
Section 8: Wait/Exit, Address Translation

October 7, 2015

Contents

1 Wait and Exit 2
1.1 Thinking about what you need to do . 2
1.2 Code . 2

2 Vocabulary 3

3 Problems 4
3.1 Conceptual Questions . 4
3.2 Address Translation . 5
3.3 Inverted Page Tables . 6
3.4 Page Fault Handling for Pages Only On Disk . 8

1

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

1 Wait and Exit

This problem is designed to help you with implementing wait and exit in your project. Recall that wait
suspends execution of the parent process until the child process specified by the parameter id exits, upon
which it returns the exit code of the child process. In Pintos, there is a 1:1 mapping between processes
and threads.

1.1 Thinking about what you need to do

”wait” requires communication between a process and its children, usually implemented through shared
data. The shared data might be added to struct thread, but many solutions separate it into a separate
structure. At least the following must be shared between a parent and each of its children:

- Child’s exit status, so that ”wait” can return it.
- Child’s thread id, for ”wait” to compare against its argument.
- A way for the parent to block until the child dies (usually a semaphore).
- A way for the parent and child to tell whether the other is already dead, in a race-free fashion (to

ensure that their shared data can be freed).

1.2 Code

Data structures to add to thread.h for waiting logic:

Pseudocode:

process_wait (tid_t child_tid) {

iterate through list of child processes

if child process tid matches tid parameter, call sema_down

on the semaphore associated with that child process (when

child process exits, it will sema_up on that same semaphore,

waking up the parent process)

--- after waking ---

set exit code to terminated child process’s exit code

decrease ref_cnt of child //why? need to free memory, "zombie processes"

return exit_code

}

process_exit (void) {

sema_up on semaphore that parent might be sleeping on

remove all child processes from child process list

decrement ref_cnt

}

Code:

struct wait_status

{

struct list_elem elem; /* ‘children’ list element. */

struct lock lock; /* Protects ref_cnt. */

2

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

int ref_cnt; /* 2=child and parent both alive,

1=either child or parent alive,

0=child and parent both dead. */

tid_t tid; /* Child thread id. */

int exit_code; /* Child exit code, if dead. */

struct semaphore dead; /* 1=child alive, 0=child dead. */

};

struct wait_status *wait_status; /* This process’s completion state. */

struct list children; /* Completion status of children. */

Implement wait:

- Find the child in the list of shared data structures.

(If none is found, return -1.)

- Wait for the child to die, by downing a semaphore in the

shared data.

- Obtain the child’s exit code from the shared data.

- Destroy the shared data structure and remove it from the

list.

- Return the exit code.

Implement exit:

- Save the exit code in the shared data.

- Up the semaphore in the data shared with our parent

process (if any). In some kind of race-free way (such

as using a lock and a reference count or pair of boolean

variables in the shared data area), mark the shared data

as unused by us and free it if the parent is also dead.

- Iterate the list of children and, as in the previous

step, mark them as no longer used by us and free them if

the child is also dead.

- Terminate the thread.

3

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

2 Vocabulary

• Exit syscall - A computer process terminates its execution by making an exit system call. An
exit in a multithreading environment means that a thread of execution has stopped running. For
resource management, the operating system reclaims resources (memory, files, etc.) that were used
by the process. The process is said to be a dead process after it terminates.

• Wait syscall - A process may wait on another process to complete its execution. In most systems,
a parent process can create an independently executing child process. The parent process may then
issue a wait system call, which suspends the execution of the parent process while the child executes.
When the child process terminates, it returns an exit status to the operating system, which is then
returned to the waiting parent process. The parent process then resumes execution.

• Zombie processes - When a child process terminates, it becomes a zombie process, and continues
to exist as an entry in the system process table even though it is no longer an actively executing
program. Under normal operation it will typically be immediately waited on by its parent, and
then reaped by the system, reclaiming the resource (the process table entry). If a child is not
waited on by its parent, it continues to consume this resource indefinitely, and thus is a resource
leak. Such situations are typically handled with a special ”reaper” process that locates zombies
and retrieves their exit status, allowing the operating system to then deallocate their resources. In
project 2, if you’re mallocing some shared memory for communication between a parent and child,
make sure you free this memory after a process is completely dereferenced (i.e. parent+children
are all finished executing)

• Virtual Memory - Virtual Memory is a memory management technique in which every process
operates in its own address space, under the assumption that it has the entire address space to
itself. A virtual address requires translation into a physical address to actually access the system’s
memory.

• Memory Management Unit - The memory management unit (MMU) is responsible for trans-
lating a process’ virtual addresses into the corresponding physical address for accessing physical
memory. It does all the calculation associating with mapping virtual address to physical addresses,
and then populates the address translation structures.

