
Section 3: Syscalls, I/O, Sockets, and Networking

September 11, 2015

Contents

1 Vocabulary 2

2 Problems 3
2.1 Signals . 3

2.1.1 Warmup . 4
2.1.2 Did you really want to quit? . 4

2.2 Dup and Dup2 . 4
2.2.1 Warmup . 4
2.2.2 Redirection: executing a process after dup2 . 5
2.2.3 Redirecting in a new process . 5

2.3 Practice with Sockets . 6

1

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

1 Vocabulary

• system call - In computing, a system call is how a program requests a service from an operating
system’s kernel. This may include hardware-related services (for example, accessing a hard disk
drive), creation and execution of new processes, and communication with integral kernel services
such as process scheduling.

• file descriptors - File descriptors are an index into a file-descriptor table stored by the kernel.
The kernel creates a file-descriptor in response to an open call and associates the file-descriptor
with some abstraction of an underlying file-like object; be that an actual hardware device, or a
file-system or something else entirely. Consequently a process’s read or write calls that reference
that file-descriptor are routed to the correct place by the kernel to ultimately do something useful.

• int open(const char *path, int oflags) - open is a system call that is used to open a new file
and obtain its file descriptor.

• size t read(int fildes, void *buf, size t nbytes) - read is a system call used to read data into
a buffer.

• size t write(int fildes, const void *buf, size t nbytes) - write is a system call that is used
to write data out of a buffer.

• int dup(int fildes) - creates an alias for the provided file descriptor. dup always uses the smallest
available file descriptor. Thus, if we called dup first thing in our program, then you could write
to standard output by using file descriptor 3 (dup uses 3 because 0, 1, and 2 are already signed to
stdin, stdout, stderr). You can determine the value of the new file descriptor by saving the return
value from dup.

• int dup2(int fildes, int fildes2) - dup2 is a system call similar to dup. It duplicates one file
descriptor, making them aliases, and then deleting the old file descriptor. This becomes very useful
when attempting to redirect output, as it automatically takes care of closing the old file descrip-
tor, performing the redirection in one elegant command. For example, if you wanted to redirect
standard output to a file, then you would simply call dup2, providing the open file descriptor for
the file as the first command and 1 (standard output) as the second command.

• client server model, sockets - Most interprocess communication uses the client server model.
These terms refer to the two processes which will be communicating with each other. One of the
two processes, the client, connects to the other process, the server, typically to make a request for
information. A good analogy is a person who makes a phone call to another person. Notice that
the client needs to know of the existence of and the address of the server, but the server does not
need to know the address of (or even the existence of) the client prior to the connection being
established.

Notice also that once a connection is established, both sides can send and receive information.

The system calls for establishing a connection are somewhat different for the client and the server,
but both involve the basic construct of a socket. A socket is one end of an interprocess communi-
cation channel. The two processes each establish their own socket.

The steps involved in establishing a socket on the client side are as follows:

1. Create a socket with the socket() system call

2. Connect the socket to the address of the server using the connect() system call

3. Send and receive data. There are a number of ways to do this, but the simplest is to use the
read() and write() system calls.

2

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

The steps involved in establishing a socket on the server side are as follows:

1. Create a socket with the socket() system call

2. Bind the socket to an address using the bind() system call. For a server socket on the
Internet, an address consists of a port number on the host machine.

3. Listen for connections with the listen() system call

4. Accept a connection with the accept() system call. This call typically blocks until a client
connects with the server.

5. Send and receive data

• Signals - A signal is a software interrupt, a way to communicate information to a process about
the state of other processes, the operating system, and the hardware. A signal is an interrupt in
the sense that it can change the flow of the program when a signal is delivered to a process, the
process will stop what its doing, either handle or ignore the signal, or in some cases terminate,
depending on the signal.

• int signal(int signum, void (*handler)(int)) - signal() is the primary system call for signal
handling, which given a signal and function, will execute the function whenever the signal is
delivered. This function is called the signal handler because it handles the signal.

