
CS162
Operating Systems and
Systems Programming

Lecture 7

Synchronization

September 21st, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 7.29/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield
run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 7.39/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Goals for Today

• Synchronization Operations
• Higher-level Synchronization Abstractions

– Semaphores, monitors, and condition variables
• Programming paradigms for concurrent programs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 7.49/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule

Lec 7.59/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Multiprocessing vs Multiprogramming
• What does it mean to run two threads “concurrently”?

– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

• Also recall: Hyperthreading
– Possible to interleave threads on a per-instruction basis
– Keep this in mind for our examples (like multiprocessing)

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 7.69/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 7.79/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 7.89/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 7.99/21/15 Kubiatowicz CS162 ©UCB Fall 2015

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 7.109/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 7.119/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 7.129/21/15 Kubiatowicz CS162 ©UCB Fall 2015

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 7.139/21/15 Kubiatowicz CS162 ©UCB Fall 2015

ATM bank server example
• Suppose we wanted to implement a server process to

handle requests from an ATM network:
BankServer() {while (TRUE) {ReceiveRequest(&op, &acctId, &amount);ProcessRequest(op, acctId, amount);}}
ProcessRequest(op, acctId, amount) {if (op == deposit) Deposit(acctId, amount);else if …}
Deposit(acctId, amount) {acct = GetAccount(acctId); /* may use disk I/O */acct->balance += amount;StoreAccount(acct); /* Involves disk I/O */}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 7.149/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-
driven style

• Example
BankServer() {

while(TRUE) {event = WaitForNextEvent();if (event == ATMRequest)StartOnRequest();else if (event == AcctAvail)ContinueRequest();else if (event == AcctStored)FinishRequest();}}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces
which could be blocking?

– This technique is used for graphical programming

Lec 7.159/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 7.169/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Problem is at the lowest level
• Most of the time, threads are working on separate

data, so scheduling doesn’t matter:
Thread A Thread B
x = 1; y = 2;

• However, What about (Initially, y = 12):
Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B
x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

Lec 7.179/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Atomic Operations
• To understand a concurrent program, we need to know

what the underlying indivisible operations are!
• Atomic Operation: an operation that always runs to

completion or not at all
– It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then
have no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic
– Consequently – weird example that produces “3” on
previous slide can’t happen

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole
array

Lec 7.189/21/15 Kubiatowicz CS162 ©UCB Fall 2015

• Threaded programs must work for all interleavings of
thread instruction sequences
– Cooperating threads inherently non-deterministic and
non-reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the
death of several patients
» A series of race conditions on

shared variables and poor
software design

» “They determined that data entry speed during editing
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

Correctness Requirements

Lec 7.199/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Space Shuttle Example
• Original Space Shuttle launch aborted 20 minutes

before scheduled launch
• Shuttle has five computers:

– Four run the “Primary Avionics
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms

– The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS

• Countdown aborted because BFS disagreed with PASS
– A 1/67 chance that PASS was out of sync one cycle
– Bug due to modifications in initialization code of PASS

» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to

force use of hardware clock
– Bug not found during extensive simulation

PASS

BFS

Lec 7.209/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What if both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 7.219/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i] M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you are depending on it not
happening, it will and your system will break…

Lec 7.229/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia

• Group/Section assignments should be completed!
– We have 80 groups with about 4 or 5 stragglers
– If you are not in group, talk to us immediately!

• Section assignments out on piazza
– Start going to them this week
– Need to know your TA!

» Participation is 5% of your grade
» Should attend section with your TA

• First design doc due this Friday
– This means you should be well on your way with Project 1
– Watch for notification from your TA to sign up for
design review

Lec 7.239/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Motivation: “Too much milk”

• Great thing about OS’s – analogy between
problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 7.249/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Definitions

• Synchronization: using atomic operations to ensure
cooperation between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything
useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does
a particular thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into this section of code.
– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of
describing the same thing.

Lec 7.259/21/15 Kubiatowicz CS162 ©UCB Fall 2015

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on

the refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

Lec 7.269/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic
– Always write down behavior first
– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code
• What are the correctness properties for the

“Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

Lec 7.279/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):

if (noMilk) {if (noNote) {leave Note;buy milk;remove note;}}
• Result?

– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 7.289/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {if (noNote) {leave Note;buy milk;}}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 7.299/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;if (noNote B) { if (noNoteA) {if (noMilk) { if (noMilk) {buy Milk; buy Milk;} }} }remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX
Lec 7.309/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 7.319/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) { //X if (noNote A) { //Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 7.329/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

Lec 7.339/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in a moment).
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and Release() called a “Critical Section”
• Of course, you can make this even simpler: suppose

you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

Lec 7.349/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 7.359/21/15 Kubiatowicz CS162 ©UCB Fall 2015

How to implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Looked at this last lecture
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– What about putting a task to sleep?

» How do you handle the interface between the hardware and
scheduler?

– Complexity?
» Done in the Intel 432
» Each feature makes hardware more complex and slow

Lec 7.369/21/15 Kubiatowicz CS162 ©UCB Fall 2015

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();While(TRUE) {;}
– Real-Time system—no guarantees on timing!

» Critical Sections might be arbitrarily long
– What happens with I/O or other important events?

» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 7.379/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 7.389/21/15 Kubiatowicz CS162 ©UCB Fall 2015

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section
(inside Acquire()) is very short
– User of lock can take as long as they like in their own
critical section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical
Section

Lec 7.399/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Interrupt re-enable in going to sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the
thread still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)
• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position
Enable Position
Enable Position

Lec 7.409/21/15 Kubiatowicz CS162 ©UCB Fall 2015

How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you

call sleep:
– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
..disable intssleep

sleep returnenable ints
...

disable intsleep
sleep returnenable ints..

Lec 7.419/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Atomic Read-Modify-Write instructions

• Problems with previous solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages
and would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write
a new value atomically

– Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence

protocol)
– Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

Lec 7.429/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */result = M[address];M[address] = 1;return result;}
• swap (&address, register) { /* x86 */temp = M[address];M[address] = register;register = temp;}
• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}
• load-linked&store conditional(&address) { /* R4000, alpha */loop:ll r1, M[address];movi r2, 1; /* Can do arbitrary comp */sc r2, M[address];beqz r2, loop;}

Lec 7.439/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Implementing Locks with test&set

• Another flawed, but simple solution:
int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so
lock is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock
• Busy-Waiting: thread consumes cycles while waiting

Lec 7.449/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting
thread will consume cycles waiting

– Waiting thread may take cycles away from thread
holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock  no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may

wait for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

– Homework/exam solutions should not have busy-waiting!

Lec 7.459/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;
Acquire() {

// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 7.469/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Talked about hardware atomicity primitives:
– Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine
resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable

