
HW 3: Malloc

CS 162

Due: March 24, 2019

1 Introduction

Your task in this assignment is to implement your own memory allocator from scratch. This will expose
you to POSIX interfaces, force you to reason about memory, and pose interesting algorithmic challenges.

The man pages for malloc and sbrk are excellent resources for this assignment.

Note: you must use sbrk to allocate the heap region. You are not allowed to call the standard
malloc/free/realloc functions (that would defeat the purpose of the homework...).

2 Setup

cd ~/code/personal

git pull staff master

cd hw3

You will find a simple skeleton in mm_alloc.c. mm_alloc defines an interface with three functions
mm_malloc, mm_free, mm_realloc. You will need to implement these functions. Do not change the
names! You will also find a file named mm_test.c, which contains code to load your implementation
and a basic sanity check. Feel free to change this file as it won’t be graded.

1



CS 162 Spring 2019 HW 3: Malloc

3 Background: Getting Memory from the OS

3.1 Process Memory

Each process has its own virtual address space. Parts of this address space are mapped to physical
memory through address translation. In order to build a memory allocator, we need to understand how
the heap in particular is structured.

The heap is a continuous (in terms of virtual addresses) space of memory with three bounds:

• The bottom of the heap.

• The top of the heap, known as the break. The break can be changed using brk and sbrk. The
break marks the end of the mapped memory space. Above the break lies virtual addresses which
have not been mapped to physical addresses by the OS.

• The hard limit of the heap, which the break cannot surpass (managed through sys/resource.h’s

functions getrlimit(2) and setrlimit(2))

In this assignment, you’ll be allocating blocks of memory in the mapped region and moving the break
appropriately whenever you need to expand the mapped region.

2



CS 162 Spring 2019 HW 3: Malloc

3.2 sbrk

Initially the mapped region of the heap will have a size of 0. To expand the mapped region, we have to
manipulate the position of the break. The recommended syscall for doing this is sbrk.

void *sbrk(int increment);

sbrk increments the position of the break by increment bytes and returns the address of the previous
break (i.e. the beginning of newly mapped memory). To get the current position of the break, pass in
an increment of 0. For more information, read the man page.

3.3 Heap Data Structure

A simple memory allocator can be implemented using a linked list data structure. The elements of the
linked list will be the allocated blocks of memory on the heap. To structure our data, each allocated
block of memory will be preceded by a header containing metadata.

For each block, we include the following metadata:

• prev, next: pointers to metadata describing the adjacent blocks

• free: a boolean describing whether or not this block is free

• size: the allocated size of the block of memory

You might also consider using a zero-length array to serve as a pointer to the memory block.

3

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html


CS 162 Spring 2019 HW 3: Malloc

4 Your Assignment

There are many ways to structure a memory allocator. You will be implementing a memory allocator
using a linked list of memory blocks, as described in the previous section. In this section, we’ll describe
how allocation, deallocation, and reallocation should work in this scheme.

4.1 Allocation

void *mm_malloc(size_t size);

The user will pass in the requested allocation size. Make sure the returned pointer is pointing to the
beginning of the allocated space, not your metadata header.

One simple algorithm for finding available memory is called first fit. When your memory allocator
is called to allocate some memory, it iterates through its blocks until it finds a sufficiently large free
block of memory.

• If no sufficiently large free block is found, use sbrk to create more space on the heap.

• If the first block of memory you find is so big that it can accommodate both the newly allocated
block and another block in addition, then the block is split in two; one block to hold the newly
allocated block, and a residual free block. If it’s a bit larger than what you need, but not big
enough for a new block (i.e. it’s not big enough to hold the metadata of a new block), be aware
that you will have some unused space at the end of the block.

• Return NULL if you cannot allocate the new requested size.

• Return NULL if the requested size is 0.

• For ease of grading, we ask that you zero-fill your allocated memory before returning a pointer to
it.

4.2 Deallocation

void mm_free(void *ptr);

When a user is done using their memory, they’ll call upon your memory allocator to free their memory,
passing in the pointer ptr that they received from mm alloc. Deallocating doesn’t mean you have to
release the memory back to the OS; you’ll just be able to allocate that block for something else now.

