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Abstract

Modern microprocessors can achieve high performance on linear algebra kernels but this cur-
rently requires extensive machine-specific hand tuning. We have developed a methodology whereby
near-peak performance on a wide range of systems can be achieved automatically for such routines.
First, by analyzing current machines and C compilers, we’ve developed guidelines for writing
Portable, High-Performance, ANSI C (PHiPAC, pronounced “fee-pack”). Second, rather than
code by hand, we produce parameterized code generators. Third, we write search scripts that find
the best parameters for a given system. We report on a BLAS GEMM compatible multi-level
cache-blocked matrix multiply generator which produces code that achieves around 90% of peak
on the Sparcstation-20/61, IBM RS/6000-590, HP 712/80i, SGI Power Challenge R8k, and SGI
Octane R10k, and over 80% of peak on the SGI Indigo R4k. In this paper, we provide a detailed
description of the PHiPAC V1.0 matrix multiply distribution. We describe the code generator in
detail including the various register and higher level blocking strategies. We also document the
organization and parameters of the search scripts. This technical report is an expanded version of
[BACD97].
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1 Introduction

The use of a standard linear algebra library interface, such as BLAS [LHKK79, DCHH88, DCDH90], enables portable
application code to obtain high-performance provided that an optimized library (e.g., [AGZ94, KHM94]) is available
and affordable.

Developing an optimized library, however, is a difficult and time-consuming task. Even excluding algorithmic
variants such as Strassen’s method [BLS91] for matrix multiplication, these routines have a large design space with many
parameters such as blocking sizes, loop nesting permutations, loop unrolling depths, software pipelining strategies,
register allocations, and instruction schedules. Furthermore, these parameters have complicated interactions with the
increasingly sophisticated microarchitectures of new microprocessors.

Various strategies can be used to produce optimized routines for a given platform. For example, the routines could
be manually written in assembly code, but fully exploring the design space might then be infeasible, and the resulting
code might be unusable or sub-optimal on a different system.

Another commonly used method is to code in a high level language but with manual tuning to match the underlying
architecture [AGZ94, KHM94]. While less tedious than coding in assembler, this approach still requires writing
machine specific code which is not performance-portable across a range of systems.

Ideally, the routines would be written once in a high-level language and fed to an optimizing compiler for each
machine. There is a large literature on relevant compiler techniques, many of which use matrix multiplication as a test
case [WL91, LRW91, MS95, ACF95, CFH95, SMP+96]1. While these compiler heuristics generate reasonably good
code in general, they tend not to generate near-peak code for any one operation. Also, a high-level language’s semantics
might obstruct aggressive compiler optimizations. Moreover, it takes significant time and investment before compiler
research appears in production compilers, so these capabilities are often unavailable. While both microarchitectures
and compilers will improve over time, we expect it will be many years before a single version of a library routine can
be compiled to give near-peak performance across a wide range of machines.

We have developed a methodology, named PHiPAC [BAD+96, BACD97], for developing Portable High-
Performance linear algebra libraries in ANSI C. Our goal is to produce, with minimal effort, high-performance
linear algebra libraries for a wide range of systems. The PHiPAC methodology has three components. First, we have
developed a generic model of current C compilers and microprocessors that provides guidelines for producing portable
high-performance ANSI C code. Second, rather than hand code particular routines, we write parameterized generators
[ACF95, MS95] that produce code according to our guidelines. Third, we write scripts that automatically tune code
for a particular system by varying the generators’ parameters and benchmarking the resulting routines.

We have found that writing a parameterized generator and search scripts for a routine takes less effort than hand-
tuning a single version for a single system. Furthermore, with the PHiPAC approach, development effort can be
amortized over a large number of platforms. And by automatically searching a large design space, we can discover
winning yet unanticipated parameter combinations.

Using the PHiPAC methodology, we have produced a portable, BLAS-compatible matrix multiply generator. The
resulting code can achieve over 90% of peak performance on a variety of current workstations, and is sometimes
faster than the vendor-optimized libraries. We focus on matrix multiplication in this paper, but we have produced
other generators including dot-product, AXPY, and convolution, which have similarly demonstrated portable high
performance.

We concentrate on producing high quality uniprocessor libraries for microprocessor-based systems because mul-
tiprocessor libraries, such as [CDD+96], can be readily built from uniprocessor libraries. For vector and other
architectures, however, our machine model would likely need substantial modification.

Section 2 describes our generic C compiler and microprocessor model, and develops the resulting guidelines for
writing portable high-performance C code. Section 3 describes our C-code generator and the resulting code variants
for a BLAS-compatible matrix multiply. Section 4 describes our strategy for searching the matrix multiply parameter
space and the structure of the resulting GEMM library. This section also provides a detailed description of the various
options that can be used to control the search. Section 5 presents performance results on several architectures comparing
against vendor-supplied BLAS GEMM. Section 6 describes the availability of the distribution, and discusses future
work. This technical report is an expanded version of [BACD97].

1A longer list appears in [Wol96].
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2 PHiPAC

By analyzing the microarchitectures of a range of machines, such as workstations and microprocessor-based SMP
and MPP nodes, and the output of their ANSI C compilers, we derived a set of guidelines that help us attain high
performance across a range of machine and compiler combinations [BAD+96].

From our analysis of various ANSI C compilers, we determined we could usually rely on reasonable register
allocation, instruction selection, and instruction scheduling. More sophisticated compiler optimizations, however,
including pointer alias disambiguation, register and cache blocking, loop unrolling, and software pipelining, were
either not performed or not very effective at producing the highest quality code.

Although it would be possible to use another target language, we chose ANSI C because it provides a low-level,
yet portable, interface to machine resources, and compilers are widely available. One problem with our use of C is
that we must explicitly work around pointer aliasing as described below. In practice, this has not limited our ability to
extract near-peak performance.

We emphasize that for both microarchitectures and compilers we are determining a lowest common denominator.
Some microarchitectures or compilers will have superior characteristics in certain attributes, but, if we code assuming
these exist, performance will suffer on systems where they do not. Conversely, coding for the lowest common
denominator should not adversely affect performance on more capable platforms. For example, some machines can
fold a pointer update into a load instruction while others require a separate add. Coding for the lowest common
denominator dictates replacing pointer updates with base plus constant offset addressing where possible. In addition,
while some production compilers have sophisticated loop unrolling and software pipelining algorithms, many do not.
Our search strategy (Section 4) empirically evaluates several levels of explicit loop unrolling and depths of software
pipelining. While a naive compiler might benefit from code with explicit loop unrolling or software pipelining, a more
sophisticated compiler might perform better without either.

2.1 PHiPAC Coding Guidelines

The following paragraphs exemplify PHiPAC C code generation guidelines. Programmers can use these coding
guidelines directly to improve performance in critical routines while retaining portability, but this does come at the cost
of less maintainable code. This problem is mitigated in the PHiPAC approach, however, by the use of parameterized
code generators.

Using local variables, reorder operations to explicitly remove false dependencies.

Casually written C code often over-specifies operation order, particularly where pointer aliasing is possible. C
compilers, constrained by C semantics, must obey these over-specifications thereby reducing optimization potential.
We therefore remove these extraneous dependencies.

For example, the following code fragment contains a false Read-After-Write hazard:

a[i] = b[i] + c;
a[i+1] = b[i+1]*d;

The compiler may not assume &a[i] != &b[i+1] and is forced to first store a[i] to memory before loading
b[i+1]. We may re-write this with explicit loads to local variables:

float f1,f2;
f1 = b[i]; f2 = b[i+1];
a[i] = f1 + c; a[i+1] = f2*d;

The compiler can now interleave execution of both original statements thereby increasing parallelism.

Exploit multiple integer and floating-point registers.

We explicitly keep values in local variables to reduce memory bandwidthdemands. For example, consider the following
3-point FIR filter code:
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while (...) {
*res++ = filter[0]*signal[0] +

filter[1]*signal[1] +
filter[2]*signal[2];

signal++;
}

The compiler will usually reload the filter values every loop iteration because of potential aliasing with res. We can
remove the alias by preloading the filter into local variables that may be mapped into registers:

float f0,f1,f2;
f0=filter[0];
f1=filter[1];
f2=filter[2];
while ( ... ) {
*res++ = f0*signal[0]

+ f1*signal[1] + f2*signal[2];
signal++;

}

Minimize pointer updates by striding with constant offsets.

We replace pointer updates for strided memory addressing with constant array offsets. For example:

f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

should be converted to:

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;

Compilers can fold the constant index into a register plus offset addressing mode.

Hide multiple instruction FPU latency with independent operations.