• Address Translation Structures - There are two kinds you learned about in lecture: segmen-
tation and page tables. Segments are linearly addressed chunks of memory that typically contain
logically-related information, such as program code, data, stack of a single process. They are of
the form (s,i) where memory addresses must be within an offset of i from base segment s. A page
table is the data structure used by a virtual memory system in a computer operating system to
store the mapping between virtual addresses and physical addresses. Virtual addresses are used
by the accessing process, while physical addresses are used by the hardware or more specifically to
the RAM.

• Inverted Page Table - The inverted page table scheme uses a page table that contains an entry
for each phiscial frame, not for each logical page. This ensures that the table occupies a fixed
fraction of memory. The size is proportional to physical memory, not the virtual address space.
The inverted page table is a global structure – there is only one in the entire system. It stores
reverse mappings for all processes. Each entry in the inverted table contains has a tag containing
the task id and the virtual address for each page. These mappings are usually stored in associative
memory (remember fully associative caches from 61C?). Associatively addressed memory compares
input search data (tag) against a table of stored data, and returns the address of matching data.
They can also use actual hash maps.

4

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

• translation lookaside buffer (TLB) - A translation lookaside buffer (TLB) is a cache that
memory management hardware uses to improve virtual address translation speed. It stores virtual
address to physical address mappings, so that the MMU can store recently used address mappings
instead of having to retrieve them mutliple times through page table accesses.

3 Problems

3.1 Conceptual Questions

If the physical memory size (in bytes) is doubled, how does the number of bits in each entry of the page
table change?

increases by 1 bit. Assuming the page size remains the same, there are now twice as many physical
pages, so the physical page number needs to expand by 1 bit.

If the physical memory size (in bytes) is doubled, how does the number of entries in the page map
change?

no change. The number of entries in the page table is determined by the size of the virtual address
and the size of a page – it’s not affected by the size of physical memory.

If the virtual memory size (in bytes) is doubled, how does the number of bits in each entry of the
page table change?

no change. The number of bits in a page table entry is determined by the number of control bits
(usually 2: dirty and resident) and the number of physical pages – the size of each entry is not
affected by the size of virtual memory.

If the virtual memory size (in bytes) is doubled, how does the number of entries in the page map
change?

the number of entries doubles. Assuming the page size remains the same, there are now twice as
many virtual pages and so there needs to be twice as many entries in the page map.

If the page size (in bytes) is doubled, how does the number of bits in each entry of the page table
change?

each entry is one bit smaller. Doubling the page size while maintaining the size of physical memory
means there are half as many physical pages as before. So the size of the physical page number field
decreases by one bit.

If the page size (in bytes) is doubled, how does the number of entries in the page map change?

there are half as many entries. Doubling the page size while maintaining the size of virtual memory
means there are half as many virtual pages as before. So the number of page table entries is also
cut in half.

5

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

The following table shows the first 8 entries in the page map. Recall that the valid bit is 1 if the
page is resident in physical memory and 0 if the page is on disk or hasn’t been allocated.

6

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

Valid Bit Physical Page
0 7
1 9
0 3
1 2
1 5
0 5
0 4
1 1

If there are 1024 bytes per page, what is the physical address corresponding to the hexadecimal
virtual address 0xF74?

the virtual page number is 3 with a page offset of 0x374. Looking up page table entry for virtual
page 3, we see that the page is resident in memory (valid bit = 1) and lives in physical page 2. So
the corresponding physical address is (2<<10)+0x374 = 0xB74

3.2 Address Translation

Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes. How many levels of page tables would be required to map a 46-bit virtual address space if
every page table fits into a single page?

Since each PTE is 4 bytes and each page contains 8KB, then a one-page page table would point to
2048 or 211 pages, addressing a total of 211 * 213 = 224 bytes.

Depth 1 = 224 bytes
Depth 2 = 235 bytes
Depth 3 = 246 bytes
So in total, 3 levels of page tables are required.

List the fields of a Page Table Entry (PTE) in your scheme.

Each PTE will have a pointer to the proper page, PPN, plus several bits read, write, execute, and
valid. This information can all fit into 4 bytes, since if physical memory is 233 bytes, then 20 bits
will be needed to point to the proper page, leaving ample space (12 bits) for the information bits.

Without a cache or TLB, how many memory operations are required to read or write a single 32-bit
word?

Without extra hardware, performing a memory operation takes 4 actual memory operations: 3 page
table lookups in addition to the actual memory operation.

With a TLB, how many memory operations can this be reduced to? Best-case scenario? Worst-case
scenario?

Best-case scenario: 2 memory lookups. once in TLB, once for actual memory operation. Worst-case
scenario: 5 memory lookups. once in TLB + 3 page table lookups in addition to the actual memory
operation.

