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Abstract

Modern microprocessors can achieve high performance on linear algebra kernels but this cur-
rently requiresextensive machine-specific hand tuning. We have devel oped amethodol ogy whereby
near-peak performance on awide range of systems can be achieved automatically for such routines.
First, by analyzing current machines and C compilers, we've developed guidelines for writing
Portable, High-Performance, ANSI C (PHIPAC, pronounced “fee-pack”). Second, rather than
code by hand, we produce parameterized code generators. Third, we write search scripts that find
the best parameters for a given system. We report on a BLAS GEMM compatible multi-level
cache-blocked matrix multiply generator which produces code that achieves around 90% of peak
on the Sparcstation-20/61, IBM RS/6000-590, HP 712/80i, SGI Power Challenge R8k, and SGI
Octane R10k, and over 80% of peak on the SGI Indigo R4k. In this paper, we provide a detailed
description of the PHIPAC V1.0 matrix multiply distribution. We describe the code generator in
detail including the various register and higher level blocking strategies. We aso document the
organization and parameters of the search scripts. This technical report is an expanded version of
[BACD97].
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1 Introduction

Theuse of astandard linear algebralibrary interface, such asBLAS[LHKK79, DCHH88, DCDH90], enables portable
application code to obtain high-performance provided that an optimized library (e.g., [AGZ94, KHM94]) is available
and affordable.

Developing an optimized library, however, is a difficult and time-consuming task. Even excluding algorithmic
variantssuch as Strassen’ smethod [ BL S91] for matrix multiplication, theseroutineshaveal arge desi gn spacewith many
parameters such as blocking sizes, loop nesting permutations, loop unrolling depths, software pipelining strategies,
register alocations, and instruction schedules. Furthermore, these parameters have complicated interactions with the
increasingly sophisticated microarchitectures of new microprocessors.

Various strategies can be used to produce optimized routines for a given platform. For example, the routines could
be manually written in assembly code, but fully exploring the design space might then be infeasible, and the resulting
code might be unusable or sub-optimal on a different system.

Another commonly used method isto codein ahighlevel language but with manual tuning to match the underlying
architecture [AGZ94, KHM94]. While less tedious than coding in assembler, this approach still requires writing
machine specific code which is not performance-portable across a range of systems.

Idedlly, the routines would be written once in a high-level language and fed to an optimizing compiler for each
machine. Thereisalarge literature on relevant compiler techniques, many of which use matrix multiplication as atest
case [WL91, LRW91, MS95, ACF95, CFH95, SMP*96]. While these compiler heuristics generate reasonably good
codein general, they tend not to generate near-peak codefor any oneoperation. Also, ahigh-level language’ s semantics
might obstruct aggressive compiler optimizations. Moreovey, it takes significant time and investment before compiler
research appears in production compilers, so these capabilities are often unavailable. While both microarchitectures
and compilers will improve over time, we expect it will be many years before asingle version of alibrary routine can
be compiled to give near-peak performance across a wide range of machines.

We have developed a methodology, named PHiPAC [BAD*96, BACD97], for developing Portable High-
Performance linear algebra libraries in ANSI C. Our god is to produce, with minimal effort, high-performance
linear algebralibrariesfor awide range of systems. The PHiPAC methodology has three components. First, we have
devel oped ageneric model of current C compilers and microprocessorsthat provides guidelinesfor producing portable
high-performance ANSI C code. Second, rather than hand code particular routines, we write parameterized generators
[ACF95, MS95] that produce code according to our guidelines. Third, we write scripts that automatically tune code
for aparticular system by varying the generators parameters and benchmarking the resulting routines.

We have found that writing a parameterized generator and search scripts for aroutine takes less effort than hand-
tuning a single version for a single system. Furthermore, with the PHiPAC approach, development effort can be
amortized over alarge number of platforms. And by automatically searching a large design space, we can discover
winning yet unanticipated parameter combinations.