We use local variables to expose independent operations so they can be executed independently in a pipelined or
superscalar processor. For example:

f1=f5*f9;
f2=f6+f10;
f3=f7*f11;
f4=f8+f12;

Balance the instruction mix.

A balanced instruction mix has a floating-point multiply, a floating-point add, and 1–2 floating-point loads or stores
interleaved. It is not worth decreasing the number of multiplies at the expense of additions if the total floating-point
operation count increases.

Increase locality to improve cache performance.

Cached machines benefit from increases in spatial and temporal locality. Whenever possible, we arrange our code
to have predominantly unit-stride memory accesses and try to reuse data once it is in cache. See Section 3.1 for our
blocked matrix multiply example.
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Convert integer multiplies to adds.

Integer multiplies and divides are slow relative to integer addition. Therefore, we use pointer updates rather than
subscript expressions. For example, rather than:

for (i=...)
{ row_ptr = &p[i*col_stride]; ... }

we would produce:

for (i=...)
{ ... row_ptr += col_stride; }

Minimize branches, avoid magnitude compares.

Branches are costly, especially on modern superscalar processors. Therefore, we unroll loops to amortize branch cost
and use C do fg while (); loop control whenever possible to avoid any unnecessary compiler-produced loop
head branches.

Also, on many microarchitectures, it is cheaper to perform equality or inequality loop termination tests than
magnitude comparisons. For example, instead of:

for (i=0,a=start_ptr;i<ARRAY_SIZE;i++,a++}
{ ... }

we produce:

end_ptr = &a[ARRAY_SIZE]; a = start_ptr;
do {

... a++;
} while (a != end_ptr);

This also removes one loop control variable.

Explicitly unroll loops to expose optimization opportunities.

We unroll loops explicitly to increase opportunities for other performance optimizations. For example, our 3-point
FIR filter example above may be further optimized as follows:

float f0,f1,f2,s0,s1,s2;
f0=filter[0];
f1=filter[1];
f2=filter[2];
s0=signal[0];
s1=signal[1];
s2=signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {

signal += 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;
s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;
s2 = signal[2];
res[2] = f0*s0 + f1*s1 + f2*s2;
res += 3;

} while ( ... );

In the inner loop, there are now only two memory access per five floating point operations whereas in our unoptimized
code, there were seven memory accesses per five floating point operations.
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Figure 1: Definition of the matrix blocking parameters. M0, K0, and N0 are the register blocking parameters – an
M0 � K0 block of A and a K0 � N0 block of B is multiplied and accumulated into an M0 � N0 block of C. M1,
K1, and N1 are the register blocking parameters – an M1M0 �K1K0 block of A and a K1K0 � N1N0 block of B is
multiplied and accumulated into an M1M0 �N1N0 block of C. Higher level cache blocking parameters (such as M2,
K2, and N2) are defined similarly.

3 Matrix Multiply C-Code Generators

mm cgen and mm lgen are generators that produce C code following the PHiPAC coding guidelines for one variant
of the matrix multiply operationC = �op(A)op(B)+ �C where op(A), op(B), and C, are respectively M�K, K�N,
and M�N matrices, � and � are scalar parameters, and op(X) is either transpose(X) or just X. Our individual
procedures have a lower level interface then a BLAS GEMM and have no error checking. For optimal efficiency, error
checking should be performed by the caller when necessary rather than unnecessarily by the callee on every invocation.
We create a full BLAS-compatible GEMM by generating all required matrix multiply variants and linking with our
GEMM-compatible interface that includes error checking.

The code generators can produce a cache-blocked matrix multiply [GL89, LRW91, MS95], restructuring the
algorithm for unit stride, and reducing the number of cache misses and unnecessary loads and stores. Under control of
command line parameters, the generators can produce blocking code for any number of levels of memory hierarchy,
including register, L1 cache, TLB, L2 cache, and so on. The generators can produce code using different accumulator
precisions, and can also generate various flavors of software pipelining.

mm cgen produces “core” code, that is code that blocks for the machine registers. mm lgen, on the other hand,
produces “level” code, or code that blocks for some higher level of the cache hierarchy. Typically, code produced by
mm lgen calls the routines produced by mm cgen.

A typical invocation of a code generator is:

mm_cgen -l0 M0 K0 N0 [ -l1 M1 K1 N1 ] ...

where the register blocking isM0, K0, N0, the L1-cache blocking isM1,K1, N1, etc. The parameters M0,K0, and N0

are specified in units of matrix elements, i.e., single, double, or extended precision floating-point numbers, M1, K1,
N1 are specified in units of register blocks,M2, K2, and K2 are in units of L1 cache blocks, and so on. For a particular
cache level, say i, the code accumulates into a C destination block of size Mi �Ni units and uses A source blocks of
size Mi �Ki units and B source blocks of size Ki � Ni units (see Figure 1).

The next few sections describe the code generators and their resulting code in detail.
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3.1 Matrix Multiply Core Code

mm cgen is our core code generator. The generator produces code simliar to a six nested loop matrix multiply but
where the three inner loops are completely unrolled. The unrolled code does a matrix-mutiply with A and B source
matrices of size M0 �K0 and K0 � N0 respectively accumulating into a sized M0 � N0 C matrix. The outer three
loops perform an i-j-k-order blocked matrix multiply with block sizes determined either by matrix size arguments or
by the register blocking parameters M1, K1, and N1.

The generator can also optionally generate code for “fringes”, i.e., portions of the matrix not multiples of M0, K0,
and N0 that are what we respectively call the m-fringe, k-fringe, and n-fringe. The fringe code is described below.

mm cgen supports the following command line options:

Usage: mm_cgen [OPTIONS]
where [OPTIONS] include:
Semantics options:
-opA [N|T] : A matrix op. Normal|Transpose
-opB [N|T] : B matrix op. Normal|Transpose
-no_m_fringe : don’t generate an M reg block fringe
-no_k_fringe : don’t generate a K reg block fringe
-no_n_fringe : don’t generate an N reg block fringe
-no_fringes : don’t generate an M,K, or N reg block fringes
-no_loop_head_branch : Use do-while loops where possible, requiring M>=M0,K>=K0,N>=
-alpha [<val>|c] : fix alpha at value <val> or arbitrary
-beta [<val>|c] : fix beta at value <val> or arbitrary

Optimization options:
-l0 M0 K0 N0 : register (L0) blocking parameters
-l1 M1 K1 N1 : L1 blocking parameters
-sp [1|2lm|2ma|3] : software pipelining options
-holdstripe [A|B|m] : hold regs. stripe A or B (default), or min(M0,N0) (-sp 1 onl
-lin_m_fringe : generate linear rather than log m-fringe code stripes
-lin_k_fringe : generate linear rather than log k-fringe code stripes
-lin_n_fringe : generate linear rather than log n-fringe code stripes
-lin_fringe : generate linear rather than log fringe code stripes

Precision options:
-prec [single|double|ldouble] : Precision
-sprec [single|double|ldouble] : Source Precision
-aprec [single|double|ldouble] : Accumulator Precision
-dprec [single|double|ldouble] : Destination Precision

Code generation & Misc. options:
-help : Print this message
-file name : Write to file ’name’
-routine_name name : Name of routines
-spacechar c : char to use as space
-numspaces i : spaces per nest
-version : print version and exit.

The semantic options determine the set of matrices that may be multipled (correctly) by the resulting routine.

� -opA [N|T] controls if the A-matrix source operand should be treated as A or AT .

� -opB [N|T] controls if the B-matrix source operand should be treated as B or BT .

� -no m fringe means do not produce code for the M-fringe (so the resulting code is valid only for matrices
whose M-dimension is a multiple of M0.)

� -no k fringe means do not produce code for the K-fringe (so K must be a multiple of K0 plus a constant
depending on the software pipelining option, see below).
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� -no n fringe means do not produce code for the N-fringe (so N must be a multiple of N0.)

� -no fringe means do not produce any fringe code at all.

� -no loop head branch use C do fg while constructs rather than while fg in the three outer loops.
This therefore causes the code to assume that M , K, and N are positive.

� -alpha [<val>|c] either hard-code� to be a particular valueval or allow it to be an arbitrary value passed
in as an argument. This is a semantic option but it can also effect performance, especially for � = �1 since, in
this case, the generator produces code without the extra � multiplies.

� -beta [<val>|c] the same for �.

The optimization options change the code primarily in how it effects performance. As seen below, however, these
options can also effect the resulting routine’s behavior.

� -l0 M0 K0 N0 controls the register blocking parameters.

� -l1 M1 K1 N1 if given, produces code for a fixed matrix multiply where M =M0�M1,K = K0�K1 + `,
and N = N0�N1, where ` is either 0, 1, or 2 depending on the software pipelining option being set respectively
to either -sp 1, -sp [2lm|2ma], or -sp 3.

