
Section 5: Synchronization and Scheduling

September 19, 2015

Contents

1 Warmup 2
1.1 Hello World . 2

2 Vocabulary 2

3 Problems 3
3.1 Hello Word Continued . 3
3.2 Spot the Problem . 3
3.3 Baking with Condition Variables . 4
3.4 These Are The Locks You’re Looking For . 6
3.5 Only A Sith Deals In Absolute Conditions . 8
3.6 Life Ain’t Fair . 9
3.7 All Threads Must Die . 10

1

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

1 Warmup

1.1 Hello World

Will this code compile/run?
Why or why not?

pthread_mutex_t lock;

pthread_cond_t cv;

int hello = 0;

void print_hello() {

hello += 1;

printf("First line (hello=%d)\n", hello);

pthread_cond_signal(&cv);

pthread_exit(0);

}

void main() {

pthread_t thread;

pthread_create(&thread, NULL, (void *) &print_hello, NULL);

while (hello < 1) {

pthread_cond_wait(&cv, &lock);

}

printf("Second line (hello=%d)\n", hello);

}

This won’t work because the main thread should have locked the lock before calling pthread cond wait,
and the child thread should have locked the lock before calling pthread cond signal. (Also, we never
initialized the lock and cv.)

2 Vocabulary

• Lock - Synchronization variables that provide mutual exclusion. Threads may acquire or release
a lock. Only one thread may hold a lock at a time. If a thread attempts to acquire a lock that
is held by some other thread, it will block at that line of code until the lock is released and it
successfully acquires it. Implementations can vary.

• Scheduler - Routine in the kernel that picks which thread to run next given a vacant CPU and
a ready queue of unblocked threads. See next thread to run() in Pintos.

• Priority Inversion - If a higher priority thread is blocking on a resource (a lock, as far as
you’re concerned but it could be the Disk or other I/O device in practice) that a lower priority
thread holds exclusive access to, the priorities are said to be inverted. The higher priority thread
cannot continue until the lower priority thread releases the resource. This can be amended by
implementing priority donation.

• Priority Donation - If a thread attempts to acquire a resource (lock) that is currently being held,
it donates its effective priority to the holder of that resource. This must be done recursively until
a thread holding no locks is found, even if the current thread has a lower priority than the current
resource holder. (Think about what would happen if you didn’t do this and a third thread with
higher priority than either of the two current ones donates to the original donor.) Each thread’s
effective priority becomes the max of all donated priorities and its original priority.

2

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

• Condition Variable - A synchronization variable that provides serialization (ensuring that events
occur in a certain order). A condition variable is associated with:

– a lock (a condition variable + its lock are known together as a monitor)

– some boolean condition (e.g. hello < 1)

– a queue of threads waiting for the condition to be true

In order to access any CV functions OR to change the truthfulness of the condition, a thread
must/should hold the lock. Condition variables offer the following methods:

– cv wait(cv, lock) - Atomically unlocks the lock, adds the current thread to cv’s thread
queue, and puts this thread to sleep.

– cv notify(cv) - Removes one thread from cv’s queue, and puts it in the ready state.

– cv broadcast(cv) - Removes all threads from cv’s queue, and puts them all in the ready
state.

When a wait()ing thread is notified and put back in the ready state, it also re-acquires the lock
before the wait() function returns.
When a thread runs code that may potentially make the condition true, it should acquire the lock,
modify the condition however it needs to, call notify() or broadcast() on the condition’s CV, so
waiting threads can be notified, and finally release the lock.
Why do we need a lock anyway? Well, consider a race condition where thread 1 evaluates the
condition C as false, then thread 2 makes condition C true and calls cv.notify, then 1 calls
cv.wait and goes to sleep. Thread 1 might never wake up, since it went to sleep too late.

• Hoare Semantics - (In terms of condition variable) Wake a blocked thread when the condition is
true and transfer control of the CPU and ownership of the lock to that thread immediately. This
is difficult to implement in practice and generally not used despite being conceptually easier to
deal with.