Using the PHiPAC methodol ogy, we have produced a portable, BLA S-compatible matrix multiply generator. The
resulting code can achieve over 90% of peak performance on a variety of current workstations, and is sometimes
faster than the vendor-optimized libraries. We focus on matrix multiplication in this paper, but we have produced
other generators including dot-product, AXPY, and convolution, which have similarly demonstrated portable high
performance.

We concentrate on producing high quality uniprocessor libraries for microprocessor-based systems because mul-
tiprocessor libraries, such as [CDD*96], can be readily built from uniprocessor libraries. For vector and other
architectures, however, our machine model would likely need substantial modification.

Section 2 describes our generic C compiler and microprocessor model, and devel ops the resulting guidelines for
writing portable high-performance C code. Section 3 describes our C-code generator and the resulting code variants
for aBLAS-compatible matrix multiply. Section 4 describes our strategy for searching the matrix multiply parameter
space and the structure of the resulting GEMM library. This section also provides a detailed description of the various
optionsthat can be used to control the search. Section 5 presentsperformance resultson several architecturescomparing
against vendor-supplied BLAS GEMM. Section 6 describes the availability of the distribution, and discusses future
work. Thistechnical report isan expanded version of [BACD97].

1A longer list appearsin [Wol96].



2 PHIPAC

By analyzing the microarchitectures of a range of machines, such as workstations and microprocessor-based SMP
and MPP nodes, and the output of their ANSI C compilers, we derived a set of guidelines that help us attain high
performance across a range of machine and compiler combinations[BAD* 96].

From our analysis of various ANSI C compilers, we determined we could usualy rely on reasonable register
alocation, instruction selection, and instruction scheduling. More sophisticated compiler optimizations, however,
including pointer aias disambiguation, register and cache blocking, loop unrolling, and software pipelining, were
either not performed or not very effective at producing the highest quality code.

Although it would be possible to use another target language, we chose ANSI C because it provides a low-level,
yet portable, interface to machine resources, and compilers are widely available. One problem with our use of C is
that we must explicitly work around pointer aiasing as described below. In practice, thishas not limited our ability to
extract near-peak performance.

We emphasize that for both microarchitectures and compilers we are determining a lowest common denominator.
Some microarchitectures or compilerswill have superior characteristics in certain attributes, but, if we code assuming
these exist, performance will suffer on systems where they do not. Conversely, coding for the lowest common
denominator should not adversely affect performance on more capable platforms. For example, some machines can
fold a pointer update into a load instruction while others require a separate add. Coding for the lowest common
denominator dictates replacing pointer updates with base plus constant offset addressing where possible. In addition,
while some production compilers have sophisticated loop unrolling and software pipelining a gorithms, many do not.
Our search strategy (Section 4) empirically evaluates severa levels of explicit loop unrolling and depths of software
pipelining. While a naive compiler might benefit from code with explicit loop unrolling or software pipelining, amore
sophisticated compiler might perform better without either.

2.1 PHIPAC Coding Guidelines

The following paragraphs exemplify PHIPAC C code generation guidelines. Programmers can use these coding
guidelinesdirectly toimprove performancein critical routineswhileretaining portability, but thisdoes come at the cost
of less maintainable code. This problem is mitigated in the PHiPAC approach, however, by the use of parameterized
code generators.

Using local variables, reorder operationsto explicitly remove false dependencies.

Casudly written C code often over-specifies operation order, particularly where pointer aliasing is possible. C
compilers, constrained by C semantics, must obey these over-specifications thereby reducing optimization potential .
We therefore remove these extraneous dependencies.

For example, the following code fragment contains a fal se Read-After-Write hazard:

a[i] = b[i] + c;
a[i+1] = b[i+1]*d;

The compiler may not assume &[i] != &b[i +1] and isforced to first storea[ i ] to memory before loading
b[i +1] . Wemay re-write thiswith explicit loadsto loca variables:

float f1,f2;
fl1 =Db[i]; f2 = b[i+1];
a[i] = fl1l + c; a[i+1] = f2*d,

The compiler can now interleave execution of both original statements thereby increasing parallelism.

