 6 Gbps SATA /12Gbps SAS interface )
» 261MB/s MAX transfer rate <s@§e.a”s-'n-&-

» Cache size: 256MB
— Price: $615 (< $0.05/GB)

* IBM Personal Computer/AT (1986)
— 30 MB hard disk
— 30-40ms seek time
— 0.7-1 MB/s (est.)
— Price: $500 ($17K/GB, 340,000x more expensive !!)
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Solid State Disks (SSDs)

+ 1995 — Replace rotating magnetic media with non-volatile memory
(battery backed DRAM)
+ 2009 — Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory

— Sector (4 KB page) addressable, but stores 4-64 “pages” per memory
block

— Trapped electrons distinguish between 1 and 0
* No moving parts (no rotate/seek motors)
— Eliminates seek and rotational delay (0.1-0.2ms access time)
— Very low power and lightweight
— Limited “write cycles”

* Rapid advances in capacity and cost ever since!
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SSD Architecture — Reads,

| NAND’? | NAND’fﬂ
Buffer

Manager Pl
Host 9 Memory ( . ( C
SATA| (Software Controller
QUL e) NAND NAND

( ( i
{ {
{ {
DRAM [NANDIH}J[NAND’H}J
111 111 S

[ f
Read 4 KB Page: ~25 usec e c
— No seek or rotational latency (nano ™ ((nanD

— Transfer time: transfer a 4KB page 111 11
» SATA: 300-600MB/s => ~4 x103 b / 400 x 108 bps => 10 us

— Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads
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SSD Architecture — Writes

» Writing data is complex! (~200us — 1.7ms )
—Can only write empty pages in a block
—Erasing a block takes ~1.5ms

—Controller maintains pool of empty blocks by
coalescing used pages (read, erase, write), also
reserves some % of capacity

* Rule of thumb: writes 10x reads, erasure 10x writes

Data written ;'
in:IC;Tages * ._.

| ake || ake |

i

5

Data erased |
in256 KB <::| I B
Blocks ;
64 writable Pages | 4KB || 4KB | 4
in1 erasable Block |
Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state_drive
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Bl

Some “Current” 3.5in SSDs

» Seagate Nytro SSD: 15TB (2017) _
— Dual 12Gbls interface e
— Seq reads 860MB/s
— Seq writes 920MB/s
— Random Reads (IOPS): 102K
— Random Writes (IOPS): 15K
— Price (Amazon): $6325 ($0.41/GB)

* Nimbus SSD: 100TB (2019)
— Dual port: 12Gb/s interface L]
— Seq reads/writes: 500MB/s . ExaDrive
— Random Read Ops (IOPS): 100K
— Unlimited writes for 5 years!
— Price: ~ $50K? ($0.50/GB)
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DC series




HDD vs SSD Comparison
Haso v 1o PP

Q20828 + 256 @ 250 — Linear (256) —Linear (250) Usi 10 000 or 15 DDO rpm SAS drives
" “’

iy i o)
o™ . 0.0ne . Mcsssimes 55 g0,

= Random 0 Performance oo o
i womtioou 1 e naniccn. SO0 i

£ o0
s

5
= 520

g Reliability foririerantin

Energy savings L r—
e e B 8 15 wats
Input/Dutput
times

400~500

~ 20~28 tous

25°SSD | 0.99 068 055  0.39 0.24 0.17

SSD prices drop much faster than HDD
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Amusing calculation:
Is a full Kindle heavier than an empty one?

* Actually, “Yes”, but not by much
 Flash works by trapping electrons:
— So, erased state lower energy than written state
* Assuming that:
— Kindle has 4GB flash
— Y. of all bits in full Kindle are in high-energy state
— High-energy state about 10-15 joules higher

— Then: Full Kindle is 1 attogram (10-'8gram) heavier
(Using E = mc2)
» Of course, this is less than most sensitive scale can
measure (it can measure 10-° grams)

+ Of course, this weight difference overwhelmed by battery
discharge, weight from getting warm, ....

» Source: John Kubiatowicz (New York Times, Oct 24, 2011)
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SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and 1/O bus)
+ Cons
— Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD
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SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensiti
— Read at memory speeds (limited by controller and 1/
+ Cons

No

» Hybrid alternative: combine small SSD with large HDD
— Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect
on performance

— Limited drive lifetime
» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9-11 years

* These are changing rapidly!
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I/O Performance

Response
= 3901 Time (ms)
User = 1’0
Thread = device 200
Queue w
[OS Paths] 100
Response Time = Queue + I/O device service time
» Performance of I/O subsystem 0 g, 100%

_ - ; Throughput (Utilization
Metrics: Response Time, Throughput 9 (5/0 total BW))

— Effective BW per op = transfer size / response time
» EffBW(n)=n/(S+n/B)=B/(1+SBin)

Fixed overhead
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I/O Performance

Response
= 3901 Time (ms)
User = 1’0
Thread = device 200
Queue @
[OS Paths] 100
Response Time = Queue + I/O device service time
» Performance of I/O subsystem 0 g, 100%