� -sp [1|2lm|2ma|3] controls core-code sofware pipelining. 1 means no software pipelining,2lm and 2ma
means a two stage pipe, and 3 means a three stage pipe. Sofware pipelining will be described in detail below.

� -holdstripe [A|B|m] effects the code generated only when -sp 1 is active. This will also be described
below.

� -lin m fringe produces code for linearly spaced rather than logarithmically spaced fringe strips in the M
dimension.

� -lin k fringe produces code for linearly spaced rather than logarithmically spaced fringe strips in the K
dimension.

� -lin n fringe produces code for linearly spaced rather than logarithmically spaced fringe strips in the N
dimension.

� -lin fringe produces code for linearly spaced rather than logarithmically spaced fringe strips in all dimen-
sions.

Note that for any set of options, the generated code will have comments stating for which matrices that particular
routine will be valid. For example, the command

mm_cgen -l0 4 4 4 -sp 2ma -no_k_fringe -no_m_fringe

will produce the comment

General (M,K,N) = (m*4:m>=0, k*4+1:k>=1, N) matrix multiply

stating that this routine is valid for N non-negative, for M a non-negative multiple of 4, and for K one greater than a
positive multiple of 4.

The precision options change the precision of the various operands and/or of the local variables used as temporaries
internal to the routine. The other options are obvious from their command-line help description.
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3.1.1 Simple Code example

In this section, we examine the code produced by mm cgen for the operation C = C + A*B where A (respectively
B, C) is an M�K (respectively K�N, M�N) matrix. Figure 2 lists the L1 cache blocking core code comprising the 3
nested loops, M, N, and K. This code was produced with the command:

mm_cgen -l0 2 2 2 -no_fringes -no_loop_head_branch

Because of the no loop head branch parameter, this routine is valid only for matrices with (M;K;N ) = (2m :
m >= 1; 2k : k >= 1; 2n : n >= 1).

The outer M loop in Figure 2 maintains pointers c0 and a0 to rows of register blocks in the A and C matrices.
It also maintains end pointers (ap0 endp and cp0 endp) used for loop termination. The middle N loop maintains
a pointer b0 to columns of register blocks in the B matrix, and maintains a pointer cp0 to the current C destination
register block. The N loop also maintains separate pointers (ap0 0 through ap0 1) to successive rows of the current
A source block. It also initializes a pointer bp0 to the current B source block. We assume local variables can be held
in registers, so our code uses many pointers to minimize both memory references and integer multiplies.

The K loop iterates over source matrix blocks and accumulates into the same M0 � N0 destination block. We
assume that the floating-point registers can hold a M0 � N0 accumulator block, so this block is loaded into local
variables once before the K loop begins and stored after it ends. The K loop updates the set of pointers to the A source
block, one of which is used for loop termination.

Currently, mm cgen does not vary the loop permutation [MS95, LRW91] because the resulting gains in locality
are subsumed by the method described below, at least for non-outer-product shaped matrices.

The parameter K0 controls the extent of inner loop unrolling as can be seen in Figure 2. The unrolled core loop
performs K0 outer products accumulating into the C destination block. We code the outer products by loading one
row of the B block, one element of the A block, then performingN0 multiply-accumulates. The C code uses N0 +M0

memory references per 2N0M0 floating-point operations in the inner K loop, while holding M0N0 + N0 + 1 values
in local variables. While the intent is that these local variables map to registers, the compiler is free to reorder all of
the independent loads and multiply-accumulates to trade increased memory references for reduced register usage. The
compiler also requires additional registers to name intermediate results propagating through machine pipelines.

The code we have so far described is valid only when M, K, and N are integer multiples of M0, K0, and N0

respectively. In the general case, mm cgen also includes code that operates on power-of-two sized fringe strips, i.e.,
20 through 2blog2 Lc where L is M0, K0, or N0. We can therefore manage any fringe size from 1 to L�1 by executing
an appropriate combination of fringe code. The resulting code size growth is logarithmic in the register blocking
(i.e., O(log(M0) log(K0) log(N0))) yet maintains good performance. mm cgen also has the option to produce linear
sized fringe strips (i.e., it will produce separate code for each possible fringe size) and is controlled in each dimension
individually (see the -lin m fringe, -lin k fringe, -lin n fringe, and -lin fringe options). This
can be advantageous if the matrix workload has many matrices with a small M, K, or N (i.e., they are less than the
corresponding L0 blocking numbers). It can therefore also be advantageous for use in LU decomposition.

To reduce the demands on the instruction cache, we arrange the code into several independent sections, the first
handling the matrix core and the remainder handling the fringes. The code is structured not dissimilar to that shown
in Figure 8 except that the fringes are managed, as described above, by power-of-2 fringe strips.

3.1.2 Core Code Options/Software Pipelining

As mentioned in the previous section, the fully unrolled core code consists of a series of K0 outer products where
each outer product uses a column vector from the A matrix and a row vector from the B matrix as operands and
accumulates into a M0 � N0 block of the C matrix (see Figure 3). The code always uses local variables sufficient
to hold the entire M0 � N0 block. It also declares additional local variables depending on the the -sp optimization
option. Assuming that each local variable maps to a machine register, we structure the core code to achieve 2N0M0

floating-point operations per N0 +M0 memory operations.
With no software pipelining-sp 1, there are two core code generation options. mm cgen can either: 1) generate

code to hold a column vector strip of the A matrix and a single element of the B matrix while accumulating into each
column of the C block resulting in the additional use of M0 + 1 local variables or can 2) generate code to hold a row
vector strip of the B matrix and a single element of the A matrix while accumulating into each row of the C block
resulting in the additional use of N0 + 1 local variables. This choice is determined by the -holdstripe option.
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mul_mfmf_mf(const int M,const int K,const int N,
const float*const A,const float*const B,float*const C,
const int Astride,const int Bstride,const int Cstride)
{

const float *a,*b; float *c;
const float *ap_0,*ap_1; const float *bp; float *cp;
const int A_sbs_stride = Astride*2;
const int C_sbs_stride = Cstride*2;
const int k_marg_el = K & 1;
const int k_norm = K - k_marg_el;
const int m_marg_el = M & 1;
const int m_norm = M - m_marg_el;
const int n_marg_el = N & 1;
const int n_norm = N - n_marg_el;
float *const c_endp = C+m_norm*Cstride;
register float c0_0,c0_1,c1_0,c1_1;
c=C;a=A;
do { /* M loop */

const float* const ap_endp = a + k_norm;
float* const cp_endp = c + n_norm;
const float* const apc_1 = a + Astride;
b=B;cp=c;
do { /* N loop */

register float _b0,_b1;
register float _a0,_a1;
float *_cp;
ap_0=a;ap_1=apc_1;bp=b;
_cp=cp;c0_0=_cp[0];c0_1=_cp[1];
_cp+=Cstride;c1_0=_cp[0];c1_1=_cp[1];
do { /* K loop */

_b0 = bp[0]; _b1 = bp[1];
bp += Bstride; _a0 = ap_0[0];
c0_0 += _a0*_b0; c0_1 += _a0*_b1;
_a1 = ap_1[0];
c1_0 += _a1*_b0; c1_1 += _a1*_b1;

_b0 = bp[0]; _b1 = bp[1];
bp += Bstride; _a0 = ap_0[1];
c0_0 += _a0*_b0; c0_1 += _a0*_b1;
_a1 = ap_1[1];
c1_0 += _a1*_b0; c1_1 += _a1*_b1;

ap_0+=2;ap_1+=2;
} while (ap_0!=ap_endp);
_cp=cp;_cp[0]=c0_0;_cp[1]=c0_1;
_cp+=Cstride;_cp[0]=c1_0;_cp[1]=c1_1;
b+=2;cp+=2;

} while (cp!=cp_endp);
c+=C_sbs_stride;a+=A_sbs_stride;

} while (c!=c_endp);
}

Figure 2: M0 = 2, K0 = 2, N0 = 2 matrix multiply L1 routine for M 2 f2m : m � 1g;K 2 f2k : k � 1g; N 2
f2n : n � 1g. Within the K-loop is our fully-unrolled 2 � 2 � 2 core matrix multiply. The code is not unlike the
register code in [CFH95]. In our terminology, the leading dimensions LDA, LDB, and LDC are called Astride,
Bstride, and Cstride respectively. The four local variables c0 0 through c1 1 hold a complete C destination
block. Variables ap 0 and ap 1 point to successive rows of the A source matrix block, and variable bp points to the
first row of the B source matrix block. Elements in A and B are accessed using constant offsets from the appropriate
pointers.
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A

B

C

K0

K0

N0

M0

Figure 3: The three inner loops are fully unrolled to perform K0 outer products accumulating into the destination
matrix. If no software pipelining has been selected, the multiply-accumulates for each outer product are performed
after either one of the following: 1) for each column of C, a lengthM0 column of A and an element of B is loaded into
local variables (the -holdstrip A option), or 2) for each row of C, a length N0 row of B and an element of A is
loaded into local variables (the -holdstrip B option).