Exploit multipleinteger and floating-point registers.

Weexplicitly keep valuesinloca variablesto reduce memory bandwidth demands. For example, consider thefollowing
3-point FIR filter code:



while (...) {

*res++ = filter[0]*signal [0] +
filter[1] *signal [1] +
filter[2]*signal[2];

si ghal ++;

}

The compiler will usually reload thefilter values every loop iteration because of potential aliasing withr es. We can
remove the alias by preloading thefilter into local variablesthat may be mapped into registers:

float fO,f1,f2;

fo=filter[O];
fi=filter[1];
f2=filter[2];
while (... ) {

*res++ = fO0*signal [ 0]
+ fl*signal [1] + f2*signal[2];
si ghal ++;

}

Minimize pointer updates by striding with constant offsets.

We replace pointer updates for strided memory addressing with constant array offsets. For example:

fO =*r8; r8 += 4;
fl1=*r8; r8 += 4;
f2 =*r8; r8 += 4;

should be converted to:

fo =r8[0];
f1 =r8[4];
f2 = r8[8];
rg += 12;

Compilerscan fold the constant index into a register plus offset addressing mode.

Hide multipleinstruction FPU latency with independent operations.

We use local variables to expose independent operations so they can be executed independently in a pipelined or
superscalar processor. For example:

f1=f 5*f9;

f 2=f 6+f 10;
f3=f7*f11;
f4=f 8+f 12;

Balancetheinstruction mix.

A balanced instruction mix has a floating-point multiply, a floating-point add, and 1-2 floating-point |oads or stores
interleaved. It is not worth decreasing the number of multiplies at the expense of additionsif the total floating-point
operation count increases.

Increase locality to improve cache performance.

Cached machines benefit from increases in spatial and temporal locality. Whenever possible, we arrange our code
to have predominantly unit-stride memory accesses and try to reuse dataonceit isin cache. See Section 3.1 for our
blocked matrix multiply example.



Convert integer multipliesto adds.

Integer multiplies and divides are slow relative to integer addition. Therefore, we use pointer updates rather than
subscript expressions. For example, rather than:

for (i=...)
{ row ptr = &p[i*col _stride]; ... }
we would produce;
for (i=...)
{ ... rowptr += col _stride; }

Minimize branches, avoid magnitude compares.

Branches are costly, especially on modern superscalar processors. Therefore, we unroll loopsto amortize branch cost
anduse Cdo {} while (); loop control whenever possible to avoid any unnecessary compiler-produced loop
head branches.

Also, on many microarchitectures, it is cheaper to perform equality or inegquality loop termination tests than
magnitude comparisons. For example, instead of:

for (i=0,a=start_ptr;i<ARRAY_SI ZE; i ++, a++}
{ ...}

we produce;

end_ptr = &[ ARRAY_SI ZE]; a = start_ptr;
do {

co.oat
} while (a != end_ptr);

This aso removes one loop control variable.

Explicitly unroll loopsto expose optimization opportunities.

We unroll loops explicitly to increase opportunities for other performance optimizations. For example, our 3-point
FIR filter example above may be further optimized as follows:

float f0,f1,f2,s0,s1,s2
fo=filter[O];
fi=filter[1];
f2=filter[2];
sO=si gnal [ 0] ;
sl=signal [ 1];
s2=signal [ 2];
*res++ = f0*s0 + fl1l*sl + f2*s2;
do {
signal += 3;
sO0 = signal [0];
res[0] = fO*sl + f1*s2 + f2*s0;
sl = signal [1];
res[1] = f0*s2 + f1*s0 + f2*s1,;
s2 = signal[2];
res[2] = fO0*s0 + fl1*sl + f2*s2;
res += 3;
} while (... );

In theinner loop, there are now only two memory access per five floating point operationswhereas in our unoptimized
code, there were seven memory accesses per five floating point operations.
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Figure 1: Definition of the matrix blocking parameters. My, Ko, and Ng are the register blocking parameters — an
Mo x Ko block of A and a Ko x Ng block of B is multiplied and accumulated into an My x Ng block of C. Mj,
K1, and Ny are the register blocking parameters —an My Mg x K3 Ko block of A and a K1 Ko x N1 Ng block of B is
multiplied and accumulated into an M Mo x N1 Ng block of C. Higher level cache blocking parameters (such as M,
Ky, and Ny) are defined similarly.