_ - : Throughput (Utilization)
Metrics: Response Time, Throughput (% total BW)

— Effective BW per op = transfer size / response time
» EffBW(n)=n/(S+n/B)=B/(1+SB/n)

— Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» 1/O device service time

* Queuing behavior:
—Can lead to big increases of latency as utilization increases

— i ?
.3/28/201§0|'Jt|0nS * Kubiatowicz CS162 © UCB Fall 2019 Lec 17.34

A Simple Deterministic World

G
arrivals—>| Queue — r\Serv?'—> departures
N
|
|_ Ta 1~ Ts

Ta

[T T |
T/ TS%I
» Assume requests arrive at regular intervals, take a fixed
time to process, with plenty of time between ...
Service rate (u = 1/Tg) - operations per second
Arrival rate: (A= 1/T,) - requests per second

 Utilization: U = ANu , where A< p

» Average rate is the complete story
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A ldeal Linear World

3 a Saturation
()] [®)]
) >
5 5
e L
= =
e °
3 o
o o
% % mpty Queue [Unbounded
Q p 0 y
Offergd Load (T¢/T,) Offered Load (T¢/T,)

g g

3] (]

© ©

)] (]

=} =}

() ()

] 3

5 3 ,

time o time
* What does the queue wait time look like?

— Grows unbounded at a rate ~ (T/T,) till request rate

subsides
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A Bursty World

arrivals—>| Queue }—» ‘Server—> departures

‘ — Tq _>‘_ Ts—

Arrivals

|
11
Q depth i

* Requests arrive in a burst, must queue up till served

+ Same average arrival time, but almost all of the requests
experience large queue delays

« Even though average utilization is low

So how do we model the burstiness of arrival?

» Elegant mathematical framework if you start with
exponential distribution

— Probability density function of a continuous random variable
with a mean of 1/A

—f(x) = Ae™

—“Memoryless” 1 |
09 I

Likelihood of an event 08 A\ 1
occurring is independent Ofg/z'z/' : mean arrival interval (1/A)

how long we've been waitin \i
Lots of short arrival or | K
intervals (i.e., high 03 E\\
instantaneous rate) ‘;j N
' | N

Few long gaps (i.e., low I

instantaneous rate)

A
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Background: : .
General Use of Random Distributions Introduction to Queuing Theory
M

+ Server spends variable time (T) with customers - e (rf)an

— Mean (Average) m = Zp(T)xT ?ﬁm S

— Variance (stddev?) o2 = Zp(T)x(T-m)?2 = Zp(T)xT2-m?2 — —( 2 Disk | [———>

( ) PUR(T-m)” = 2p(T) Distribution Arrivals c|):|ue:|u]e = Departures

— Squared coefficient of variance: C = ¢2/m?
Aggregate description of the distribution

* Important values of C: mean
— No variance or deterministic = C=0 ‘\‘\
— “Memoryless” or exponential = C=1

» Past tells nothing about future Memoryless
» Poisson process — purely or completely random process

» Many complex systems (or aggregates)
are well described as memoryless

— Disk response times C ~ 1.5 (majority seeks < average)

of service times
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Queuing System

» What about queuing time??
— Let’s apply some queuing theory
— Queuing Theory applies to long term, steady state behavior =
Arrival rate = Departure rate

« Arrivals characterized by some probabilistic distribution

» Departures characterized by some probabilistic
distribution
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Little’s Law

arrivals—/» departures
A

k L |

* In any stable system
— Average arrival rate = Average departure rate

» The average number of jobs/tasks in the system (N) is
equal to arrival time / throughput (1) times the response
time (L)

— N (jobs) =4 (jobs/s) x L (s)

» Regardless of structure, bursts of requests, variation in

service
— Instantaneous variations, but it washes out in the average

— Overall, requests match departures
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L=5
A=1 T
L=5 .
N =5 jobs
01234546789 1011213141516 time
A:N=AxL
E.g.,N=AxL=5
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Little’s Theorem: Proof Sketch

arrivalsﬁ”—» departures
A

L

Job il L(i) = response time of job i
N(t) = number of jobs in system
attime t

time

L(1)
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Little’s Theorem: Proof Sketch

arrivalsﬁ”—» departures
A

L

Job il L(i) = response time of job i
N(t) = number of jobs in system
attime t

time
T 1
What is the system occupancy, i.e., average
number of jobs in the system?
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Little’s Theorem: Proof Sketch

arrivalsﬁ”—' departures
A

e

job il L() = response time of job i

N(t) = number of jobs in system
attime t

S(i)=L(3) * 1 =L()

' T
S=S(1)+S2)+...+Sk) =L(1)+LQ2)+... + L(k)
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Little’s Theorem: Proof Sketch

arrivalsﬁ”—» departures
A

L

job il L() = response time of job i

N(t) = number of jobs in system
attime t

S(i)=L() * 1 =L()

