
CS162
Operating Systems and
Systems Programming

Lecture 11

Scheduling (finished),
Deadlock, Address Translation

March 5th, 2018
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 11.23/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than
if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 11.33/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a shorter

time to completion than the remaining time on the current job,
immediately preempt CPU

– Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

• These can be applied either to a whole program or the
current CPU burst of each program

– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 11.43/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 11.53/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value higher priority (for nice values)
– Highest priority value Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job
finishes time slice

» 140-bit bit mask indicates presence or absence of job at given
priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed

on the expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice

range
– Like a multi-level queue (one queue per priority) with different

timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin

through priority

Kernel/Realtime Tasks User Tasks

0 100 139

Lec 11.63/5/19 Kubiatowicz CS162 ©UCB Spring 2019

O(1) Scheduler Continued
• Heuristics

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg more I/O bound the task, more reward (and

vice versa)
– Interactive Credit

» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for

temporary changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has been

starved for too long…
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst

tasks of same priority

Lec 11.73/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use

heuristics to identify interactive tasks—it just makes sure
every process gets a fair share of CPU within a set amount
of time given the number of runnable processes on the
CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N

processes execute simultaneously as if they truly got 1/N of
the processor

» Tries to give each process an equal fraction of the processor
– Priorities reflected by weights such that increasing a task’s

priority by 1 always gives the same fractional increase in
CPU time – regardless of current priority

Lec 11.83/5/19 Kubiatowicz CS162 ©UCB Spring 2019

CFS (Continued)
• Idea: track amount of “virtual time” received by each process

when it is executing
– Take real execution time, scale by weighting factor

» higher priority real time divided by larger weight
» Actually – divide by current weight/(sum of all weights)

– Keep virtual time advancing at same rate
• Targeted latency (𝑻𝑳): period of time after which all

processes get to run at least a little
– Each process runs with quantum 𝑾𝒑 ∑𝑾𝒊⁄ 𝑻𝑳
– Never smaller than “minimum granularity”

• Use of Red-Black tree to hold all runnable processes as
sorted on vruntime variable

– O(log n) time to perform insertions/deletions
» Cash the item at far left (item with earliest vruntime)

– When ready to schedule, grab version with smallest vruntime
(which will be item at the far left).

Lec 11.93/5/19 Kubiatowicz CS162 ©UCB Spring 2019

CFS Examples
• Suppose Targeted latency = 20ms,

Minimum Granularity = 1ms
• Two CPU bound tasks with same priorities

– Both switch with 10ms
• Two CPU bound tasks separated by nice value of 5

– Nice values scale weights exponentially: Weight=1024/(1.25)nice

– Since (1.25)5 3, one task gets 5ms, another gets 15ms
• 40 tasks: each gets 1ms (no longer totally fair)
• One CPU bound task, one interactive task same priority

– While interactive task sleeps, CPU bound task runs and increments
vruntime

– When interactive task wakes up, runs immediately, since it is behind on
vruntime

• Group scheduling facilities (2.6.24)
– Can give fair fractions to groups (like a user or other mechanism for

grouping processes)
– Two users, one starts 1 process, other starts 40, each gets 50% of CPU

Lec 11.103/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to predict with confidence worst case response times for
systems

– In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

– In conventional systems, performance is:
» System/throughput oriented with post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal fast
computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

• Soft Real-Time
– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

Lec 11.113/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival
(=release) times

• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

Lec 11.123/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Example: Round-Robin Scheduling Doesn’t Work

Time

Lec 11.133/5/19 Kubiatowicz CS162 ©UCB Spring 2019

• Tasks periodic with period P and computation C in each
period: (𝑃 , 𝐶) for each task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close

the absolute deadline is (i.e. 𝐷 𝐷 𝑃 for each task!)
– The scheduler always schedules the active task with the

closest absolute deadline

• Schedulable when ∑ 1

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

Lec 11.143/5/19 Kubiatowicz CS162 ©UCB Spring 2019

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness

really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay

for itself in improved response time
» Perhaps you’re paying for worse response

time in reduced productivity, customer angst,
etc…

» Might think that you should buy a faster X
when X is utilized 100%, but usually, response
time goes to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse

tim
e 100%

Lec 11.153/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia

• Midterm I graded:
– Mean 60.27, Std Dev: 14.71, Low: 16.25, High: 89.75
– Regrade requests before Monday 3/11 @midnight

• Solutions are posted
• Homework 2 due Today!
• Project 1 code due on Friday (3/8)
• Don’t forget to allocate memory for objects!

– If a structure is declared locally to a procedure, then it will go away
when procedure returns!!!

– Lots of page faults are likely caused by bad memory allocation!