3 Matrix Multiply C-Code Generators

nmcgen and nml gen are generators that produce C code following the PHiPAC coding guidelines for one variant
of thematrix multiply operation C' = cop(A)op(B) + SC where op(A), op(B), and C', are respectively M x K, KxN,
and MxN matrices, « and /5 are scalar parameters, and op(X) is ether transpose(X) or just X. Our individual
procedures have alower level interfacethen aBLAS GEMM and have no error checking. For optimal efficiency, error
checking should be performed by the caller when necessary rather than unnecessarily by the callee on every invocation.
We create a full BLAS-compatible GEMM by generating al required matrix multiply variants and linking with our
GEMM-compatibleinterface that includes error checking.

The code generators can produce a cache-blocked matrix multiply [GL89, LRW91, MS95], restructuring the
algorithm for unit stride, and reducing the number of cache misses and unnecessary |0ads and stores. Under control of
command line parameters, the generators can produce blocking code for any number of levels of memory hierarchy,
including register, L1 cache, TLB, L2 cache, and so on. The generators can produce code using different accumul ator
precisions, and can aso generate variousflavors of software pipelining.

nmcgen produces “core” code, that is code that blocks for the machine registers. nml gen, on the other hand,
produces “level” code, or code that blocks for some higher level of the cache hierarchy. Typically, code produced by
nml gen callsthe routines produced by mmcgen.

A typical invocation of a code generator is:
mnm.cgen -10 MD KO NO [ -11 ML K1 N1 ]

where theregister blockingis Mo, Ko, No, the L1-cache blockingis M1, K1, N1, €tc. The parameters My, Ko, and Ng
are specified in units of matrix elements, i.e., single, double, or extended precision floating-point numbers, M;, K1,
Nj are specified in unitsof register blocks, M», K5, and K, arein unitsof L1 cache blocks, and so on. For aparticular
cache level, say 4, the code accumulates into a C destination block of size M; x N; unitsand uses A source blocks of
size M; x K; unitsand B source blocks of size K; x N; units(see Figure 1).

The next few sections describe the code generators and their resulting code in detail.



3.1 Matrix Multiply Core Code

nmcgen is our core code generator. The generator produces code simliar to a six nested loop matrix multiply but
where the three inner loops are completely unrolled. The unrolled code does a matrix-mutiply with A and B source
matrices of size My x Ko and Kg x No respectively accumulating into asized My x Ng C matrix. The outer three
loops perform an i-j-k-order blocked matrix multiply with block sizes determined either by matrix size arguments or
by the register blocking parameters My, K1, and Ny.

The generator can aso optionally generate code for “fringes’, i.e., portionsof the matrix not multiples of My, Ko,
and N that are what we respectively call the m-fringe, k-fringe, and n-fringe. The fringe code is described below.

nmcgen supportsthe following command line options:

Usage: mm cgen [ OPTI ONS]
where [ OPTI ONS] i ncl ude:
Senmantics options:

-0pA [N T] : A matrix op. Normal | Transpose
-opB [N T] : B matrix op. Normal | Transpose
-no_m fringe : don’t generate an Mreg block fringe
-no_k_fringe : don’t generate a K reg block fringe
-no_n_fringe : don’t generate an N reg block fringe
-no_fringes : don’t generate an MK, or Nreg block fringes
-no_| oop_head_branch : Use do-while | oops where possible, requiring M>=M), K>=K0, N>:
- al pha [ <val >| c] : fix alpha at value <val > or arbitrary
-beta [<val >| c] . fix beta at value <val> or arbitrary
Optim zation options:
-10 M0 KO NO . register (LO) blocking paraneters
-1 ML K1 N1 : L1 bl ocking paraneters
-sp [1] 21 m 2ma| 3] : software pipelining options
-hol dstripe [A B mM : hold regs. stripe A or B (default), or min(M),NO) (-sp 1 on
-lin_mfringe . generate linear rather than log mfringe code stripes
-lin_k_fringe . generate linear rather than log k-fringe code stripes
-lin_n_fringe . generate linear rather than log n-fringe code stripes
-lin_fringe . generate linear rather than log fringe code stripes
Preci si on options:
-prec [single|doubl e|ldouble] : Precision