• As a side-effect of splitting blocks in your allocation procedure, you might run into issues of
fragmentation: when your blocks become too small for large allocation requests, even though
you have a sufficiently large section of free memory. To solve this, you must coalesce consecutive
free blocks upon freeing a block that is adjacent to other free block(s).

• Your deallocation function should do nothing if passed a NULL pointer.

4.3 Reallocation

void* mm_realloc(void* ptr, size_t size);

Reallocation should resize the allocated block at ptr to size. A suggested implementation is to first
free the block referenced by ptr, then mm alloc a block of the specified size, and finally memcpy the old
data over. The new extended area should be zero-filled. Make sure you handle the following edge cases.

• Return NULL if you cannot allocate the new requested size. In this case, do not modify the original
block.

4



CS 162 Spring 2019 HW 3: Malloc

• realloc(ptr, 0) is equivalent to calling mm free(ptr) and returning NULL.

• realloc(NULL, n) is equivalent to calling mm alloc(n).

• realloc(NULL, 0) is equivalent to calling mm alloc(0), which should just return NULL.

• Make sure you handle the case where the argument size is less than the original size.

5 Submission Details

To submit and push to autograder, first commit your changes, then do:

git push personal master

Within 30 minutes you should receive an email from the autograder. (If you havent received an email
within half an hour, please notify the instructors via a private post on Piazza.)

5



CS 162 Spring 2019 HW 3: Malloc

A Extra Information

A.1 Unmapped Region and No Man’s Land

We saw earlier that the break marks the end of the mapped virtual address space. By this assumption,
accessing addresses above the break should trigger an error (“bus error” or “segmentation fault”).

The virtual address space is mapped in quanta of pages (usually some multiple of 4096 bytes). When
sbrk is called, the OS will have to map more memory to the heap. To do that, it maps an entire page
from physical memory to the mapped region of the heap. Now, it is possible that the break doesn’t end
up exactly on a page boundary. In this situation, what is the status of the memory between the break
and the page boundary? It turns out that this memory is accessible, even though it is above the break
and thus should be unmapped in theory. Bugs related to this issue are particularly insidious, because
no error will occur if you read from or write to this “no man’s land.”

6



CS 162 Spring 2019 HW 3: Malloc

B ε Bonus

The ε bonus isn’t worth extra points.
There are many things you can do to improve your allocator. (Warning: The autograder expects you
to use the first-fit algorithm. If you want to do extra features, do them only AFTER you’ve gotten full
credit on the autograder.)

• Make it threadsafe! This doesn’t mean putting a lock around all calls to malloc, but actually
protecting the data structures such that multiple threads can make allocations at the same time.
A good way to do this (not the only way) is to lock certain sizes of allocations, so two threads
asking for 4kb would block, but two thread askings for 4kb and 32kb would not block.

• You can improve your allocation algorithm. First fit is one of the simplest to implement. Another
more advanced strategy is the buddy allocator.

• Implement realloc properly to extend the current allocation block if possible.

C Other Data Structures

• A list of free blocks for each allocation size. The advantage here is that malloc can be a constant
time operation if a sufficiently large free block exists, as opposed to the linear time operation of
iterating over a linked list in search of a large enough free block, without even knowing if there
exists such a block.

• A free interval tree. These let you represent every memory allocation as an extent (start,

length). The leaves of the tree correspond to regions of unused memory. If N bytes are requested,
it should be possible to scan the interval tree for (> N)-sized pieces of memory in O(log n) time,
so long as it’s properly balanced.

7

http://en.wikipedia.org/wiki/Buddy_memory_allocation

	Introduction
	Setup
	Background: Getting Memory from the OS
	Process Memory
	sbrk
	Heap Data Structure

	Your Assignment
	Allocation
	Deallocation
	Reallocation

	Submission Details
	Extra Information
	Unmapped Region and No Man's Land

	 Bonus
	Other Data Structures