Forward
Code Direction Inner-most

Loop

Mi

Li 1+

AiLi

Li K 0+ Ai K 0+Mi K 0+

Mi 1+ Ai 1+

K0

Figure 4: With no software pipelining, the loads, multiples, and accumulates for theK0 outer product are placed within
the inner-most loop. This leads to a startup cost due to the multiply and add units waiting for the loads to come in, and
an “endup” cost when the load/store unit has nothing to do while the multiply and add units finish up.

-holdstrip m automatically choose either -holdstripe A or -holdstripe B depending on the minimum
of M0 and N0 thereby minimizing the number of local variables used.

The compiler is free to re-order the loads, multiples, and adds as it chooses (while respecting data-dependences).
Because of this fact, the -holdstripe option should theoretically have little or no effect on compiler optimization.
In practice, however, we have indeed found non-negligible performance gains by varying this option.

Software pipelining is achieved by observing that each outer product consists of three sets of operations: 1) the
loads of the source operands, 2) the multiplies of the source operands, and 3) the accumulates into the destination
matrix. With no software pipelining, the code is structured as listed in Figure 4. A potential performance hit, therefore,
can occur at the beginning of each loop body where the multiply and add units can sit idle while the operands (via the
loads) become available. Similarly, at the end of the loop body, the load/store unit can sit idle while the multiplies
and adds complete. While this problem is mitigated by increasing K0, we ideally want to keep the load/store unit, the
adder, and the multiplier occupied as often as possible and we would prefer not to require a hugeK0 since that reduces
the set of possible L1 blocks (see Section 3.2).

We solve this problem by grouping together the loads, multiplies, and adds from different loop iterations while
placing the starting and ending delays respectively before and after the core loop body. mm cgen can produce code
according to one of three styles of software pipelining. The -sp 3 option uses a 3-stage pipe (Figure 5) where the
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Ai 2–
Li
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Mi K 0 1–+
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K0

MK AK 1–

AK
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L1

Figure 5: Three stage software pipelinging. The loads for the first two loop iterations and the multiplies for the first
iteration are factored out of the unrolled inner-most loop as are the multiplies for the penultimate and the accumulates
for the last two loop iterations.

Forward
Code Direction

MAi 1–

Li 1+

Li

Li K 0+
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MAi

K0

AK

L1

Figure 6: Two stage software pipelining.

loads, multiplies, and adds of an outer product are placed in three separate pipe stages. The core code semantics slightly
change, however, as the code now operates on blocks of size kK0 + 2 for non-negative integers k. One additional
M0 �N0 set of local variables is declared for use as temporaries as data flows down the “pipe”. The actual code order
is to first perform the accumulates of the i� 2nd iteration, the multiplies of the i� 1th iteration, and then the loads of
the ith iteration.

The -sp 2ma option uses a 2-stage pipe (Figure 6) where the loads of one iteration and the multiplies and adds
of another iteration are placed in two separate pipe stages. The -sp 2lm option also uses a 2-stage pipe but groups
the loads/multiplies and the adds together. Both these two-stage strategies result in core code that operates on blocks
of size kK0 + 1.

The software pipelining options provide the potential for the memory system, multiply unit, and add unit to remain
busy throughout the core code block. A good instruction scheduler, however, is still required to take advantage of its
independent instructions. While maintaining comperable performance, the extent of loop unrolling (i.e., the value of
K0) can theoretically decrease leading to more and potentially better sizes for the L1 cache-block (described below).
In practice, results show that software pipelining (in particular, the 2ma strategy) results in an appreciable core-code
speedup.

3.2 Matrix Multiply L1 and/or L2 Cache Blocking Code

Because of the separation between matrix dimension and matrix stride, we can implement higher levels of cache
blocking as calls to lower level routines with appropriately sized sub-matrices. mm lgen, our cache-blocking code
generator, achives this by producing code that uses the sub-matrix mutliply code produced either by mm cgen or by
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mm lgen itself.
mm lgen supports the following command line options:

Usage: mm_lgen [OPTIONS]
where [OPTIONS] include:
Semantics options:
-opA [N|T] : A matrix op. Normal|Transpose
-opB [N|T] : B matrix op. Normal|Transpose
-no_m_fringe : don’t generate an M reg block fringe
-no_k_fringe : don’t generate a K reg block fringe
-no_n_fringe : don’t generate an N reg block fringe
-no_fringes : don’t generate an M,K, or N reg block fringes
-alpha [<val>|c] : fix alpha at value <val> or arbitrary
-beta [<val>|c] : fix beta at value <val> or arbitrary

Optimization options:
-l0 M0 K0 N0 : register (L0) blocking parameters
-l1 M1 K1 N1 : L1 blocking parameters
-calldown : check/call down lower routines first

Precision options:
-prec [single|double|ldouble] : Precision
-sprec [single|double|ldouble] : Source Precision
-aprec [single|double|ldouble] : Accumulator Precision
-dprec [single|double|ldouble] : Destination Precision

Core code routine names options:
-gen_rout name : General MM routine
-gen_nf_rout name : General nofring (M0,K0,N0) routine
-fixed_rout name : Fixed (M0M1,K0K1,N0N0) routine
-sp [1|2lm|2ma|3] : software pipelining option for core routine.

Code generation & Misc. options:
-help : Print this message
-file name : Write to file ’name’
-routine_name name : Name of resulting routine
-spacechar c : char to use as space
-numspaces i : spaces per nest
-version : print version and exit.

Many of the options are similar to that of mm cgen. We describe the set of operations performed by the routine
produced by mm lgen and in doing so describe the options that do not have an obvious similarity with mm cgen.

The matrixes A, B, and C can be divided into regions depending on the values of the L0 and L1 blocking parameters.
For example, figure 7 shows a division of the C matrix into three regions, I, II, and III. Region III is a submatrix whose
dimensions are multiples ofM1M0 and N1N0 respectively. Region II corresponds to three matrices whose dimensions
are mutliples of M0 and N0 but where the multiples are less than M1 and N1 respectively. Region I corresponds to
three matrices whos dimensions are less than the L0 blocking parameters.

In order to increase performance, mm lgen can use an appropriate sub-matrix routine for different matrix regions.
mm lgen therefore takes the names of three routines, resolved at link time, that should be optimized for different
conditions. The meanings are as follows:

� gen rout specifies the name of a general matrix multiply routine that can be used on any size matrix. This
argument must be present and, if no other routine names are given, this routine will be used for all regions of all
the matrices.

� gen nf rout specifies the name of a “general but no fringe” matrix mutliply routine that only operates on
matrices whose sizes satisfies M = mM0, K = kK0, and N = nN0 for some non-negative integers m, k, and
n (i.e., the matrices must be multiples of the L0 blocking sizes). If this argument is provided, mm lgen calls
this routine whenever sub-matrix sections are appropriately sized.
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Figure 7: Regions of the C matrix according to the L0 and L1 blocking parameters. We assume that M1 > m1 > 0,
m2 > 0, N1 > n1 > 0, and n2 > 0.

� fixed rout specifies the name of a matrix mutliply routine that operates only on matrices whose sizes satisfy
M = mM1M0, K = kK1K0, and N = nN1N0 (i.e., multiples of the L1 blocking sizes).

Figure 8 shows complete pseudocode for the operation performed by mm lgen’s routine. This strategy was chosen
to balance the tradeoff between overall code size and code size within a loop (due to I-cache limitations). Note that
fixed rout is only called once, but it will typically correspond to the largest matrix region (i.e., greatest number of
FLOPS). The other two routines are called depending on the size of the remaining matrix fringes.

mm lgen also takes a -sp option because it must know the blocking size offset in the K dimension that
fixed rout or gen nf rout use, and that depends on the software piplining option used to generate them. The
search scripts (see Section 4) always ensure that fixed rout and gen nf rout use the same software pipelining
option, although there is no theoretical reason why this must always be the case.

3.3 Higher-level Cache Blocking

L2 cache blocking can also be performed using code produced by mm lgen. In this case, however, the meaning of the
arguments change slightly from the L1 blocking case. The -l0 option becomes a dummy argument which must be set
to 1 1 1. The -l1 option then specifies the L2 cache blocking size and is typically set to -l1 M0M1M2 K0K1K2

N0N1N2 for L2 parameters M2, K2, and N2. Also, the -sp option should be set to 1 indicating no additional
K-dimension offset. Finally, at least a single -gen rout routine name must be given which specifies a general L1
blocked matrix multiply routine. An analogous strategy can be used to produce L3-blocked and even higher level code.