-sprec [single|doubl e|ldouble] : Source Precision

-aprec [single|double|ldouble] : Accunul ator Precision

-dprec [single|double|ldouble] : Destination Precision
Code generation & Msc. options:

-help : Print this nmessage
-file nane : Wite to file ' name’
-routi ne_nane nane : Nane of routines
-spacechar c : char to use as space

- nunmspaces i . spaces per nest
-version : print version and exit.

The semantic options determine the set of matrices that may be multipled (correctly) by the resulting routine.
e - 0pA [ N| T] controlsif the A-matrix source operand should be treated as A or A”.
e -0pB [ N| T] controlsif the B-matrix source operand should be treated as B or BT

e - no_mf ri nge means do not produce code for the M-fringe (so the resulting code is valid only for matrices
whose M-dimension isamultiple of Mj.)

e -noKk_fri nge means do not produce code for the K-fringe (so K must be a multiple of K plus a constant
depending on the software pipelining option, see below).



e -no_n_f ri nge means do not produce code for the N-fringe (so N must be amultiple of Ny.)
e - no_fri nge means do not produce any fringe code at all.

e -no. oop_head_branch useC do {} whil e constructs rather than whi | e {} in the three outer loops.
Thistherefore causes the code to assume that M, K, and N are positive.

- al pha [ <val >| c] either hard-code « tobe aparticular valueval or alowitto bean arbitrary value passed
in as an argument. Thisisa semantic option but it can aso effect performance, especialy for « = +1since, in
this case, the generator produces code without the extra o« multiplies.

e -beta [ <val >| c] thesamefor 5.

The optimization options change the code primarily in how it effects performance. As seen below, however, these
options can also effect the resulting routine' s behavior.

e -1 0 M) KO NO controlsthe register blocking parameters.

e -11 ML K1 NL1 if given, produces code for afixed matrix multiply where M = Mgy x My, K = Ko x K1+ ¢,
and N = Ng x Np, whereZiseither O, 1, or 2 depending on the software pipelining option being set respectively
toether-sp 1,-sp [2l m 2ma] ,or-sp 3.

e -sp [1] 2 m 2| 3] controls core-code sofware pipelining. 1 means no software pipelining, 21 mand 2ma
means a two stage pipe, and 3 means athree stage pipe. Sofware pipeliningwill be described in detail below.

e -hol dstripe [A] Bl ml effectsthecode generated only when - sp 1 isactive. Thiswill also be described
bel ow.

e -l in.mfringe produces code for linearly spaced rather than logarithmically spaced fringe stripsin the M
dimension.

e -linkfringe produces code for linearly spaced rather than logarithmically spaced fringe stripsin the K
dimension.

e -lin.n_fringe produces code for linearly spaced rather than logarithmically spaced fringe stripsin the N
dimension.

e -l in_fringe producescodefor linearly spaced rather than logarithmically spaced fringe stripsin al dimen-
sions.

Note that for any set of options, the generated code will have comments stating for which matrices that particular
routinewill be valid. For example, the command

mmcgen -10 4 4 4 -sp 2ma -no_k _fringe -no_mfringe
will produce the comment
General (MK N) = (nf4:m=0, k*4+1:k>=1, N) matrix multiply
stating that thisroutineisvalid for NV non-negative, for A/ anon-negative multiple of 4, and for K one greater than a

positive multiple of 4.