• Mesa Semantics - (In terms of condition variable) Wake a blocked thread when the condition is
true, with no guarantee that the thread will execute immediately. The newly woken thread simply
gets put on the ready queue and is subject to the same scheduling mechanisms as any other thread.
The implication of this is that you must check the condition with a while loop instead of
an if statement because it is possible for the condition to change to false between the
time the thread was unblocked and the time it takes over the CPU.

3 Problems

3.1 Hello Word Continued

Add in the necessary code to the warmup to make it work correctly.

Acquire a lock before the cv is used and release it afterwards.

void print_hello() {

pthread_mutex_lock(&lock);

hello += 1;

printf("First line (hello=%d)\n", hello);

pthread_cond_signal(&cv);

pthread_mutex_unlock(&lock);

pthread_exit(0);

3

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

}

void main() {

pthread_t thread;

pthread_mutex_init(&lock, 0);

pthread_cond_init(&cv, 0);

pthread_create(&thread, NULL, (void *) &print_hello, NULL);

pthread_mutex_lock(&lock);

while (hello < 1) {

pthread_cond_wait(&cv, &lock);

}

pthread_mutex_unlock(&lock);

printf("Second line (hello=%d)\n", hello);

}

3.2 Spot the Problem

What is wrong with this code?

pthread_mutex_t lock;

pthread_cond_t cv;

int n = 3;

void counter() {

pthread_mutex_lock(&lock);

for (n = 3; n > 0; n--)

printf("%d\n", n);

pthread_cond_signal(&cv);

pthread_mutex_unlock(&lock);

}

void announcer() {

while (n != 0) {

pthread_mutex_lock(&lock);

pthread_cond_wait(&cv, &lock);

pthread_mutex_unlock(&lock);

}

printf("BLAST OFF!\n");

}

The lock in announcer() should be outside of the while loop. Or else, the announcer thread might
never wake up.

3.3 Baking with Condition Variables

A number of people are trying to bake cakes. Unfortunately, they each know only one skill, so they
need to all work together to bake cakes. Use independent threads (one person is one thread) which
communicate through condition variables to solve the problem. A skeleton has been provided, fill in the
blanks to make the implementation work.

A cake requires:

4

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

• 1 cake batter

• 2 eggs

Instructions:

1. Add ingredients to bowl

2. Heat bowl (it’s oven-safe)

3. Eat the cake, clean out the bowl, and go back to step 1

Requirements:

• Don’t start heating the cake in the oven unless there are exactly the right number of ingredients
in the bowl.

• Don’t add raw ingredients to a currently-baking cake or a finished cake.

• Don’t eat the cake unless it’s done baking.

• Given enough time, the code should bake an unbounded number of cakes, and should never stop.

int numBatterInBowl = 0;

int numEggInBowl = 0;

bool readyToEat = false;

pthread_mutex_t lock;

pthread_cond_t needIngredients;

pthread_cond_t readyToBake;

pthread_cond_t startEating;

void batterAdder()

{

pthread_mutex_lock(&lock);

while (1) {

__ {

}

addBatter(); // Sets numBatterInBowl += 1

}

}

void eggBreaker()

{

pthread_mutex_lock(&lock);

while (1) {

__ {

5

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

}

addEgg(); // Sets numEggInBowl += 1

}

}

void bowlHeater()

{

pthread_mutex_lock(&lock);

while (1) {

__ {

}

heatBowl(); // Sets readyToEat = true, numBatterInBowl = 0, numEggInBowl = 0

}

}

void cakeEater()

{

pthread_mutex_lock(&lock);

while (1) {

__ {

}

eatCake(); // Sets readyToEat = false and cleans the bowl for another cake

}

}

int main(int argc,char *argv[])

{

// Initialize mutex and condition variables

// Start threads: 1 batterAdder, 2 eggBreakers, 1 bowlHeater, and 1 cakeEater

// main() sleeps forever

int numBatterInBowl = 0;

int numEggInBowl = 0;

bool readyToEat = false;

pthread_mutex_t lock;

pthread_cond_t needIngredients;

pthread_cond_t readyToBake;

pthread_cond_t startEating;

6

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

void batterAdder()

{

pthread_mutex_lock(&lock);

while (1) {

while (numBatterInBowl || readyToEat) {

pthread_cond_wait(&needIngredients, &lock);