2 Problems

2.1 Signals

The following is a list of standard Linux signals:

Signal Value Action Comment

--

SIGHUP 1 Term Hangup detected on controlling terminal

or death of controlling process

SIGINT 2 Term Interrupt from keyboard

SIGQUIT 3 Core Quit from keyboard

SIGILL 4 Core Illegal Instruction

SIGABRT 6 Core Abort signal from abort(3)

SIGFPE 8 Core Floating point exception

SIGKILL 9 Term Kill signal

SIGSEGV 11 Core Invalid memory reference

SIGPIPE 13 Term Broken pipe: write to pipe with no

readers

SIGALRM 14 Term Timer signal from alarm(2)

SIGTERM 15 Term Termination signal

SIGUSR1 30,10,16 Term User-defined signal 1

SIGUSR2 31,12,17 Term User-defined signal 2

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGCONT 19,18,25 Cont Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

SIGTSTP 18,20,24 Stop Stop typed at tty

SIGTTIN 21,21,26 Stop tty input for background process

SIGTTOU 22,22,27 Stop tty output for background process

3

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

2.1.1 Warmup

Will Ctrl-c stop the following program? How do we stop it?

int main(){

signal(SIGINT, SIG_IGN);

while(1);

}

No, we have to use Ctrl-\ to quit the program.

2.1.2 Did you really want to quit?

Fill in the blanks for the following function using syscalls such that when we type Ctrl-c , the user is
prompted with a message: “Do you really want to quit [y/n]? ”, and if “y” is typed, the program quits.
Otherwise, it continues along.

void sigint_handler(int sig)

{

char c;

printf(Ouch, you just hit Ctrl-C?. Do you really want to quit [y/n]?);

c = getchar();

if (c == y || c = Y)

exit(0);

}

int main() {

signal(SIGINT, sigint_handler);

...

}

2.2 Dup and Dup2

2.2.1 Warmup

What does C print in the following code?

int

main(int argc, char **argv)

{

int pid, status;

int newfd;

if ((newfd = open("output_file.txt", O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

exit(1);

}

printf("Luke, I am your...");

dup2(newfd, 1);

printf("father");

4

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

exit(0);

}

This prints "Luke, I am your " to standard output. Unfortunately,

"father" gets written to the output_file.txt.

2.2.2 Redirection: executing a process after dup2

Please refer to the dup2-c.c file in the section3/ folder in the Sections repo on Github. The code is also
below for convenience.
Describe what happens, and what the output will be.

int

main(int argc, char **argv)

{

int pid, status;

int newfd;

char *cmd[] = { "/bin/ls", "-al", "/", 0 };

if (argc != 2) {

fprintf(stderr, "usage: %s output_file\n", argv[0]);

exit(1);

}

if ((newfd = open(argv[1], O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

perror(argv[1]); /* open failed */

exit(1);

}

printf("writing output of the command %s to \"%s\"\n", cmd[0], argv[1]);

dup2(newfd, 1);

execvp(cmd[0], cmd);

perror(cmd[0]); /* execvp failed */

exit(1);

}

we get the name of the output file from the command line as before and set that

to be the standard output but now execute a command (ls -al / in this example).

The command sends its output to the standard output stream, which is now

the file that we created.

2.2.3 Redirecting in a new process

Please refer to the dup2-d.c file in the Sections repo on Github. If you do not have your laptop with
you, share with your neighbor.

Describe what happens, and what the output will be.

the result of ls -al gets written to the file specified by the input argument.

The parent then prints to the terminal ‘‘all done".

Note that we perform our dup2 call in the child so that we do not overwrite the

5

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

standard output of the parent. Finally, the parent waits for the child process

to terminate before continuing and printing to stdout.

2.3 Practice with Sockets

In this section, you will implement a client and server in C using stream sockets in the Internet domain.
Please fill out the blank lines.
The following syscalls and structs may be of use:

int socket(int domain, int type, int protocol);

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

struct hostent {

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward compatiblity */

};

Below are descriptions of the system calls:

• The bind() system call binds a socket to an address, in this case the address of the current host
and port number on which the server will run. It takes three arguments, the socket file descriptor,
the address to which is bound, and the size of the address to which it is bound. The second
argument is a pointer to a structure of type sockaddr, but what is passed in is a structure of type
sockaddr in, and so this must be cast to the correct type. This can fail for a number of reasons,
the most obvious being that this socket is already in use on this machine.

• The listen() system call allows the process to listen on the socket for connections. The first
argument is the socket file descriptor, and the second is the size of the backlog queue, i.e., the
number of connections that can be waiting while the process is handling a particular connection.