3.4 Routine Interface

The code generators produce routines which conform to the following interface:

void
mul_mpmp_mp(

const int M,
const int K,
const int N,
const <prec> *const A,
const <prec> *const B,
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for m 2 M-Block
for n 2 N-Block

for k 2 K-block
call fixed rout();

if rest of K-dimension is a multiple of K0
call gen nf rout();

if any K-dimension remains
call gen rout();

if rest of N-dimension is a multiple of N0
for k 2 K-block

call gen nf rout();
if rest of K-dimension is a multiple of K0

call gen nf rout();
if any K-dimension remains

call gen rout();
if any N-dimension remains

for k 2 K-block
call gen rout();

if rest of K-dimension is a multiple of K0
call gen rout();

if any K-dimension remains
call gen rout();

if rest of M-dimension is a multiple of M0
for n 2 N-Block

for k 2 K-block
call gen nf rout();

if rest of K-dimension is a multiple of K0
call gen nf rout();

if any K-dimension remains
call gen rout();

if rest of N-dimension is a multiple of N0
for k 2 K-block

call gen nf rout();
if rest of K-dimension is a multiple of K0

call gen nf rout();
if any K-dimension remains

call gen rout();
if any N-dimension remains

for k 2 K-block
call gen rout();

if rest of K-dimension is a multiple of K0
call gen rout();

if any K-dimension remains
call gen rout();

if any M-dimension remains
for n 2 N-Block

for k 2 K-block
call gen rout();

if rest of K-dimension is a multiple of K0
call gen rout();

if any K-dimension remains
call gen rout();

if rest of N-dimension is a multiple of N0
for k 2 K-block

call gen rout();
if rest of K-dimension is a multiple of K0

call gen rout();
if any K-dimension remains

call gen rout();
if any N-dimension remains

for k 2 K-block
call gen rout();

if rest of K-dimension is a multiple of K0
call gen rout();

if any K-dimension remains
call gen rout();

Figure 8: The structure of mm lgen’s L1 and higher level cache blocking matrix multiply code.

14



<dprec> *const C,
const int Astride,
const int Bstride,
const int Cstride
[,const <prec> alpha]
[,const <prec> beta]);

Where, assuming alpha and beta are present, the operation corresponds to C = �AB + �C. mul mpmp mp is the
default generated routine name but where the character ’p’ is normally ’f’, ’d’, or ’l’ for single, double, or extended
precision. <prec> is the source matrix precision and <dprec> is the destination matrix precision. A, B, and C are
respectively M �K, K �N , and M �N matrices. Astride (respectively Bstride and Cstride) is the number
of elements between successive elements in a column of A (respectively, B and C). In other words, Astride (resp.
Bstride, Cstride) is the number of elements in the leading dimension of A (resp. B, C). The alpha and beta
parameters are optionally present depending on the values of the -alpha and -beta command line arguments.

The meanings of the above parameters slightly change when transpose operations are specified. For example, to
generate code for the operation: C = �ATBT + �C, the command line is

mm_cgen -l0 M0 K0 N0 -l1 M1 K1 N1 \
-prec single -alpha c -beta c -opA T -opB T

The parameter semantics are now: transpose(A) (respectively transpose(B)) is a M � K (resp. K � N ) matrix.
Astride (resp. Bstride) is, again, the number of elements between successive elements in a column of A (resp.
B). The default generated routine name also changes to mul mptmpt mp.

For example, suppose we have three single precision matrices A, B, and C that are respectively of size M �K,
K � N , and M �N . For the operation C = 0:1AB + 0:0B, we would call the generator as:

mm_cgen -cb M0 K0 N0 -prec single -alpha c -beta c

which would produce a routine called as:

mul_mfmf_mf(M,K,N,A,B,C,K,N,N,0.1,0.0);

If we, alternatively, knew a priori that � is fixed at 0.1 and � at 0.0, we would generate code using:

mm_cgen -cb M0 K0 N0 -prec single -alpha 0.1 -beta 0.0

and we would call

mul_mfmf_mf(M,K,N,A,B,C,K,N,N);

As another example, suppose we have three single precision matrices A, B, and C that are respectively of size
K �M , N �K, and M � N . For the operation C = 3ATBT + 10C, we would generate code using:

mm_cgen -l0 M0 K0 N0 -l1 M1 K1 N1 \
-prec single -alpha c -beta c -opA T -opB T

and we would call the transpose-transpose routine as

mul_mftmft_mf(M,K,N,A,B,C,M,K,N,3.0,10.0);

As yet another example, here is the calling sequence for non- sub-matrix-matrix multiply (i.e., the strides equal
the sizes) for all transposition possibilities; normal-normal (NN), normal-transpose (NT), transpose-normal (TN), and
transpose-transpose (TT):

/* NN, size(A) = MxK, size(B) = KxN, size(C) = MxN */
mul_mfmf_mf(M,K,N,A,B,C,K,N,N);
/* NT, size(A) = MxK, size(B) = NxK, size(C) = MxN */
mul_mfmft_mf(M,K,N,A,B,C,K,K,N);
/* TN, size(A) = KxM, size(B) = KxN, size(C) = MxN */
mul_mftmf_mf(M,K,N,A,B,C,M,N,N);
/* TT, size(A) = KxM, size(B) = NxK, size(C) = MxN */
mul_mftmft_mf(M,K,N,A,B,C,M,K,N);
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Recall that the C language stores matrices in row-order where the rows are the leading dimension (i.e., consecutive
memory locations are successive row elements) but Fortran stores matrices in column-order. It is still possible, however,
to use a C-based multiplier for Fortran matrices. For example, suppose you have three Fortran matrices A, B, and C
where A’s size M �K, B’s size is K � N , and C’s size is M �K. To do a NN matrix multiply in Fortran using a C
routine, you would call the C NN routine as:

mul_mfmf_mf(N,K,M,B,A,C,K,M,M);

If A’s size is M �K, B’s size is N �K, and C’s size is M �K, to do a NT matrix multiply using a C routine,
you would call the C TN routine as:

mul_mftmf_mf(N,K,M,B,A,C,N,M,M);

The TN and TT cases are performed in a similar way.

4 PHiPAC v1.0 Matrix Multiply Search Engine

The PHiPAC v1.0 matrix-multiply search scripts take parameters describing the machine architecture, including the
number of integer and floating-point registers and the sizes of each level of cache. For each combination of generator
parameters and compilation options, the matrix multiply search script calls the generator, compiles the resulting routine,
links it with timing code, and benchmarks the resulting executable.

To produce a complete BLAS GEMM routine, we find separate parameters for each of the four cases A � B,
AT �B, A�BT , and AT �BT . For each case, the overall code is structured as described in Section 3.2. The search
script performs the following top-level set of operations:

1. Find the best register (L0) blocking parameters M0, K0, and N0. These are called the L0 core parameters and
are used for sections II and III of the matrix in Figure 7.

2. Find the best L1-cache blocking parameters M1, K1, and N1.

3. Optionally, find the best L0 blocking parameters M g
0 , Kg

0 , and N g
0 used to generate code to handle the matrix

fringes (see the do L0 gen frng option below). The resulting L0 general blocking parameters are separate
from the L0 core parameters, and are used for portions of the matrix with fringes less than any of the L0 core
parameters in the respective dimension.

4. Find the best L2-cache blocking parameters M2, K2, and N2.

After these steps have completed, code is generated for each of the resulting blocking parameters which is then used
to produce a complete BLAS GEMM compatible matrix multiply.

Unlike the code generators, the search script options are specified in parameter files. The following sections
describe each of the above procedures in detail by giving descriptions of all relevant search script options. The actual
syntax of the parameter files is described in example files that are included with the distribution.

4.1 Search Procedure

The PHiPAC v1.0 distribution contains: (1) the code generator for generating matrix-matrix multiply code in ANSI
C, (2) timing libraries to benchmark the performances of the generated matrix-matrix multiply code, and (3) search
scripts to find the code generator’s parameters that yield the code with the highest performance for a given system.

The basic top level command line call to the search script is:

search.pl [-long|-default|-short] -machine machine_specs -prec [single|double] \
-ccopt compiler_options -level [0|1|2]

The -machine option gives a file describing the machine specifications and the-ccopt option gives a file describing
the desired compiler optimization options. The -level option says whether to search just for the register blocking
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parameters, or to also perform an L1 or L2 search.2 The -long, -default, and -short options say whether to
do a long, medium, or short search. These options cause the search script to load different files that specify differing
degrees of search thoroughness – the meanings of long, medium, and short are independent of the search scripts. The
parameter files can therefore be modified to create a custom search.