The precision options change the precision of the various operands and/or of thelocal variables used astemporaries
internal to the routine. The other optionsare obvious from their command-line help description.



311 SimpleCode example

In this section, we examine the code produced by nmcgen for the operation C = C + A*B where A (respectively
B, C) isan M xK (respectively KxN, M xN) matrix. Figure 2 liststhe L1 cache blocking core code comprising the 3
nested loops, M, N, and K. This code was produced with the command:

nmm.cgen -10 2 2 2 -no_fringes -no_| oop_head_branch

Because of theno_l oop_head_br anch parameter, thisroutineis valid only for matrices with (M, K, N) = (2m :
m>=12k:k>=12n:n>=1).

The outer M loop in Figure 2 maintains pointers cO and a0 to rows of register blocks in the A and C matrices.
It also maintains end pointers (ap0_endp and cp0_endp) used for loop termination. The middle N loop maintains
apointer b0 to columns of register blocks in the B matrix, and maintains a pointer cpO to the current C destination
register block. The N loop aso maintains separate pointers (ap0_0 throughap0_1) to successive rows of the current
A sourceblock. It aso initializesa pointer bpO to the current B source block. We assume local variables can be held
in registers, so our code uses many pointersto minimize both memory references and integer multiplies.

The K loop iterates over source matrix blocks and accumulates into the same My x Ng destination block. We
assume that the floating-point registers can hold a My x Ng accumulator block, so this block is loaded into loca
variables once before the K loop begins and stored after it ends. The K loop updates the set of pointersto the A source
block, one of which is used for loop termination.

Currently, mrmcgen does not vary the loop permutation [MS95, LRW91] because the resulting gainsin locdity
are subsumed by the method described below, at |east for non-outer-product shaped matrices.

The parameter K controls the extent of inner loop unrolling as can be seen in Figure 2. The unrolled core loop
performs K outer products accumulating into the C destination block. We code the outer products by loading one
row of the B block, one element of the A block, then performing Ng multiply-accumulates. The C code uses Ng + My
memory references per 2Ny M, floating-point operationsin the inner K loop, while holding MoNo + N + 1 values
inlocal variables. Whilethe intent is that these local variables map to registers, the compiler is free to reorder al of
the independent loads and multiply-accumul atesto trade increased memory references for reduced register usage. The
compiler also requires additional registersto name intermediate results propagating through machine pipelines.

The code we have so far described is valid only when M, K, and N are integer multiples of My, Ko, and Ng
respectively. In the genera case, mrmcgen aso includes code that operates on power-of-two sized fringe strips, i.e.,
20 through 21'9% LI where L is My, Ko, or No. We can therefore manage any fringe size from 1 to L—1 by executing
an appropriate combination of fringe code. The resulting code size growth is logarithmic in the register blocking
(i.e., O(log(Mp) log(Ko) log(No))) yet maintains good performance. mmcgen also has the option to produce linear
sized fringe strips (i.e., it will produce separate code for each possible fringe size) and iscontrolled in each dimension
individualy (seethe-1i n.mfringe,-linkfringe,-linnnfringe,and-1in_fringe options). This
can be advantageous if the matrix workload has many matrices with a small M, K, or N (i.e., they are less than the
corresponding LO blocking numbers). It can therefore also be advantageous for usein LU decomposition.

To reduce the demands on the instruction cache, we arrange the code into severa independent sections, the first
handling the matrix core and the remainder handling the fringes. The code is structured not dissimilar to that shown
in Figure 8 except that the fringes are managed, as described above, by power-of-2 fringe strips.

3.1.2 Core Code Options/Software Pipelining

As mentioned in the previous section, the fully unrolled core code consists of a series of K outer products where
each outer product uses a column vector from the A matrix and a row vector from the B matrix as operands and
accumulates into a My x Ng block of the C matrix (see Figure 3). The code aways uses local variables sufficient
to hold the entire Mo x Ng block. It also declares additiona local variables depending on the the - sp optimization
option. Assuming that each local variable maps to a machine register, we structure the core code to achieve 2Ny M
floating-point operations per No + Mg memory operations.