T

Average occupancy (N,,4) = S/T
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Little’s Theorem: Proof Sketch

arrivalsﬁ”—» departures
A

L

Job il L(i) = response time of job i

N(t) = number of jobs in system
attime t

S(i) =L(3) * 1 =L()

=
Navg = S/T=(L(1) + ... + L(K))/T
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Little’s Theorem: Proof Sketch

arrivals,t>°—» departures
A

L

Job il L(i) = response time of job i

N(t) = number of jobs in system
attime t

S@i)=L(1) * 1 =L()

i time
]

- T
Nave = (L(1) + ... + LEYT = (N TH*(L(1) + .. + LK) N,
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Little’s Theorem: Proof Sketch

departures

arrivals/>
A
Job i] L(i) = response time of job i k—L—
N(t) = number of jobs in system
attime t
SG)=L(@) * 1 =L(3)

=
Naye = Nigea/ D*(L(1) + ...+ LK)/ Ny = Agyy X Ly,
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Little’s Theorem: Proof Sketch

departures

arrivals/>

A

Job i] L(1) = response time of job i k—L—

N(t) = number of jobs in system
attime t

S@G)=L(@) * 1 =L(3)

i time
T
Navg = A‘avg X Lavg
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A Little Queuing Theory: Some Results (1/2)

* Assumptions:
— System in equilibrium; No limit to the queue
—Time between successive arrivals is random and

memoryless

»| Queue
Arrival Rate Service Rate
A u=1/T,

» Parameters that describe our system:

-\ mean number of arriving customers/second

—Ts mean time to service a customer (“m”)

-C: squared coefficient of variance = 62/m?2

— service rate = 1/T,,

—u: server utilization (0<u<1):u=2A/p =L x T,

» Parameters we wish to compute:
-Tg Time spent in queue
Ly Length of queue =4 x T (by Little’s law)
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A Little Queuing Theory: Some Results (2/2)

—| Queue
Arrival Rate Service Rate
A U=1/Tser
+ Parameters that describe our system:
-\ mean number of arriving customers/second A= 1/T,
L mean time to service a customer (“m”)
-C: squared coefficient of variance = c2/m?2
— M service rate = 1/T,,
- u server utilization (0<u<1):u =My =1 x T,
« Parameters we wish to compute:
=T Time spent in queue
- Ly Length of queue =i x T, (by Little’s law)

* Results (M: Poisson arrival process, 1 server):
— Memoryless service time distribution (C = 1): Called an M/M/1 queue
» Ty = Teer X{u/(1 —u)
— General service time distribution (no restrictions): Called an M/G/1 queue
» Tq = Teer X V2(1+C) u/(1 — u)
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A Little Queuing Theory: An Example (1/2)

+ Example Usage Statistics:
— User requests 10 x 8KB disk I/Os per second
— Requests & service exponentially distributed (C=1.0)
— Avg. service = 20 ms (From controller + seek + rotation + transfer)

* Questions:
— How utilized is the disk (server utilization)? Ans:, u = AT,
— What is the average time spent in the queue? Ans: T,
— What is the number of requests in the queue? Ans: L,

A Little Queuing Theory: An Example (2/2)

* Questions:
— How utilized is the disk (server utilization)? Ans:, u = AT
— What is the average time spent in the queue? Ans: T,
— What is the number of requests in the queue? Ans: L,
— What is the avg response time for disk request? Ans: T, = T, + T,

ser

» Computation:
A (avg # arriving customers/s) = 10/s
T, (avg time to service customer) = 20 ms (0.02s)

— What is the avg response time for disk request? Ans: T_ .= T + T, u  (server utilization) = A x T,= 10/s x .02s = 0.2
T, (avg time/customer in queue) = Ty, X U/(1 — u)
=20 x0.2/(1-0.2) =20 x 0.25 = 5 ms (0 .005s)
L, (avg length of queue) =2 x T,;=10/s x .005s = 0.05s
Tqys (avg time/customer in system) =T, + T, = 25 ms
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Queuing Theory Resources Summary

* Resources page contains Queueing Theory Resources
(under Readings):
— Scanned pages from Patterson and Hennessy book that gives

further discussion and simple proof for general equation:
https://cs162.eecs.berkeley.edu/static/readings/patterson _queue.pdf

— A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/gonline.html

+ Some previous midterms with queueing theory questions

+ Assume that Queueing Theory is fair game for Midterm IlI
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+ Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average % rotation
— Transfer time: spec of disk depends on rotation speed and bit storage
density
» Devices have complex interaction and performance characteristics
— Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW * T/(S+T)
— HDD: Queuing time + controller + seek + rotation + transfer
— SDD: Queuing time + controller + transfer (erasure & wear)
+ Systems (e.qg., file system) designed to optimize performance and
reliability
— Relative to performance characteristics of underlying device

+ Bursts & High Utilization introduce queuing delays
* Queuing Latency:
— M/M/1 and M/G/1 queues: simplest to analyze
— As utilization approaches 100%, latency — «
Ty = Teer X 2(1+C) x U/(1 = u))
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