The top level directory contains the following subdirectories:

� mm gen-2.0/: This subdirectory contains the C source code for the mm cgen and mm lgen code generators.
They can be independently compiled on your system to yield the executable code generator. Alternatively, the
search scripts can be run to compile them automatically.

� ipm-2.0/, rprf-v0 19/ Interval Performance Monitor, version 2.0.[Asaa] and Realization group (at ICSI)
Performance measurement library, alpha version 0.19. [Asab].

These are the timing libraries PHiPAC uses for benchmarking generated code. They provide a uniform interface
to a wide variety of machine timers on a variety of platforms. These libraries are not documented in this paper.

� search-2.2/: This subdirectory contains PERL search scripts that find blocking parameters for the code generator
to produce optimally performing code on your system.

� runs/: This subdirectory contains a self-explanatory set of example parameter files to be used with the search
scripts.

4.1.1 Getting a BLAS compatible GEMM

The PHiPAC search scripts are capable of finding parameters to produce optimal BLAS compatible SGEMM or
DGEMM routines. We describe how to do this below.

1. In the runs/ subdirectory, make a copy of the template/ subdirectory to one corresponding to the machine
on which you plan to to run the search script. For instance, suppose your machine is named myhost; then you
can do the following:

% cd PHiPAC/runs/
% cp -r template myhost

The files in the template/ subdirectory should not be changed (and will not be used by the search scripts),
since you may need to refer to them (or recopy them) when you run the search scripts on other hosts. When
you make the copy as above, the files in the myhost/ subdirectory will still have the prefix tag template. In
subsequent steps, we shall assume you have renamed these files to remove the prefix tag.

2. Edit the machine specs file in the runs/myhost subdirectory to reflect the characteristics of the machine
(see Section 4.2). You need to supply the following information:

� number of single precision registers (if doing single precision search)

� number of double precision registers (if doing double precision search)

� L1 cache size in bytes

� L2 cache size in bytes (if it exists)

� L3 cache size in bytes (if it exists)

� ANSI C compiler to be used

If the machine does not have an L2 (or L3) cache, the corresponding information may be omitted. If the
-level option of the top level search script indicates a higher level cache than that which size information has
been provided, the size information will be guessed using the size given for the previous cache level (see the
L1 cache size, L2 cache size, L3 cache size options in Section 4.2).

2In the machine specifications file, described in Section 4.2, you must provide the sizes of the L1 (and perhaps also the L2 and L3) cache. Just
providing those sizes, however, do not ensure that the corresponding cache level is searched. It is the -level option that controls the depth of the
cache search.
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3. Edit thecompiler options file in theruns/myhost subdirectory to list the compiler optimization options
the search script should try (see Section 4.3). It is common to specify just one set of compiler optimization flags
since an entire search will be performed for each one.

4. Decide on the cache blocking levels (0, 1 or 2) you wish to search over. A higher level of blocking yields code
with a better performance on large matrices, but it also takes a much longer time. Usually, the level of blocking
should be the same as the number of levels of cache available on the machine (e.g., a machine with only L1
cache should be search for only level 1 blocking).

5. Decide on the thoroughness of the search (i.e., long, default or short). A long search is fully exhaustive, but
takes an extremely long time to finish (say, several weeks). A short search is much quicker (say, within a day
or two) but may not yield the best code. The default search is a compromise between these two extremes. The
actual search run time, however, depends on characteristics of the specific machine running the search script.

6. To avoid spurious results, make sure the machine is unloaded before starting any search. Then start the
search as follow:

% cd runs/myhost
% perl5 ../../search-2.2/search.pl [-long|-default|-short] \

-machine machine_specs -prec [single|double] \
-ccopt compiler_options -level [0|1|2]

For instance, to do a long search for level 2 blocked DGEMM, you would run

% perl5 ../../search-2.2/search.pl -long \
-machine machine_specs -prec double \
-ccopt compiler_options -level 2

To do a short search for level 1 blocked SGEMM, you would run

% perl5 ../../search-2.2/search.pl -short \
-machine machine_specs -prec single \
-ccopt compiler_options -level 1

To do a default search for register blocked DGEMM, you would run

% perl5 ../../search-2.2/search.pl -default \
-machine machine_specs -prec double \
-ccopt compiler_options -level 0

or simply

% perl5 ../../search-2.2/search.pl \
-machine machine_specs -prec double \
-ccopt compiler_options -level 0

As the search proceeds, files will be created in a performance directory – for the example above, the name of
that directory would be runs/myhost/perf/. Each file contains the performance in MFLOPS for various
blocking sizes and has names such as:

L0CORE.fprecisiong.fmatopg.falphatypeg.fsoftpipeg.fcompoptg
L0CORE almstsq.fprecisiong.fmatopg.falphatypeg.fsoftpipeg.fcompoptg
L0GEN.fprecisiong.fmatopg.falphatypeg.fsoftpipeg
L1.fprecisiong.fmatopg.falphatypeg.fL1typeg
L2.fprecisiong.fmatopg.falphatypeg
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where

� L0CORE, LOCORE almstsq, L0GEN, L1, L2 correspond respectively to performance numbers for the L0
fat-dot-product core, the L0 almost-square core, the L0 general, the L1, and the L2 blocking case.

� fprecisiong is the machine precision and is either single or double.

� fmatopg is the matrix operation and is either NN, NT, TN or TT.

� falphatypeg is the alpha type and is either c or 1.

� fsoftpipeg is the software pipelining option and is either 1A, 1B, 2ma, 2lm or 3.

� fcompoptg is the tag from the compiler optimizations file (see Section 4.3).

� fL1typeg indicates either nofringe general or fixed nofringe general (see Section 4.5).

Some example file names include:

L0CORE.double.NN.1.1B.CC
L0CORE.double.NN.1.2ma.CC
L0CORE_almstsq.double.NN.1.1B.CC
L0CORE_almstsq.double.NN.1.2ma.CC
L0GEN.double.NT.c.1B
L0GEN.double.NT.c.2ma
L1.double.NT.1.nofringe_general
L1.double.NT.c.fixed_nofringe_general
L1.double.NT.1.nofringe_general
L1.double.NT.c.fixed_nofringe_general

The existence of each file indicates the completion of a checkpoint. That is, the search script will produce the
performance numbers for the blocking parameters corresponding to one file and only then create that file. If the
search script is killed for some reason and then restarted, it will not regenerate the performance numbers if the
corresponding file exists, even if changes have been made to a parameter files. Therefore, if you first run, say,
a short search and then later run a default one, it might (depending on the contents of the corresponding
parameter files) be necessary to delete the appropriate performance file.

When the search script is finished with an entire step of the procedure listed in Section 4, files with the names
L0CORE top.fprecisiong, L0GEN top.fprecisiong, L1 top.fprecisiong, and L2 top.fprecisiongwill be created
that give the top performers in each category. The blocking numbers in these files are ultimately used to produce
the resulting BLAS GEMM.

7. When the search script terminates, a subdirectory called PHiPAC sgemm or PHiPAC dgemm will be created
(depending on the chosen precision). You can then compile the corresponding GEMM library as:

% cd PHiPAC_sgemm or % cd PHiPAC_dgemm
% make % make

This will yield a libsgemm.a or libdgemm.a in that subdirectory. This is the PHiPAC optimized GEMM
library routine for your machine.

8. At this stage, you can restart the whole search process from step 4 for the other GEMM library routine; for
instance, if you have just generated the DGEMM library routine, you can repeat steps 4 to 7 for the SGEMM
library routine.

9. We encourage you to send us your search results and the performance of the library routine on your machine so
we may make it available for others to use. To do so, first go into the runs/myhost subdirectory:

% cd ..

Now benchmark the SGEMM library:
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% perl5 ../../search-2.2/time_gemm.pl machine_specs single

and benchmark the DGEMM library:

% perl5 ../../search-2.2/time_gemm.pl machine_specs double

These will report the performance of the library routines on square matrix multiplication for a list of sizes such
that all three matrices (A, B and C) occupy at most 16MB of memory.

After these benchmarking scripts have completed, do

% tar -cvf perf.tar perf

to create an archive of all performance readings obtained during the search and the benchmarking. Finally, make
the file available to use by sending phipac@icsi.berkeley.edu mail containing a URL where we may
obtain the resulting tar file.

4.2 Machine Specifications File

The machine specifications file provides all machine specific information to the search engine. This file is separate
from the others as it might be used in future releases to search operations besides matrix multiply.

