
CS162
Operating Systems and
Systems Programming

Lecture 10

Language Support for Synchronization
Scheduling

February 26th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 10.22/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Monitors and Condition Variables
• Monitor: a lock and zero or more condition variables for

managing concurrent access to shared data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the language

• Condition Variable: a queue of threads waiting for something
inside a critical section

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep. Re-
acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Lec 10.32/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Complete Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}

Lec 10.42/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 10.52/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: (Mesa) Monitor Pattern
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can

proceed to recheck their condition
• Basic structure of monitor-based program:

lock
while (need to wait) {

condvar.wait();
}
unlock

do something so no need to wait

lock

condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 10.62/26/19 Kubiatowicz CS162 ©UCB Spring 2019

C-Language Support for Synchronization
• C language: Pretty straightforward synchronization

– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();
…
if (exception) {

lock.release();
return errReturnCode;

}
…
lock.release();
return OK;

}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to

procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

Lec 10.72/26/19 Kubiatowicz CS162 ©UCB Spring 2019

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a non-
local exit without releasing lock)

– Must catch all exceptions in critical sections!

• Example: Catch exception, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re‐throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}

• Much Better: lock_guard<T> or unique_lock<T> facilities. See C++ Spec.
– Will deallocate/free lock regardless of exit method
– Part of the “Resource acquisition is initialization” (RAII) design pattern

Lec 10.82/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Java Language Support for Synchronization
• Java has explicit support for threads and thread

synchronization
• Bank Account example:

class Account {
private int balance;

// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}
• Every Java object has an associated lock for synchronization:

– Lock is acquired on entry and released on exit from
synchronized method

– Lock is properly released if exception occurs inside
synchronized method

Lec 10.92/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Java Language Support for Synchronization (con’t)
• In addition to a lock, every object has a single condition

variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

Lec 10.102/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Recall: Scheduling

• Question: How is the OS to decide which of several tasks to
take off a queue?

• Scheduling: deciding which threads are given access to
resources from moment to moment

– Often, we think in terms of CPU time, but could also think
about access to resources like network BW or disk access

Lec 10.112/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem
so it can be solved

– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five times as
much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time
Lec 10.122/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU
and I/O

– Program typically uses the CPU for some period of time, then
does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the CPU
for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst

Weighted toward small bursts

Lec 10.132/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than
if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
Lec 10.142/26/19 Kubiatowicz CS162 ©UCB Spring 2019

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process stuck behind long process

P1 P2 P3

24 27 300

Lec 10.152/26/19 Kubiatowicz CS162 ©UCB Spring 2019

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– Average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about Space Aliens!

P1P3P2

63 300

Lec 10.162/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Administrivia
• Midterm on Thursday 2/28 8pm-10pm

– Dwinelle (Room 145): Last digit SID: 0, 1
– Hearst Field Annex (A1): Last digit SID: 2, 4
– Pimentel Hall (Room 1): Last digit SID: 3, 5, 6, 7, 8, 9
– DSP students (will get special instruction via e-mail)

• Closed book, no calculators, one double-side letter-sized
page of handwritten notes

– Covers Lectures 1-9, readings, homework 1, and project 1

Lec 10.172/26/19 Kubiatowicz CS162 ©UCB Spring 2019

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you don’t

care who is behind you, on the other hand…
• Round Robin Scheme

– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

Round Robin (RR) Scheduling

Lec 10.182/26/19 Kubiatowicz CS162 ©UCB Spring 2019

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)

RR Scheduling (Cont.)

Lec 10.192/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Lec 10.202/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– Need to balance short-job performance and long-job

throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.212/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always

better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with RR

but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 10.222/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.232/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Handling Differences in Importance:
Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority jobs
– Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens when low
priority task has lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even
though high-priority task should be running

• How to fix problems?
– Dynamic priorities – adjust base-level priority up or down based on

heuristics about interactivity, locking, burst behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Lec 10.242/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):

» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!

Lec 10.252/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Fairness
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running

ones?
» Like express lanes in a supermarket—sometimes

express lanes get so long, get better service by going
into one of the other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase

priorities?
» And, as system gets overloaded, no job gets CPU

time, so everyone increases in priorityInteractive
jobs suffer

Lec 10.262/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Lottery Scheduling
• Yet another alternative: Lottery Scheduling

– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of

tickets given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one ticket
(everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes

– Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses

Lec 10.272/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Lottery Scheduling Example (Cont.)
• Lottery Scheduling Example

– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?

» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

Lec 10.282/26/19 Kubiatowicz CS162 ©UCB Spring 2019

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run

against actual data – most flexible/general

Lec 10.292/26/19 Kubiatowicz CS162 ©UCB Spring 2019

How to Handle Simultaneous
Mix of Diff Types of Apps?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers,

workstations, pads, and cellphones?
• For instance, is Burst Time (observed) useful to decide which

application gets CPU time?
– Short Bursts  Interactivity  High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must be interactive apps –

they should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t

notice intermittent bursts from interactive apps
• Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a
long time?

– Or, what about apps that must run under all circumstances (say
periodically)

Lec 10.302/26/19 Kubiatowicz CS162 ©UCB Spring 2019

What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has least amount of
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)
• Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time
to completion than the remaining time on the current job,
immediately preempt CPU

– Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 10.312/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Discussion
• SJF/SRTF are the best you can do at minimizing average

response time
– Provably optimal (SJF among non-preemptive, SRTF among

preemptive)
– Since SRTF is always at least as good as SJF, focus on SRTF

• Comparison of SRTF with FCFS
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if
all jobs the same length)

– What if jobs have varying length?
» SRTF: short jobs not stuck behind long ones

Lec 10.322/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for week

C: I/O bound, loop 1ms CPU, 9ms disk I/O
– If only one at a time, C uses 90% of the disk, A or B could

use 100% of the CPU
• With FCFS:

– Once A or B get in, keep CPU for two weeks
• What about RR or SRTF?

– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 10.332/26/19 Kubiatowicz CS162 ©UCB Spring 2019

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots
of wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 10.342/26/19 Kubiatowicz CS162 ©UCB Spring 2019

• Starvation
– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users
• Bottom line, can’t really know how long job will take

– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

SRTF Further discussion

Lec 10.352/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series estimation
schemes (Kalman filters, etc)

– For instance,
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 10.362/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.372/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.382/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Scheduling Details

• Countermeasure: user action that can foil intent of
the OS designers

– For multilevel feedback, put in a bunch of meaningless I/O
to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing at
higher priority the competitors.

» Put in printf’s, ran much faster!

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.392/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for nice values)
– Highest priority value  Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job
finishes time slice

» 140-bit bit mask indicates presence or absence of job at given
priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed

on the expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice

range
– Like a multi-level queue (one queue per priority) with different

timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin

through priority

Kernel/Realtime Tasks User Tasks

0 100 139

Lec 10.402/26/19 Kubiatowicz CS162 ©UCB Spring 2019

O(1) Scheduler Continued
• Heuristics

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg  more I/O bound the task, more reward (and

vice versa)
– Interactive Credit

» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for

temporary changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has been

starved for too long…
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst

tasks of same priority

Lec 10.412/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use

heuristics to identify interactive tasks—it just makes sure
every process gets a fair share of CPU within a set amount
of time given the number of runnable processes on the
CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N

processes execute simultaneously as if they truly got 1/N of
the processor

» Tries to give each process an equal fraction of the processor
– Priorities reflected by weights such that increasing a task’s

priority by 1 always gives the same fractional increase in
CPU time – regardless of current priority

Lec 10.422/26/19 Kubiatowicz CS162 ©UCB Spring 2019

CFS (Continued)
• Idea: track amount of “virtual time” received by each process

when it is executing
– Take real execution time, scale by weighting factor

» higher priority  real time divided by larger weight
» Actually – multiply by sum of all weights/current weight

– Keep virtual time advancing at same rate
• Targeted latency (𝑻𝑳): period of time after which all

processes get to run at least a little
– Each process runs with quantum 𝑾𝒑 ∑𝑾𝒊⁄ ൈ 𝑻𝑳
– Never smaller than “minimum granularity”

• Use of Red-Black tree to hold all runnable processes as
sorted on vruntime variable

– O(log n) time to perform insertions/deletions
» Cash the item at far left (item with earliest vruntime)

– When ready to schedule, grab version with smallest vruntime
(which will be item at the far left).

Lec 10.432/26/19 Kubiatowicz CS162 ©UCB Spring 2019

CFS Examples
• Suppose Targeted latency = 20ms,

Minimum Granularity = 1ms
• Two CPU bound tasks with same priorities

– Both switch with 10ms
• Nice values scale weights exponentially: Weight=1024/(1.25)nice

• Two CPU bound tasks separated by nice value of 5
– One task gets 5ms, another gets 15ms

• 40 tasks: each gets 1ms (no longer totally fair)
• One CPU bound task, one interactive task same priority

– While interactive task sleeps, CPU bound task runs and increments
vruntime

– When interactive task wakes up, runs immediately, since it is behind on
vruntime

• Group scheduling facilities (2.6.24)
– Can give fair fractions to groups (like a user or other mechanism for

grouping processes)
– So, two users, one starts 1 process, other starts 40, each will get 50% of

CPU
Lec 10.442/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to predict with confidence worst case response times for
systems

– In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

– In conventional systems, performance is:
» System/throughput oriented with post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal fast
computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

• Soft Real-Time
– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

Lec 10.452/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival
(=release) times

• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

Lec 10.462/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Example: Round-Robin Scheduling Doesn’t Work

Time

Lec 10.472/26/19 Kubiatowicz CS162 ©UCB Spring 2019

• Tasks periodic with period P and computation C in each
period: (𝑃௜, 𝐶௜) for each task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close

the absolute deadline is (i.e. 𝐷௜௧ାଵ ൌ 𝐷௜௧ ൅ 𝑃௜for each task!)
– The scheduler always schedules the active task with the

closest absolute deadline

• Schedulable when ∑ ஼೔௉೔ ൑ 1௡௜ୀଵ

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

Lec 10.482/26/19 Kubiatowicz CS162 ©UCB Spring 2019

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness

really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay

for itself in improved response time
» Perhaps you’re paying for worse response

time in reduced productivity, customer angst,
etc…

» Might think that you should buy a faster X
when X is utilized 100%, but usually, response
time goes to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse

tim
e 100%

Lec 10.492/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (1 of 2)
• Round-Robin Scheduling:

– Give each thread a small amount of CPU time when it executes;
cycle between all ready threads

– Pros: Better for short jobs
• Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):
– Run whatever job has the least amount of computation to

do/least remaining amount of computation to do
– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF

Lec 10.502/26/19 Kubiatowicz CS162 ©UCB Spring 2019

Summary (2 of 2)
• Lottery Scheduling:

– Give each thread a priority-dependent number of tokens (short
tasksmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates a “ideal” multitasking processor

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed

set of processes?