With no software pipelining- sp 1, thereare two core code generation options. mmcgen can either: 1) generate
code to hold a column vector strip of the A matrix and a single e ement of the B matrix while accumulating into each
column of the C block resulting in the additional use of My + 1 local variables or can 2) generate code to hold arow
vector strip of the B matrix and a single element of the A matrix while accumulating into each row of the C block
resulting in the additional use of Ny + 1 local variables. This choice is determined by the - hol dst ri pe option.



mul _nfnf_nf(const int Mconst int Kconst int N,
const float*const A const float*const B, float*const C,
const int Astride,const int Bstride,const int Cstride)
{
const float *a,*b; float *c;
const float *ap_0,*ap_1; const float *bp; float *cp;
const int A sbs_stride Astride*2;
const int C shs_stride Cstride*2;
const int k_nmarg_el =K & 1;
const int k_norm= K - k_marg_el;
const int mnmarg_el = M& 1;
const int mnorm= M- mnarg_el;
const int n_nmarg_el =N & 1;
const int n_norm= N - n_narg_el;
float *const c_endp = Ctm.norntCstride;
register float c0_0,c0_1,cl 0,cl1_1;
c=C a=A
do { /* Mloop */
const float* const ap_endp = a + k_norm
float* const cp_endp = ¢ + n_norm
const float* const apc_1l = a + Astride;
b=B; cp=c;
do { /* Nloop */
register float _b0, bil;
register float _a0,_al;
float *_cp;
ap_O=a; ap_1l=apc_1; bp=b;
_cp=cp; c0_0=_cp[0];c0_1= cp[1];
_cp+=Cstride;cl 0=_cp[0];cl 1= cp[1];
do { /* Kloop */
_b0 = bp[0]; _bl = bp[1];
bp += Bstride; _a0 = ap_0[0];
c0_0 += _a0*_b0; c0_1 += _a0*_bil;
_al = ap_1[0];
cl 0 += _al* b0; cl_ 1 += _al* bil;

_b0 = bp[0]; _bl = bp[1];

bp += Bstride; _a0 = ap_0O[1];
c0_0 += _a0*_b0; c0_1 += _a0*_bil;
_al = ap_1[1];

cl 0 += _al* b0; cl_1 += _al* bil;

ap_0+=2; ap_1+=2;

} while (ap_0!=ap_endp);
_cp=cp; _cp[0]=c0_0; _cp[1] =c0_1;
_cp+=Cstride; _cp[0]=cl1_0; _cp[1l]=cl_1;
b+=2; cp+=2;

} while (cp!=cp_endp);

c+=C sbs_stride; a+=A_sbs_stri de;

} while (c!=c_endp);

Figure 2. Moy = 2, Ko = 2, No = 2 matrix multiply L1 routinefor M € {2m :m > 1}, K € {2k : k > 1}, N €
{2n : n > 1}. Withinthe K-loop is our fully-unrolled 2 x 2 x 2 core matrix multiply. The code is not unlike the
register code in [CFH95]. In our terminology, the leading dimensions LDA, LDB, and LDC are called Astri de,
Bstride, and Cst ri de respectively. The four local variables c0_0 through c1_1 hold a complete C destination
block. Variablesap_0 and ap-1 point to successive rows of the A source matrix block, and variable bp pointsto the
first row of the B source matrix block. Elementsin A and B are accessed using constant offsets from the appropriate
pointers.
9
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Figure 3: The three inner loops are fully unrolled to perform K outer products accumulating into the destination
matrix. If no software pipelining has been selected, the multiply-accumul ates for each outer product are performed
after either one of thefollowing: 1) for each column of C, alength A/ column of A and an element of B isloaded into
local variables (the- hol dst ri p A option), or 2) for each row of C, alength Ny row of B and an element of A is
loaded into local variables (the- hol dstri p B option).