� num single prec registers, num double prec registers,
L1 cache size, L2 cache size, L3 cache size: The num single prec registers and
num double prec registers parameters specify the number of single precision and double precision
floating point registers respectively. The L1 cache size, L2 cache size and L3 cache size parame-
ters specify the sizes (in bytes) of the level-1, level-2 and level-3 data caches of the machine running the search
script. If the machine running the search script has only a level-1 cache, then the L2 cache size parameter
may be omitted, and correspondingly for the L3 cache size. In such case, when needed (i.e., if the -level
option of the top level search specifies a higher level than cache size information is specified), these parameters
are assumed to be eight times the size of the immediately preceding cache.

� compiler: The compiler parameter specifies the path name of the ANSI-C compiler to use. Additional
options to be passed to the compiler may also be specified. For instance, a compiler that supports different
versions of the C language may be given the option that specifies ANSI-C conformance. Options to increase the
maximum macro size supported by the C pre-processor should also be provided here. These additional options
are given every time the compiler is called. Therefore, code-optimization options should not be specified here.
Instead, those options should be listed in the file specified by the compiler options file parameter.

� generator opts: Any additional options to be passed to the generator (besides those controlled by the
search script itself) can be given through the generator opts parameter. These additional options are given
every time the code generator is called. For a normal run of the search script, no additional generator options is
necessary.

� timer args: The timer args parameter specifies any options to be passed to the underlying
IPM/RPRF [Asaa, Asab] timer program for benchmarking.

4.3 Compiler Specifications File

This file simply specifies the optimization options for the compiler that the search script should use to compile the
matrix code. Multiple compiler options can be specified and an entire search will be performed for each one. For
index purposes, each set of compiler options is preceded by a text tag.
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4.4 Register (L0) Parameter Search

The core register block search evaluates all combinations of values of M0 and N0 where 1 �M0N0 � NR and where
NR is the number of machine floating-point registers. The above is searched for K0 2 K0 where K0 is determined by
the k0 set parameter (see below). Each blocking parameter triple is selected at random from the satisfying set and
is used to generate code which is subsequently benchmarked.

The majority of the computation, especially for larger matrices, is performed by the core M0 �K0 � N0 register
blocked code. Our L0 core search strategy, therefore, produces code containing only this core (i.e., no fringe code),
which decreases compile time, and for each L0 parameter set, we benchmark only a single matrix multiply with size
M = M0, N = N0, and K = kK0 for some large integer k (we call this a “fat” dot-product). The parameter k is
chosen such that the three matrices occupy some percentage of the L1 cache (although this can be set to either the
L2 or L3 depending on a search option). While this case ignores the cost of the M- and N-loop overhead, we have
so far found that this approach produces good quality code in less time than had we searched larger matrices. We
nevertheless also provide the option to search matrices that fit in cache and are almost square. See the options below.

� one stage holdstripe A, one stage holdstripe B, two stage load mult,
two stage mult add, three stage : These specify the software-pipelining options that are corre-
spondingly passed to the code generator mm cgen (see Section 3.1.2). Any combination of these options is
allowed but at least one of them must be specified. All of them will be searched in an attempt to find the best.

� alpha equals one, alpha arbitrary: If alpha equals one or alpha arbitrary is set, sep-
arate code for the case when � = 1 and � = c where c 6= 1 (respectively) is generated and benchmarked. Any
combination of these options is allowed, but at least one of them must be set. The � = 1 case requires fewer
operations than the arbitrary case and might also, therefore, require different blocking parameters for optimal
performance. As described in Section 3.1, mm cgen generates different code for these two cases.

� matop NN, matop NT, matop TN, matop TT: If matop NN, matop NT, matop TN or matop TT is
set, the code for Normal-Normal, Normal-Transpose, Transpose-Normal or Transpose-Transpose (respectively)
matrix multiplication is generated and benchmarked. The differing routines are subsequently used for the
resulting full BLAS GEMM.

� auto blockings, k0 set, blockings file: If the auto blockings parameter is set, the set of
L0 blocking triples (M0;K0; N0) to be benchmarked will be generated automatically from the combination
of the k0 set parameter (see below) and the number of floating point registers available in the appropriate
arithmetic precision. The values of M0 and N0 will be restricted to a range in such a way that M0N0 is no more
than the number of machine registers. The values of K0 will be taken from those given in the set specified by
the k0 set parameter.

If the blockings file parameter is specified, however, the L0 blocking space is created from the blocking
sizes listed in the file whose name is given by blockings file. This option exists since, for certain
workloads, it might be advantageous to search only a certain set of L0 blocking sizes (see the next option).

� auto matrixsizes, fill cache percentage,
matrixsizes file: If the auto matrixsizes parameter is set, each blocking triple will be bench-
marked on an automatically generated set of matrix sizes chosen to make all three matrices fit within the cache
(either L1, L2, or L3 depending on the options below). The resulting MFLOPS rate is taken to be the perfor-
mance. The fill cache percentage value is the relative percentage of data cache that the three matrices
should occupy. For example, if this is set to 80, the matrix sizes will be chosen so that all three matrices combine
to fill 80 percent of the cache.

If the matrixsizes file parameter is specified, every set of L0 blocking sizes will be benchmarked on
the set of matrix sizes listed in the file name. The resulting performance is taken to be the harmonic mean of
the MFLOPS rate achieved by the code on all matrix sizes. This mode of performance measure is suitable for
generating high performance code for a predetermined set(s) of matrix sizes (which are typically small). The
fill cache percentage parameter has no effect when this mode of performance measure is used.

� use fatdot, use almstsq: When the auto matrixsizes parameter is set, one out of two perfor-
mance readings is chosen to represent the performance of the current L0 blocking. This L0 blocked code is
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Figure 9: The L0 general search uses a workload consisting of matrix shapes as listed in this figure. The collection of
matrix sizes used is as shown where m, k, or n takes on powers of two between 1 and respectively M0, K0, and N0.

timed both for a fat dot-product matrix workload and for an almost-square matrix workload. A fat dot-product
was described above. An almost square matrix has dimensions M = mM0, K = kK0, and N = nN0 where
m, k, and n are chosen so that the three matrices jointly occupy fill cache percentage percent of the
cache and are as “square” shaped as possible. If the use fatdot parameter is set, the performance for the fat
dot-product workload is used as the ultimate performance for the current blocking size and if the use almstsq
parameter is set, the performance for the almost-square workload is used as the ultimate performance. Using
different shapes to determine the ultimate performance will yield different optimal blocking sizes for differing
matrix workloads.

� do L0 gen frng: When the do L0 gen frng option is set, an additional L0 blocking search is performed
after the L1 search. This additional search finds the best L0 general blocking parameters for the matrix fringes
(i.e., those portion of the matrices that are not a multiple of M0, K0, or N0). It does this by, for each L0 blocking
parameter triple, selecting and then benchmarking a set of matrix sizes that are similar in shape (see Figure 9) to
the matrices that typically occur at the fringes. The ultimate result is an additional set of L0 blocking numbers
M g

0 , Kg
0 , orN g

0 which are used for the routinegen rout() as listed in Figure 8. This option will also produce
code that is faster on small matrices.

� benchmark l0 out of l2: When the benchmark l0 out of l1 option is set, the matrix sizes that are
used to benchmark the L0 parameters are set according to the L2 cache rather than the L1 cache. This is so that
the core code instruction scheduling should be optimized for memory accesses that are typically out of L1 cache
rather than within.

� benchmark l0 out of l3: The benchmark l0 out of l3 is similar
to the benchmark l0 out of l2 option except that the matrix size is chosen to be L3 sized rather than
L2.

4.5 L1 Cache Block Search

We perform the L1 cache blocking search after the best core register blocking is known. We would like to make
the L1 blocks large to increase data reuse but larger L1 blocks increase the probability of cache conflicts [LRW91].
Tradeoffs between M- and N- loop overheads, memory access patterns, and TLB structure also affect the best L1 size.
We currently perform a relatively simple search of the L1 parameter space. For the D�D square case, we search the
neighborhood centered at 3D2 = L1 where L1 is the L1 cache size in elements. We set M1 to the values b�D=M0c
where � 2 Φ (this is selected, as described below, by a parameter but a typical set is Φ = f0:25; 0:5;1:0; 1:5;2:0g)
and D =

p
L1=3. K1 and N1 are set similarly. We benchmark the resulting (for the example, 125) combinations with

matrix sizes that either fit in L2 cache, or are within an upper bound (currently eight times the L1 size) if no L2 cache
exists.
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The following describes the search parameters relevant to L1 searching.