}

addBatter(); // Sets numBatterInBowl += 1

pthread_cond_signal(&readyToBake);

}

}

void eggBreaker()

{

pthread_mutex_lock(&lock);

while (1) {

while (numEggInBowl >= 2 || readyToEat) {

pthread_cond_wait(&needIngredients, &lock);

}

addEgg(); // Sets numEggInBowl += 1

pthread_cond_signal(&readyToBake);

}

}

void bowlHeater()

{

pthread_mutex_lock(&lock);

while (1) {

while (numBatterInBowl != 1 || numEggInBowl != 2) {

pthread_cond_wait(&readyToBake, &lock);

}

heatBowl(); // Sets readyToEat = true, numBatterInBowl = 0, numEggInBowl = 0

pthread_cond_signal(&startEating);

}

}

void cakeEater()

{

pthread_mutex_lock(&lock);

while (1) {

while (!readyToEat) {

pthread_cond_wait(&startEating, &lock);

}

eatCake(); // Sets readyToEat = false and cleans the bowl for another cake

pthread_cond_broadcast(&needIngredients);

}

}

int main(int argc,char *argv[])

7

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

{

// Initialize mutex and condition variables

// Start threads: 1 batterAdder, 2 eggBreakers, 1 bowlHeater, and 1 cakeEater

// main() sleeps forever

}

3.4 These Are The Locks You’re Looking For

What does C print in the following code? You may not assume anything about the scheduler other
than that it behaves with Mesa semantics. (i.e. could be RR, FIFO, priority) In general, user programs
should not depend on the scheduler and should run correctly regardless of the scheduler used.

int ben = 0;

void main() {

pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

if (ben==1) printf("These are not the droids you are looking for. ben = %d\n", ben);

else printf("These are the droids you are looking for! ben = %d\n", ben);

exit(0);

}

void *helper(void* arg) {

ben+=1;

pthread_exit(0);

}

The output of this program is undefined because there is a race condition

on the global variable ben.

The value of ben could change while it is being read by main,

or it could change after the value is checked but before the print is

executed.

Yields have no control over scheduling.

Declare a lock and use it to guarantee the print message of this program. Pseudocode is fine.

int ben = 0;

//LOCK L

void main() {

pthread_t thread;

//ACQUIRE L

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

if (ben==1) printf("These are not the droids you are looking for.\n");

else printf("These are the droids you are looking for!\n");

//RELEASE L

exit(0);

}

void *helper(void* arg) {

8

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

//ACQUIRE L

ben+=1;

//RELEASE L

pthread_exit(0);

}

First you must declare the lock as a global variable (so it goes in the data segment

and can be accessed by all threads.) Then with appropriate locking, the best you can

do in this case is making it always print "These are the droids you are looking for!"

Locks do not guarantee ordering, only mutual exclusion. If we acquire the lock

after the new thread is created, we guarantee that there is no race condition

on the variable ’ben’ but not its actual value, as the scheduler could preempt

the main thread and run the new

thread even before a yield is called.

Suppose we did the following instead to attempt to force serialization. What will this program print?
Does it add any extra synchronization protection?

int ben = 0;

void main() {

//INTR_DISABLE()

pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

if (ben==1) printf("These are not the droids you are looking for.\n");

else printf("These are the droids you are looking for!\n");

//INTR_ENABLE()

exit(0);

}

void *helper(void* arg) {

ben+=1;

pthread_exit(0);

}

We still don’t know for sure because disabling interrupts does not prevent you

from forcing your current thread to yield. (Note that yielding isn’t an interrupt.)

If the scheduler schedules the new thread after the yield,

it will always print "These are not the droids you are looking for."

If the scheduler schedules the main thread after the yield,

it will always print "These are the droids you are looking for!"

Because interrupts are disabled, the race condition on ben is gone

but like with locks the order of execution is still undefined.