Lec 11.163/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Starvation vs Deadlock
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 11.173/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and there it is,

controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

Lec 11.183/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on bridge:

each acquires one segment and needs next
• If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast no one goes west

Lec 11.193/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Lec 11.203/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has

two chopsticks afterwards

Lec 11.213/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Four requirements for Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire
additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding

the resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 11.223/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 Rj

– assignment edge – directed edge Rj Ti

R1
R2

T1 T2

Lec 11.233/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 Rj
– assignment edge – directed edge Rj Ti

Lec 11.243/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Methods for Handling Deadlocks
• Allow system to enter deadlock and then recover

– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources and/or

terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks never occur
in the system

– Used by most operating systems, including UNIX
– This is not say that this is a “method”, rather intentional

ignorance?

Lec 11.253/5/19 Kubiatowicz CS162 ©UCB Spring 2019

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)
– Nodes left in UNFINISHED deadlocked

Lec 11.263/5/19 Kubiatowicz CS162 ©UCB Spring 2019

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the
river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a mutex

leaves world inconsistent
• Preempt resources without killing off thread

– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never

happened
– For bridge example, make one car roll backwards (may

require others behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter

deadlock once again
• Many operating systems use other options

Lec 11.273/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam, suddenly

you’re transported back home and told to retry!

Lec 11.283/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Techniques for Preventing Deadlock (cont’d)
• Make all threads request everything they’ll need at the

beginning.
– Problem: Predicting future is hard, tend to over-estimate

resources
– Example:

» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection

between here and where you want to go; only one car on the
Bay Bridge at a time

• Force all threads to request resources in a particular order
preventing any cyclic use of resources

– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise

Lec 11.293/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Lec 11.303/5/19 Kubiatowicz CS162 ©UCB Spring 2019

• Toward right idea:
– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

Banker’s Algorithm for Preventing Deadlock

Lec 11.313/5/19 Kubiatowicz CS162 ©UCB Spring 2019

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

Banker’s Algorithm for Preventing Deadlock
[Avail] = [FreeResources]

Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 11.323/5/19 Kubiatowicz CS162 ©UCB Spring 2019

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

Banker’s Algorithm for Preventing Deadlock
[Avail] = [FreeResources]

Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Maxnode]‐[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 11.333/5/19 Kubiatowicz CS162 ©UCB Spring 2019

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T1,
T2, … Tn} with T1 requesting all remaining resources, finishing, then
T2 requesting all remaining resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Lec 11.343/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab chopstick

either:
» Not last chopstick
» Is last chopstick but someone will have two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 11.353/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware

– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (starting today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)
– Consequently, cannot just let different threads of control use the

same memory
» Physics: two different pieces of data cannot occupy the same

locations in memory
– Probably don’t want different threads to even have access to each

other’s memory if in different processes (protection)
Lec 11.363/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Next Objective
• Dive deeper into the concepts and mechanisms of

memory sharing and address translation
• Enabler of many key aspects of operating systems

– Protection
– Multi-programming
– Isolation
– Memory resource management
– I/O efficiency
– Sharing
– Inter-process communication
– Debugging
– Demand paging

• Today: Translation

Lec 11.373/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 11.383/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Important Aspects of Memory Multiplexing
• Protection:

– Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read

Only, Invisible to user programs, etc).
» Kernel data protected from User programs
» Programs protected from themselves

• Controlled overlap:
– Separate state of threads should not collide in physical

memory. Obviously, unexpected overlap causes chaos!
– Conversely, would like the ability to overlap when desired (for

communication)
• Translation:

– Ability to translate accesses from one address space (virtual)
to a different one (physical)

– When translation exists, processor uses virtual addresses,
physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

Lec 11.393/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 11.403/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Binding of Instructions and Data to Memory

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

Physical addresses

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

Lec 11.413/5/19 Kubiatowicz CS162 ©UCB Spring 2019

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical
Memory

Binding of Instructions and Data to Memory

Lec 11.423/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Second copy of program from previous example

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!

Lec 11.433/5/19 Kubiatowicz CS162 ©UCB Spring 2019

0x1300 00000020
… …

0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
…

0x1A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example

Lec 11.443/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Multi-step Processing of a Program for Execution
• Preparation of a program for execution

involves components at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final values
anywhere in this path

– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to locate

appropriate memory-resident library
routine

– Stub replaces itself with the address of
the routine, and executes routine

Lec 11.453/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Uniprogramming
• Uniprogramming (no Translation or Protection)

– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

Ad
dr

es
se

s

Lec 11.463/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Multiprogramming (primitive stage)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Lec 11.473/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Multiprogramming (Version with Protection)
• Can we protect programs from each other without

translation?

– Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area

» If user tries to access an illegal address, cause an error
– During switch, kernel loads new base/limit from PCB

(Process Control Block)
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

Lec 11.483/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: General Address translation

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (MMU) converts between the two views

• Translation makes it much easier to implement protection
– If task A cannot even gain access to task B’s data, no way for A to

adversely affect B
• With translation, every program can be linked/loaded into same

region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Lec 11.493/5/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary
• Linux CFS Scheduler

– Fair fraction of CPU to threads, modulated by priority
– Approximates an “ideal” multitasking processor

• Real-time schedulingNeed to meet a deadline, predictability
essential

– Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never occur