� l1 use nofringe general, l1 use fixed nofringe general: These options select up to two
different strategies that search for and time code that handles section III of the matrix in Figure 7. If only
l1 use nofringe general is set, L1 blocking will be searched using only the general no fringe and general
matrix subroutines (i.e., in Figure 8, the onefixed rout() call will actually be a call to thegen nf rout()
routine). If only l1 use fixed nofringe general is set, L1 blocking will be searched using the fixed,
general no fringe, and general matrix subroutines (i.e., in Figure 8, the one fixed rout() call will actually
be a call to a genuine fixed-size matrix routine). If both options are set, both cases will be timed and only the
best performer will ultimately be retained. This option therefore potentially controls one aspect of the tradeoff
between code-size and performance.

� m ratios, k ratios, n ratios: These parameters specify the factors in the L1-block ratio space (i.e.,
the set Φ as described above). The cross-product of the three sets is used to compute the ratio triples (so if
each ratio parameter contains five values, the result is 125 ratio triples). Given the optimal L0 blocking sizes
(M0,K0,N0) and an L1-block ratio triple (mr ,kr,nr), the L1 blockingsizes (M1,K1,N1) are computed as follows.
Using the L1 data cache size, the largest S is computed such that the three matrices A, B and C will together
require fill cache percentage percent of the L1 cache assuming they are S � S square. Then, M1, K1,
and N1 are computed as the largest integers for which the L1 blocked matrix (M1M0, K1K0, N1N0) is less than
or equal to (mrS, krS, nrS).

� fill cache percentage: The fill cache percentage value is the percentage of the L2 data cache
that is occupied by matrices used to benchmark the L1 blocking numbers.

� benchmark l1 out of l3: When the option benchmark l1 out of l3 is set, the matrix sizes that are
used to benchmark the L1 parameters are set according to the L3 cache rather than the L2 cache. This is so that
the search should optimize the L1 blocking for memory accesses that are typically out of L2 cache rather than
within.

4.6 L2 Cache Block Search

The L2 cache blocking search, when done, is performed similar to the L1 search. The following options are available.

� m ratios, k ratios, n ratios: These parameters specify how to compute the set of L2 blocking sizes
to be benchmarked. Like in the L1 case, they specify ratios of a square size but in this case the square size is
computed using the L2 cache size.

� fill cache percentage: The fill cache percentage value is analogous to the L1 case, but here it
selects a percentage the L3 data cache size.

4.7 Short/Default/Long search

As mentioned in Section 4.1, the -short, -default, and -long flags to the top level search script each indicate a
different set of configuration files. Each of -short, -default, and -long specifies three files which indicate how
thoroughly to perform the search. These files live in the search-2.2/ directory and are called respectively:

opt_short.L0_search
opt_short.L1_search
opt_short.L2_search
opt_default.L0_search
opt_default.L1_search
opt_default.L2_search
opt_long.L0_search
opt_long.L1_search
opt_long.L2_search

To create a custom search, therefore, the above files should be modified. The files named L0 search, L1 search,
and L2 search in the runs/myhost directory exist only for documentation and are not actually read by the search
script.
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Sun
Sparc-20/61

HP
712/80i

IBM
RS/6000-590

SGI
Indigo R4K

SGI
Challenge

SGI
Octane

Processor SuperSPARC+ PA7100LC RIOS-2 R4K R8K R10K
Frequency (MHz) 60 80 66.5 100 90 195
Max Instructions/cycle 3 2 6 1 4 4
Peak MFLOPS (32b/64b) 60/60 160/80 266/266 67/50 360/360 390/390
FP registers (32b/64b) 32/16 64/32 32/32 16/16 32/32 32/32
L1 Data cache (KB) 16 128 256 8 - 32
L2 Data cache (KB) 1024 - - 1024 4096 1024
OS SunOS 4.1.3 HP-UX 9.05 AIX 3.2 Irix 4.0.5H IRIX6.2 IRIX6.4
C Compiler Sun acc 2.0.1 HP c89 9.61 IBM xlc 1.3 SGI cc 3.10 SGI cc SGI cc

Search results
PHiPAC version alpha alpha alpha alpha new new
Precision 32b 64b 64b 32b 64b 64b
M0,K0,N0 2,4,10 3,1,2 2,1,10 2,10,3 2,4,14 4,2,6
M1,K1,N1 26,10,4 30,60,30 105,70,28 30,4,10 200,80,25 12,24,9
CFLAGS -fast -O -O3 -qarch=pwr2 -O2 -mips2 -n32 -mips4 -O3

Table 1: Workstation system details and results of matrix multiply parameter search.

5 Results

We ran the search scripts to find the best register and L1 cache blocking parameters for six commercial workstation
systems. These systems have different instruction set architectures and widely varying microarchitectures and memory
hierarchies. The results are summarized in Table 1.

The SGI R8K and R10K searches used version 1.0 of the code generator and search scripts, while other results
were obtained with our earlier PHiPAC alpha release. Figures 10–13 plot the performance of the resulting routines
for all square matrices M = K = N = D, where D runs over powers of 2 and 3, multiples of 10, and primes, up
to a maximum of 300. We compare with the performance of a vendor-optimized BLAS GEMM where available. In
each case, PHiPAC yields a substantial fraction of peak performance and is competitive with vendor BLAS. Due to
limited availability, we could only perform an incomplete search on the R8K and R10K, and so these are preliminary
performance numbers. There is also potential for improvement on the other machines when we rerun with the newer
version. For completeness, we also show the poor performance obtained when compiling a simple three nested loop
version of GEMM with FORTRAN or C optimizing compilers.

The PHiPAC methodology can also improve performance even if there is no scope for memory blocking. In Figure
16 we plot the performance of a dot product code generated using PHiPAC techniques. Although the parameters used
were obtained using a short manual search, we can see that we are competitive with the assembly-coded SGI BLAS
SDOT.

In some of the plots, we see that PHiPAC routines suffer from cache conflicts. Our measurements exaggerate this
effect by including all power-of-2 sized matrices, and by allocating all regions contiguously in memory. For matrix
multiply, we can reduce cache conflicts by copying to contiguous memory when pathological strides are encountered
[LRW91]. Unfortunately, this approach does not help dot product. One drawback of the PHiPAC approach is that we
can not control the order compilers schedule independent loads. We’ve occasionally found that exchanging two loads
in the assembly output for dot product can halve the number of cache misses where conflicts occur, without otherwise
impacting performance.

6 Status, Availability, and Future Work

This paper has demonstrated our ability to write portable, high performance ANSI C code for matrix multiply using
parameterized code generators and a timing-driven search strategy. We have described the PHiPAC V1.0 release which
contains matrix multiply generators, search scripts written in perl, and timing libraries.

In general, the current PHiPAC release finds extremely good L0 core matrix multiply routines. Our current strategy,
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Figure 10: Performance of single precision matrix multiply on a Sparcstation-20/61.
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Figure 11: Performance of single precision matrix multiply on a 100 MHz SGI Indigo R4K. We show the SGEMM
from SGI’s libblas mips2 serial.a library.
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Figure 12: Performance of double precision matrix multiply on a HP 712/80i. We show DGEMM from the pa1.1
version of libvec.a in HP’s compiler distribution.
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Figure 13: Performance of double precision matrix multiply on an IBM RS/6000-590. We show the DGEMM from
IBM’s POWER2-optimized ESSL library.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Square matrix sizes

M
F

LO
P

S

Vendor DGEMM

PHiPAC

FORTRAN, 3 nested loops

Figure 14: Preliminary performance of double precision matrix multiply on an SGI R8K Power Challenge. We show
the DGEMM from SGI’s R8K-optimized libblas.
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Figure 15: Preliminary performance of double precision matrix multiply on an SGI R10K Octane. We show the
DGEMM from SGI’s R10K-optimized libblas.
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Figure 16: Performance of single precision unit-stride dot-product on a 100 MHz SGI R4K.

however, for decomposing matrices for performing L1 and L2 matrix multiply and the associated search strategy is
rather naive. We are currently working, therefore, on a better L1 and L2 blocking strategy and accompanying methods
for search based on more intelligent criteria [LRW91].

The PHiPAC GEMM can be used with Bo Kågström’s GEMM-based BLAS3 package [BLL93] and LAPACK
[ABB+92]. We have also written parameterized generators for matrix-vector and vector-matrix multiply, dot product,
AXPY, convolution, and outer-product, and further generators, such as for FFT, are planned.

We have created a Web site from which the release, and all relevant documentation, is available and on which we
plan at some point to list blocking parameters and GEMM libraries for many systems [BAD+].

We wish to thank Ed Rothberg of SGI for help obtaining the R8K and R10K performance plots. We also wish to
thank Nelson Morgan who provided initial impetus for this project, Dominic Lam for work on the initial search scripts,
and Richard Vudoc and Sriram Iyer for new work on the PHiPAC project.
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