
CS162
Operating Systems and
Systems Programming

Lecture 23

TCP/IP (Finished),
Distributed Storage,
Key-Value Stores

November 30th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 23.211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Seq:190
Size:40

Recall: Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 23.311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

IP H
eader

(20 bytes)

Sequence N
um

ber
A
ck N

um
ber

TCP Header

IP
 H

ea
de

r
(2

0
by

te
s)

Se
qu

en
ce

 N
um

be
r

A
ck

 N
um

be
r

TCP Header

Lec 23.411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion ack is delayed
unnecessary timeout more traffic more congestion
» Closely related to window size at sender: too big means

putting too much data into network
• How does the sender’s window size get chosen?

– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput)
by 1 for each ack received

– Timeout congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 23.511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Open Connection: 3-Way Handshaking
• Goal: agree on a set of parameters, i.e., the start

sequence number for each side
– Starting sequence number (first byte in stream)
– Must be unique!

» If it is possible to predict sequence numbers, might be
possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets in

flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
Lec 23.611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Open Connection: 3-Way Handshaking

• Server waits for new connection calling listen()
• Sender call connect() passing socket which contains

server’s IP address and port number
– OS sends a special packet (SYN) containing a proposal for
first sequence number, x

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

tim
e

Lec 23.711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Open Connection: 3-Way Handshaking

• If it has enough resources, server calls accept() to accept
connection, and sends back a SYN ACK packet containing
– Client’s sequence number incremented by one, (x + 1)

» Why is this needed?
– A sequence number proposal, y, for first byte server will send

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

accept()

allocate
buffer space

tim
e

Lec 23.811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

3-Way Handshaking (cont’d)

• Three-way handshake adds 1 RTT delay

• Why do it this way?
– Congestion control: SYN (40 byte) acts as cheap probe
– Protects against delayed packets from other connection
(would confuse receiver)

Lec 23.911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Close Connection

• Goal: both sides agree to close the connection
• 4-way connection tear down

FIN
FIN ACK

FIN
FIN ACK

Host 1 Host 2

Can retransmit FIN ACK
if it is lost

tim
eo

ut

closed

close

close

closed

data

Lec 23.1011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote machine

(called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

• Using Sockets for Client-Server (C/C++ interface):
– On server: set up “server-socket”

» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Multiple accept() calls on socket to accept incoming connection requests
» Each successful accept() returns a new socket for a new connection

– On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

• Network Address Translation (NAT):
– Local subnet (non-routable IP addresses) external IP
– Client-side firewall replaces local IP address/port combination with

external IP address/new port
– Firewall handles translation between different address domains

using table of current connections

Lec 23.1111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Server
Socket

socket socketconnection

new
socket

ServerClient

Recall: Socket Setup over TCP/IP

• Things to remember:
– Connection involves 5 values:

[Client Addr, Client Port, Server Addr, Server Port, Protocol]
– Often, Client Port “randomly” assigned
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

• Network Address Translation (NAT) allows many internal
connections (and/or hosts) with a single external IP address

Lec 23.1211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept connection

read request

Connection Socket

Connection Socket

Lec 23.1311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Client Protocol

char *hostname;
int sockfd, portno;
struct sockaddr_in serv_addr;
struct hostent *server;

server = buildServerAddr(&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket(AF_INET, SOCK_STREAM, 0)

/* Connect to server on port */
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)
printf("Connected to %s:%d\n",server->h_name, portno);

/* Carry out Client-Server protocol */
client(sockfd);

/* Clean up on termination */
close(sockfd);

Lec 23.1411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));

/* Set up socket to listen for incoming connections */
listen(lstnsockfd, MAXQUEUE);

while (1) {
/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen);

server(consockfd);

close(consockfd);
}

close(lstnsockfd);

Lec 23.1511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Sockets With Protection/Parallelism
Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept connection

read request
write response

Close Connection
Socket

Close Server Socket

Connection Socketchild

Close Connection
Socket

Close Listen Socket
Parent

Wait for child

Lec 23.1611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Server Protocol (v2)
/* Create Socket to receive requests*/
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);
/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr)&serv_addr,sizeof(serv_addr));
/* Set up socket to listen for incoming connections */
listen(lstnsockfd, MAXQUEUE);
while (1) {

consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,
&clilen);

cpid = fork(); /* new process for connection */
if (cpid > 0) { /* parent process */

close(consockfd);
tcpid = wait(&cstatus);

} else if (cpid == 0) { /* child process */
close(lstnsockfd); /* let go of listen socket */

server(consockfd);

close(consockfd);
exit(EXIT_SUCCESS); /* exit child normally */

}
}

close(lstnsockfd);

Lec 23.1711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia
• Midterm 2 grading

– In progress. Hopefully done by end of week (perhaps by
weekend)

– Preliminary solutions have been posted
• Final Exam

– Friday, December 18th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course (excluding option lecture on 12/7)

» With slightly more focus on second half, but you are still
responsible for all the material

– Two sheets of notes, both sides
– Will need dumb calculator

• Wednesday is last official lecture HKN survey
– Please come!

• Last chance to suggest topics for Monday’s optional lecture
– Please go to Piazza poll. I’ll discuss options on Wednesday

Lec 23.1811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes

partitioned
• Consistency, Availability, Partition-Tolerance (CAP) Theorem:

Cannot have all three at same time
– Otherwise known as “Brewer’s Theorem”

Network

Lec 23.1911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file
in the world has unique name
» Location Transparency: servers

can change and files can move
without involving user

Network
Read File

Data
Client Server

Lec 23.2011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file
system calls into remote requests

– No local caching/can be caching at server-side
• Advantage: Server provides completely consistent view

of file system to multiple clients
• Problems? Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client
cache

Lec 23.2111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Lec 23.2211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request
– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 23.2311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 23.2411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)

Lec 23.2511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 23.2611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 23.2711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 23.2811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Andrew File System

• Andrew File System (AFS, late 80’s) DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 23.2911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache more files can be cached locally
– Callbacks server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 23.3011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Implementation of NFS

Lec 23.3111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

• In linux, “VFS” stands for “Virtual Filesystem Switch”
Lec 23.3211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry
– file object: represents open file associated with process

• There is no specific directory object (VFS treats
directories as files)

• May need to fit the model by faking it
– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.

