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Recall: Starvation vs Deadlock
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources 
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock  Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention
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Recall: Four requirements for Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire 
additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding 

the resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1
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• Force all threads to request resources in a particular order 
preventing any cyclic use of resources

– Example (x.P, y.P, z.P,…)
» Make tasks request disk, then memory, then…

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some 
ordering of threads is still deadlock free afterward 

» Technique: pretend each request is granted, then run deadlock 
detection algorithm, and grant request if result is deadlock free 
(conservative!)

– Keeps system in a “SAFE” state, i.e. there exists a sequence {T1, 
T2, … Tn} with T1 requesting all remaining resources, finishing, 
then T2 requesting all remaining resources, etc..

– Algorithm allows the sum of maximum resource needs of all 
current threads to be greater than total resources

Recall: Ways of preventing deadlock
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Can Priority Inversion cause Deadlock?
• Technically not – Consider this example:

– 3 threads, T1, T2, T3 in priority order (T3 highest)
– T1 grabs lock, T3 tries to acquire, then sleeps, T2 running
– Will this make progress?

» No, as long as T2 is running
» But T2 could stop at any time and the problem would resolve 

itself… So, this is not a deadlock (it is a livelock)
– Why is this a priority inversion?

» T3 is prevented from running by T2
• How does priority donation help?

– Briefly raising T1 to the same priority as T3T1 can run and 
release lock, allowing T3 to run

– Does priority donation involve tacking lock away from T1?
» NO! That would break semantics of the lock and potentially 

corrupt any information protected by lock!
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Next Objective
• Dive deeper into the concepts and mechanisms of 

memory sharing and address translation
• Enabler of many key aspects of operating systems

– Protection
– Multi-programming
– Isolation
– Memory resource management
– I/O efficiency
– Sharing
– Inter-process communication
– Debugging
– Demand paging

• Today: Translation
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Virtualizing Resources

• Physical Reality: 
Different Processes/Threads share the same hardware

– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (starting today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined 

by its data in memory (and registers)
– Consequently, cannot just let different threads of control use the 

same memory
» Physics: two different pieces of data cannot occupy the same 

locations in memory
– Probably don’t want different threads to even have access to each 

other’s memory if in different processes (protection)
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Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process
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Important Aspects of Memory Multiplexing
• Protection:

– Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read 

Only, Invisible to user programs, etc).
» Kernel data protected from User programs
» Programs protected from themselves

• Controlled overlap:
– Separate state of threads should not collide in physical 

memory.  Obviously, unexpected overlap causes chaos!
– Conversely, would like the ability to overlap when desired (for 

communication)
• Translation: 

– Ability to translate accesses from one address space (virtual) 
to a different one (physical)

– When translation exists, processor uses virtual addresses, 
physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
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Recall: Loading

storage
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Binding of Instructions and Data to Memory

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

Physical addresses

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000
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0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical 
Memory

Binding of Instructions and Data to Memory
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Second copy of program from previous example

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!
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0x1300 00000020
… …

0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
…

0x1A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example
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Multi-step Processing of a Program for Execution
• Preparation of a program for execution 

involves components at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final values 
anywhere in this path

– Depends on hardware support 
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code (i.e. the stub), 

locates appropriate memory-resident 
library routine

– Stub replaces itself with the address of 
the routine, and executes routine
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Recall: Uniprogramming
• Uniprogramming (no Translation or Protection)

– Application always runs at same place in physical 
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving 
it reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

Ad
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s
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Multiprogramming (primitive stage)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program loaded into 
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program can 
cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000
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Multiprogramming (Version with Protection)
• Can we protect programs from each other without 

translation?

– Yes: use two special registers BaseAddr and LimitAddr to 
prevent user from straying outside designated area

» Cause error if user tries to access an illegal address
– During switch, kernel loads new base/limit from PCB 

(Process Control Block)
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000
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Recall: General Address translation

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (MMU) converts between the two views

• Translation  much easier to implement protection!
– If task A cannot even gain access to task B’s data, no way 

for A to adversely affect B
• With translation, every program can be linked/loaded 

into same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write
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Recall: Base and Bounds (was from CRAY-1)

• Could use base/bounds for dynamic address 
translation – translation happens at execution:

– Alter address of every load/store by adding “base”
– Generate error if address bigger than limit

• Gives program the illusion that it is running on its 
own dedicated machine, with memory starting at 0

– Program gets continuous region of memory
– Addresses within program do not have to be relocated 

when program placed in different region of DRAM

DRAM

<?