• The accept() system call causes the process to block until a client connects to the server. Thus, it
wakes up the process when a connection from a client has been successfully established. It returns
a new file descriptor, and all communication on this connection should be done using the new file
descriptor. The second argument is a reference pointer to the address of the client on the other
end of the connection, and the third argument is the size of this structure.

6

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

• The connect() function is called by the client to establish a connection to the server. It takes
three arguments, the socket file descriptor, the address of the host to which it wants to connect
(including the port number), and the size of this address. This function returns 0 on success and
-1 if it fails.

client code:

void error(const char *msg)

{

perror(msg);

exit(0);

}

int main(int argc, char *argv[])

{

int sockfd, portno, n;

struct sockaddr_in serv_addr;

struct hostent *server;

char buffer[256];

if (argc < 3) {

fprintf(stderr,"usage %s hostname port\n", argv[0]);

exit(0);

}

portno = atoi(argv[2]);

sockfd = socket(AF_INET, SOCK_STREAM, 0); //creates a new socket

if (sockfd < 0)

error("ERROR opening socket");

server = gethostbyname(argv[1]);

if (server == NULL) {

fprintf(stderr,"ERROR, no such host\n");

exit(0);

}

bzero((char *) &serv_addr, sizeof(serv_addr)); // sets all values in a buffer to zero

serv_addr.sin_family = AF_INET; // set address family

bcopy((char *)server->h_addr,

(char *)&serv_addr.sin_addr.s_addr,

server->h_length);

serv_addr.sin_port = htons(portno); // set port number of server

if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)

error("ERROR connecting");

printf("Please enter the message: ");

bzero(buffer,256);

fgets(buffer,255,stdin);

n = write(sockfd,buffer,strlen(buffer));

if (n < 0)

error("ERROR writing to socket");

bzero(buffer,256);

n = read(sockfd,buffer,255);

if (n < 0)

error("ERROR reading from socket");

printf("%s\n",buffer);

close(sockfd);

return 0;

}

7

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

server.c code:

/* A simple server in the internet domain using TCP

The port number is passed as an argument */

void error(const char *msg)

{

perror(msg);

exit(1);

}

int main(int argc, char *argv[])

{

int sockfd, newsockfd, portno;

socklen_t clilen;

char buffer[256];

struct sockaddr_in serv_addr, cli_addr;

int n;

if (argc < 2) {

fprintf(stderr,"ERROR, no port provided\n");

exit(1);

}

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)

error("ERROR opening socket");

bzero((char *) &serv_addr, sizeof(serv_addr));

portno = atoi(argv[1]);

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = INADDR_ANY;

serv_addr.sin_port = htons(portno);

if (bind(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0)

error("ERROR on binding");

listen(sockfd,5);

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd,

(struct sockaddr *) &cli_addr,

&clilen);

if (newsockfd < 0)

error("ERROR on accept");

bzero(buffer,256);

n = read(newsockfd,buffer,255);

if (n < 0) error("ERROR reading from socket");

printf("Here is the message: %s\n",buffer);

n = write(newsockfd,"I got your message",18);

if (n < 0) error("ERROR writing to socket");

close(newsockfd);

close(sockfd);

return 0;

}

Currently our server can only handle a single client connection before terminating. Can you rewrite
the server code so that it accepts and handles multiple connections? Hint: use fork().

8

CS 162 Spring 2015 Section 3: Syscalls, I/O, Sockets, and Networking

.... (same as above)

while (1) {

newsockfd = accept(sockfd,

(struct sockaddr *) &cli_addr, &clilen);

if (newsockfd < 0)

error("ERROR on accept");

pid = fork();

if (pid < 0)

error("ERROR on fork");

if (pid == 0) {

close(sockfd);

handle_connection(newsockfd);

exit(0);

}

else close(newsockfd);

} /* end of while */

return 0; /* we never get here */

}

void handle_connection (int sock)

{

int n;

char buffer[256];

bzero(buffer,256);

n = read(sock,buffer,255);

if (n < 0) error("ERROR reading from socket");

printf("Here is the message: %s\n",buffer);

n = write(sock,"I got your message",18);

if (n < 0) error("ERROR writing to socket");

}

9

	Vocabulary
	Problems
	Signals
	Warmup
	Did you really want to quit?

	Dup and Dup2
	Warmup
	Redirection: executing a process after dup2
	Redirecting in a new process

	Practice with Sockets