Lec 23.3311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Linux VFS

• An operations object is contained within each primary
object type to set operations of specific filesystems
– “super_operations”: methods that kernel can invoke on a
specific filesystem, i.e. write_inode() and sync_fs().

– “inode_operations”: methods that kernel can invoke on a
specific file, such as create() and link()

– “dentry_operations”: methods that kernel can invoke on a
specific directory entry, such as d_compare() or d_delete()

– “file_operations”: methods that process can invoke on an
open file, such as read() and write()

• There are a lot of operations

write() sys_write() filesystem’s
write method

user-space VFS filesystem physical
media

Lec 23.3411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated
with “key”

– value = get(key); // get/read data associated with
“key”

• Used sometimes as a simpler but more scalable
“database”

Lec 23.3511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit
card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos,
friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples

Lec 23.3611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Key-value storage systems in real life

• Amazon
– DynamoDB: internal key value store used to power Amazon.com

(shopping cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed
by Facebook)

• Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

• eDonkey/eMule: peer-to-peer sharing system

• …

Lec 23.3711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many

machines
key, value

…

Lec 23.3811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Challenges

• Fault Tolerance: handle machine failures without
losing data and without degradation in
performance

• Scalability:
– Need to scale to thousands of machines
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of
node failures and message losses

• Heterogeneity (if deployed as peer-to-peer
systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

Lec 23.3911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Key Questions

• put(key, value): where do you store a new
(key, value) tuple?

• get(key): where is the value associated with a given
“key” stored?

• And, do the above while providing
– Fault Tolerance
– Scalability
– Consistency

Lec 23.4011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory-Based Architecture

• Have a node maintain the mapping between keys
and the machines (nodes) that store the values
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

Lec 23.4111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory-Based Architecture

• Have a node maintain the mapping between keys and
the machines (nodes) that store the values associated
with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

Lec 23.4211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory-Based Architecture

• Having the master relay the requests recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3

Lec 23.4311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory-Based Architecture

• Having the master relay the requests recursive query
• Another method: iterative query

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

Lec 23.4411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages:

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go

through master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data

consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

Lec 23.4511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Fault Tolerance

• Replicate value on several nodes
• Usually, place replicas on different racks in a

datacenter to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)

Lec 23.4611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Fault Tolerance

• Again, we can have
– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

Lec 23.4711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Fault Tolerance

• Or we can use recursive query and iterative
replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

K14 V14

Lec 23.4811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Scalability

• Storage: use more nodes

• Number of requests:
– Can serve requests from all nodes on which a value
is stored in parallel

– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by
different masters/directories
» How do you partition?

Lec 23.4911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Scalability: Load Balancing

• Directory keeps track of the storage availability at each
node
– Preferentially insert new values on nodes with more
storage available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

Lec 23.5011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every

node?
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets

Lec 23.5111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key)
may need to make sure that updates happen in
the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 and N3 in reverse order

• What does get(K14) return?
• Undefined!

• put(K14, V14’) and put(K14, V14’’)
reach N1 and N3 in reverse order

• What does get(K14) return?
• Undefined!

Lec 23.5211/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency (cont’d)

• Large variety of consistency models:
– Atomic consistency (linearizability): reads/writes
(gets/puts) to replicas appear as if there was a single
underlying replica (single system image)
» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will
propagate through the system
» One of the weakest form of consistency; used by many

systems in practice

– And many others: causal consistency, sequential
consistency, strong consistency, …

Lec 23.5311/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus

• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W
replicas

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the
update

• Why might you use W+R > N+1?

Lec 23.5411/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Lec 23.5511/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus Example

• Now, issuing get() to any two nodes out of three
will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K
14)

nill
Lec 23.5611/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to
number of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in
the system!

• Solution: consistent hashing
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1
– Partition this space across m machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the
smallest ID larger than Key

Lec 23.5711/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Key to Node Mapping Example

• m = 6 ID space: 0..63
• Node 8 maps keys [5,8]
• Node 15 maps keys [9,15]
• Node 20 maps keys [16, 20]
• …
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0

Lec 23.5811/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to
node with closest ID

• Leaf set is
successors and
predecessors
– All that’s needed for
correctness

• Routing table
matches successively
longer prefixes
– Allows efficient
lookups

• Data Replication:
– On leaf set

Lec 23.5911/30/15 Kubiatowicz CS162 ©UCB Fall 2015

DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its
functionality in a bounded
time:
– Every dependency in the

platform needs to deliver its
functionality with even tighter
bounds.

• Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load
of 500 requests per second

• Contrast to services which
focus on mean response time

Service-oriented architecture of
Amazon’s platform

Lec 23.6011/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary (1/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• Cache Consistency: Keeping client caches consistent with
one another
– If multiple clients, some reading and some writing, how do
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of
changes

• Remote Procedure Call (RPC): Call procedure on remote
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface
for different types of file systems

Lec 23.6111/30/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary (2/2)

• Key-Value Store:
– Two operations

» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance replication
» Scalability serve get()’s in parallel; replicate/cache hot

tuples
» Consistency quorum consensus to improve put()

performance