+

Base

Bound
(Limit)

CPU

Virtual
Address

Physical
Address

No: Error!
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Issues with Simple B&B Method

• Fragmentation problem over time
– Not every process is same size  memory becomes 

fragmented over time
• Missing support for sparse address space

– Would like to have multiple chunks/program (Code, Data, 
Stack, Heap, etc)

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11
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More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space 

1
4

2

3

physical 
memory space

1

2
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Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax. 
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error
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Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers
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Administrivia
• Project 1

– Code Due tomorrow (3/8)
– Final Report due Tuesday (3/12)

• Midterm 1 Regrade Requests
– Due Monday (3/11)
– Don’t just send request to send it!  (We may regrade 

everything if it is a specious request for points – you might 
lose points…!) 

• Midterm 2: Thursday 4/4
– Ok, this is a few weeks and after Spring Break
– Will definitely include Scheduling material (lecture 10)
– Up to and including some material from lecture 17
– Probably try to have a Midterm review in early part of that 

week…. Stay tuned
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

Physical
Address Space
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x4000

Physical
Address Space

SegID = 0
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared

SegID = 0

SegID = 1
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared

SegID = 0

SegID = 1
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li  $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li  $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000  $v0, Move PC+4PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li  $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x0240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x0244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

3. Fetch 0x0360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000  $v0, Move PC+4PC

4. Fetch 0x0364. Translated to Physical=0x4364. Get “lb $t0, ($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050 (0100 0000 0101 0000). Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850, 
Load Byte from 0x4850$t0, Move PC+4PC

0x0240 main: la $a0, varx
0x0244 jal strlen

… …
0x0360 strlen: li  $v0, 0  ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Observations about Segmentation
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except as 

mentioned in moment)
» If it does, trap to kernel and dump core

• When it is OK to address outside valid range?
– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically 

increases size of stack
• Need protection mode in segment table

– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when 

switched (called “swapping”)
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What if not all segments fit into memory?

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all of the 

previous process is moved to disk
» Likely need to send out complete segments 

– This greatly increases the cost of context-switching
• What might be a desirable alternative?

– Some way to keep only active portions of a process in 
memory at any one time

– Need finer granularity control over physical memory
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Problems with Segmentation
• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit 
everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks
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Recall: General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap & 
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
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Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1  allocated, 0  free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment
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Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset  1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access 
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!
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PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?
OffsetVirtual

Page #
Virtual Address

(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W
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http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Example: Memory Layout for Linux 32-bit
(Pre-Meltdown patch!)
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1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table
Summary: Paging
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1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

1110 0000

What happens if 
stack grows to 
1110 0000?

Summary: Paging
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Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111   11101
11110   11100
11101   10111
11100   10110
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111   null
01110    null
01101    null
01100    null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111    null
00110    null
00101    null 
00100    null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new 
pages where 
room!
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Page Table Discussion
• What needs to be switched on a context switch? 

– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 1K pages, need 2 million page table entries!

– Con: What if table really big?
» Not all pages used all the time  would be nice to 

have working set of page table in memory

• How about multi-level paging or combining paging 
and segmentation?
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Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space: 
The two-level page table

10 bits 10 bits 12 bits
Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single 
PageTablePtr register

• Valid bits on Page Table Entries 
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can 

reside on disk if not in use 4 bytes
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stack

Summary: Two-Level Paging
1111 1111

stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101    
10 11100
01 10111
00 10110

11 01101    
10 01100
01 01011
00 01010

11 00101    
10 00100
01 00011
00 00010

11 null  
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000



Lec 12.493/7/19 Kubiatowicz CS162 ©UCB Spring 2019

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101    
10 11100
01 10111
00 10110

11 01101    
10 01100
01 01011
00 01010

11 00101    
10 00100
01 00011
00 00010

11 null  
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)
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• What about a tree of tables?
– Lowest level page table  memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error
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What about Sharing (Complete Segment)?
Process A: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment
Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Process B: OffsetVirtual
Page #

Virtual
Seg #
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Multi-level Translation Analysis
• Pros:

– Only need to allocate as many page table entries as we 
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional 
reference counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly 
one page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
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Summary
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information 
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through 

page table to physical page number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space