9

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

3.5 Only A Sith Deals In Absolute Conditions

Consider the same block of code. How do you ensure that you always print out the canonically correct
line? Assume the scheduler behaves with Mesa semantics. (Pseudocode is OK) You may only add lines,
so the trivial answer of not checking the value of ben before printing is not correct.

int ben = 0;

void main() {

pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

if (ben==1) printf("These are not the droids you are looking for.\n");

else printf("These are the droids you are looking for!\n");

exit(0);

}

void *helper(void* arg) {

ben+=1;

pthread_exit(0);

}

int ben = 0;

//LOCK = L

//CONDVAR = C

void main() {

pthread_t thread;

//LOCK L ACQUIRE

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

//WHILE BEN != 1

//CONDVAR C WAIT

if (ben==1) printf("These are not the droids you are looking for.\n");

//SHOULD ALWAYS BE TRUE

else printf("These are the droids you are looking for!);

//LOCK L RELEASE

exit(0);

}

void *helper(void* arg) {

//LOCK L ACQUIRE

ben+=1;

//CONDVAR C SIGNAL

//LOCK L RELEASE

pthread_exit(0);

}

(Did not bother to use syntax for POSIX locks and condvars since it isn’t in PintOS)

10

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

3.6 Life Ain’t Fair

Suppose the following threads denoted by THREADNAME : PRIORITY pairs arrive in the ready queue
at the clock ticks shown. Assume all threads arrive unblocked and that each takes 5 clock ticks to finish
executing. Assume threads arrive in the queue at the beginning of the time slices shown and are ready
to be scheduled in that same clock tick. (This means you update the ready queue with the arrival before
you schedule/execute that clock tick.) Assume you only have one physical CPU.

0 Roger : 7

1

2 Jackson : 1

3 Andrew: 3

4

5 Aleks : 5

6

7 Will: 11

8

9 Alec: 14

Determine the order and time allocations of execution for the following scheduler scenarios:

• Round Robin with time slice 3

• Shortest Time Remaining First (SRTF/SJF) WITH preemptions

• Preemptive priority (higher is more important)

Write answers in the form of vertical columns with one name per row, each denoting one clock tick of
execution. For example, allowing Roger 3 units at first looks like:

0 Roger

1 Roger

2 Roger

It will probably help you to draw a diagram of the ready queue at each tick for this problem.

We’re assuming that threads that arrive always get scheduled earlier than threads that have already
been running or have just finished.

Explanation for RR:
From t=0 to t=3, Roger gets to run since there is initially no one else on the run queue. At

t=3, Roger gets preempted since the time slice is 3. Jackson is selected as the next person to run,
and Andrew gets added to the run queue (t=2.9999999) just before Roger (t=3).

Jackson is the next person to run from t=3 to t=6. At t=5, Aleks gets added to the run queue,
which consists of at this point: Andrew, Roger, Aleks

At t=6, Jackson gets preempted and Andrew gets to run since he is next. Jackson gets added
to the back of the queue, which consists of: Roger, Aleks, Jackson.

From t=6 to t=9, Andrew gets to run and then is preempted. Roger gets to run again from
t=9 to t=10, and then finishes executing. Aleks gets to run next and this pattern continues until
everyone has completed running.

RR:

0 Roger

1 Roger

2 Roger

3 Jackson

4 Jackson

11

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

5 Jackson

6 Andrew

7 Andrew

8 Andrew

9 Roger

10 Roger

11 Aleks

12 Aleks

13 Aleks

14 Jackson

15 Jackson

16 Will

17 Will

18 Will

19 Alec

20 Alec

21 Alec

22 Andrew

23 Andrew

24 Aleks

25 Aleks

26 Will

27 Will

28 Alec

29 Alec

Preemptive SRTF

0 Roger

1 Roger

2 Roger

3 Roger

4 Roger

5 Jackson

6 Jackson

7 Jackson

8 Jackson

9 Jackson

...

(Pretty much just like FIFO since every thread takes 5 ticks)

Preemptive Priority

0 Roger

1 Roger

2 Roger

3 Roger

4 Roger

5 Aleks

6 Aleks

7 Will

8 Will

9 Alec

10 Alec

11 Alec

12 Alec

13 Alec

12

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

14 Will

15 Will

16 Will

17 Aleks

18 Aleks

19 Aleks

20 Andrew

21 Andrew

22 Andrew

23 Andrew

24 Andrew

25 - 29 Jackson

13

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

3.7 All Threads Must Die

You have three threads with the associated priorities shown below. They each run the functions with
their respective names. Assume upon execution all threads are initially unblocked and begin at the top
of their code blocks. The operating system runs with a preemptive priority scheduler. You may assume
that set priority commands are atomic.

Tyrion : 4
Ned: 5
Gandalf: 11

Note: The following uses references to Pintos locks and data structures.

struct list braceYourself; // pintos list. Assume it’s already initialized and populated.

struct lock midTerm; // pintos lock. Already initialized.

struct lock isComing;

void tyrion(){

thread_set_priority(12);

lock_acquire(&midTerm);

lock_release(&midTerm);

thread_exit();

}

void ned(){

lock_acquire(&midTerm);

lock_acquire(&isComing);

list_remove(list_head(braceYourself));

lock_release(&midTerm);

lock_release(&isComing);

thread_exit();

}

void gandalf(){

lock_acquire(&isComing);

thread_set_priority(3);

while (thread_get_priority() < 11) {

printf("YOU .. SHALL NOT .. PAAASS!!!!!!);

timer_sleep(20);

}

lock_release(&isComing);

thread_exit();

}

What is the output of this program when there is no priority donation? Trace the program execution
and number the lines in the order in which they are executed.

void tyrion(){

5 thread_set_priority(12);

6 lock_acquire(&midTerm); //blocks

14

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

lock_release(&midTerm);

thread_exit();

}

void ned(){

3 lock_acquire(&midTerm);

4 lock_acquire(&isComing); //blocks

list_remove(list_head(braceYourself));

lock_release(&midTerm);

lock_release(&isComing);

thread_exit();

}

void gandalf(){

1 lock_acquire(&isComing);

2 thread_set_priority(3);

7 while (thread_get_priority() < 11) {

8 printf("YOU .. SHALL NOT .. PAAASS!!!!!!); //repeat till infinity

9 timer_sleep(20);

}

lock_release(&isComing);

thread_exit();

}

Gandalf, as you might expect, endlessly prints "YOU SHALL NOT PASS!!" every 20 clock ticks or so.

What is the output and order of line execution if priority donation was implemented? Draw a diagram
of the three threads and two locks that shows how you would use data structures and struct members
(variables and pointers, etc) to implement priority donation for this example.

void tyrion(){

8 thread_set_priority(12);

9 lock_acquire(&midTerm); //blocks

lock_release(&midTerm);

thread_exit();

}

void ned(){

3 lock_acquire(&midTerm);

4 lock_acquire(&isComing); //blocks

12 list_remove(list_head(braceYourself)); //KERNEL PANIC

lock_release(&midTerm);

lock_release(&isComing);

thread_exit();

}

void gandalf(){

1 lock_acquire(&isComing);

2 thread_set_priority(3);

5 while (thread_get_priority() < 11) { //priority is 5 first, but 12 at some later loop

6 printf("YOU .. SHALL NOT .. PAAASS!!!!!!);

15

CS 162 Fall 2015 Section 5: Synchronization and Scheduling

7 timer_sleep(20);

}

10 lock_release(&isComing);

11 thread_exit();

}

It turns out that Gandalf generally does mean well. Donations will make

Gandalf allow you to pass.

At some point Gandalf will sleep on a timer and leave Tyrion alone in the

ready queue.

Tyrion will run even though he has a lower priority (Gandalf has a 5

donated to him)

Tyrion then sets his priority to 12 and chain-donates to Gandalf. Gandalf

breaks his loop.

Ned unblocks after Gandalf exits.

However, allowing Ned to remove the head of a list will trigger an ASSERT

failure in lib/kernel/list.c.

Gandalf will print YOU SHALL NOT PASS at least once.

Then Ned will get beheaded and cause a kernel panic that crashes Pintos.

16

	Warmup
	Hello World

	Vocabulary
	Problems
	Hello Word Continued
	Spot the Problem
	Baking with Condition Variables
	These Are The Locks You're Looking For
	Only A Sith Deals In Absolute Conditions
	Life Ain't Fair
	All Threads Must Die