7

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

The pagemap is moved to main memory and accessed via a TLB. Each main memory access takes
50 ns and each TLB access takes 10 ns. Each virtual memory access involves:

- mapping VPN to PPN using TLB (10 ns)
- if TLB miss: mapping VPN to PPN using page map in main memory (50 ns)
- accessing main memory at appropriate physical address (50 ns)
Assuming no page faults (i.e. all virtual memory is resident) what TLB hit rate is required for an

average virtual memory access time of 61ns.

(10+50)*x+(1-x)*(50+10+50) = 61

solve for x gives x = .98 = 98% hit rate

Assuming a TLB hit rate of .50, how does the average virtual memory access time of this scenario
compare to no TLB?

3.3 Inverted Page Tables

Why IPTs? Consider the following case:
- 64-bit virtual address space
- 4 KB page size
- 512 MB physical memory
How much space (memory) needed for a single level page table? Hint: how many entries are there?

1 per virtual page. What is the size of a page table entry? access control bits + physical page .

One entry per virtual page

- 2^64 addressable bytes / 2^12 bytes per page = 2^52 page table entries

Page table entry size

- 512 MB physical memory = 2^29 bytes

- 2^29 bytes of memory/2^12 bytes per page = 2^17 physical pages

- 17 bits needed for physical page number

Page table entry = ~4 bytes

- 17 bit physical page number = ~3 bytes

- Access control bits = ~1 byte

Page table size = page table entry size * # total entries

2^52 page table entries * 2^2 bytes = 2^54 bytes (16 petabytes)

i.e. A WHOLE LOT OF MEMORY

How about multi level page tables? Do they serve us any better here?
What is the number of levels needed to ensure that any page table requires only a single page (4

KB)?

Assume page table entry is 4 bytes

4 KB page / 4 bytes per page table entry =

1024 entries

8

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

10 bits of address space needed

ceiling(52/10) = 6 levels needed

7 memory accesses to do something? SLOW!!!

Linear Inverted Page Table
What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:
- 16 bits for process ID
- 52 bit virtual page number (same as calculated above)
- 12 bits of access information

add up all bits = 80 bits = 10 bytes

- 10 bytes * # of physical pages = 10 * 2^17 = 2^3 * 2^17 = 1 MB

Iterate through all entries.

For each entry in the inverted page table,

compare process ID and virtual page

number in entry to the requested process

ID and virtual page number

Extremely slow. must iterate through 2^17 entries of the hash table

worst-case scenario.

Hashed Inverted Page Table
What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:
- 16 bits for process ID
- 52 bit virtual page number (same as calculated above)
- 12 bits of access information

add up all bits = 80 bits = 10 bytes

- 10 bytes * # of physical pages = 10 * 2^17 = 2^3 * 2^17 = 1 MB

Linear inverted page tables require too many

memory accesses.

- Keep another level before actual inverted page

table (hash anchor table)

Contains a mapping of process ID and virtual page

number to page table entries

- Use separate chaining for collisions

- Lookup in hash anchor table for page table entry

Compare process ID and virtual page number

- if match, then found

- if not match, check the next pointer for another page table

entry and check again

So, with a good hashing scheme and a hashmap proportional to

9

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

the size of physical memory, O(1) time. Very efficient!

3.4 Page Fault Handling for Pages Only On Disk

The page table maps vpn to ppn, but what if the page is not in main memory and only on disk? Think
about structures/bits you might need to add to the page table/OS to account for this. Write pseudocode
for a page fault handler to handle this.

Have a disk map structure that contains a disk address, and process id

for each ppn. Have each process be associated with a page table. Each of

these two tables describes the entire virtual memory address space, and

physical memory address space, respectively. The page table identifies

which ppn is associated with which vpn, and contains bits such as used,

modified, and presence to describe whether or not it is in physical

memory or only on disk. The disk map the corresponding disk address for

each ppn. The entire address space is on the disk, but only a subset of

it is resident in main memory.

page fault:

index: vpn, value: ppn

frame table:

index: ppn, value: process id, disk address

page table entry

p|u|m|f

p = presence flag

u = used flag

m = modified flag

f = page frame (ppn)

disk table entry

pid | disk address | bits/metadata for replacement algorithm

Page Fault Handler Pseudocode:

Using the replacement algorithm, iterate through the disk table and get

the number of a frame that will be used for the incoming page

10

CS 162 Fall 2015 Section 8: Wait/Exit, Address Translation

Swap the page currently in that frame to its slot on the disk

Swap the requested page from its slot on disk into the above frame

Update the page table entry so that vpn -> ppn and the presence flag is

set to true (since it’s now in main memory)

return

11

	Wait and Exit
	Thinking about what you need to do
	Code

	Vocabulary
	Problems
	Conceptual Questions
	Address Translation
	Inverted Page Tables
	Page Fault Handling for Pages Only On Disk