L M, A
Forward Hier | Miva | Aen
Code Direction K Inner-most
l 0 Loop
‘ Li+KO‘ Mi+K0‘ Ai+K0‘

Figure4: With no software pipelining, theloads, multiples, and accumulates for the Ko outer product are placed within
theinner-most loop. Thisleadsto a startup cost due to the multiply and add unitswaiting for theloadsto comein, and
an “endup” cost when the load/store unit has nothing to do while the multiply and add unitsfinish up.

-hol dstri p mautomatically choose either - hol dst ri pe Aor - hol dstri pe B depending onthe minimum
of Mo and Ng thereby minimizing the number of local variables used.

The compiler isfree to re-order the loads, multiples, and adds as it chooses (while respecting data-dependences).
Because of thisfact, the- hol dst ri pe option should theoretically have littleor no effect on compiler optimization.
In practice, however, we have indeed found non-negligible performance gains by varying this option.

Software pipelining is achieved by observing that each outer product consists of three sets of operations: 1) the
loads of the source operands, 2) the multiplies of the source operands, and 3) the accumulates into the destination
matrix. With no software pipelining, the codeisstructured aslisted in Figure4. A potential performance hit, therefore,
can occur at the beginning of each loop body where the multiply and add units can sit idle while the operands (viathe
loads) become available. Similarly, a the end of the loop body, the load/store unit can sit idle while the multiplies
and adds complete. While thisproblem is mitigated by increasing Ko, we ideally want to keep the load/store unit, the
adder, and the multiplier occupied as often as possible and we would prefer not to require ahuge K since that reduces
the set of possible L1 blocks (see Section 3.2).

We solve this problem by grouping together the loads, multiplies, and adds from different loop iterations while
placing the starting and ending delays respectively before and after the core loop body. nm.cgen can produce code
according to one of three styles of software pipelining. The - sp 3 option uses a 3-stage pipe (Figure 5) where the
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nml gen itsalf.
nm.l gen supportsthe following command line options:

Usage: mm. | gen [ OPTI ONS]
where [ OPTI ONS] i ncl ude:
Semanti cs options:

-0pA [N T] : A matrix op. Normal | Transpose

-opB [N T] : B matrix op. Normal | Transpose

-no_m fringe : don’t generate an Mreg block fringe

-no_k_fringe : don’t generate a K reg block fringe

-no_n_fringe : don’t generate an N reg block fringe

-no_fringes : don’t generate an MK, or Nreg block fringes

- al pha [ <val >| c] : fix alpha at value <val > or arbitrary

-beta [<val >| c] . fix beta at value <val> or arbitrary
Optim zation options:

-10 M0 KO NO . register (LO) blocking paraneters

-1 ML K1 N1 : L1 bl ocking paraneters

-cal | down : check/call down [ower routines first
Preci si on options:

-prec [single|double|ldouble] : Precision

-sprec [single|doubl e|ldouble] : Source Precision

-aprec [single|double|ldouble] : Accunul ator Precision

-dprec [single|double|ldouble] : Destination Precision
Core code routine names options:

-gen_rout nane . General MMroutine

-gen_nf _rout nane : General nofring (M, KO, NO) routine

-fixed_rout nane . Fixed (MOML, KOK1, NONO) routine

-sp [1] 21 mM 2ma| 3] . software pipelining option for core routine.
Code generation & Msc. options:

-help : Print this nmessage

-file nane : Wite to file ' name’

-routi ne_nane nane : Nane of resulting routine

-spacechar c : char to use as space

-nunspaces i . spaces per nest

-version : print version and exit.

Many of the options are similar to that of mmcgen. We describe the set of operations performed by the routine
produced by mml gen and in doing so describe the optionsthat do not have an obvious similarity with nmcgen.

ThematrixesA, B, and C can be dividedinto regions depending onthevalues of theL0 and L 1 bl ocking parameters.
For exampl e, figure 7 shows adivision of the C matrix into threeregions, I, I1, and I11. Region |11 isasubmatrix whose
dimensionsare multiplesof A3 Mg and N1 Ng respectively. Region |l correspondsto three matrices whose dimensions
are mutliples of My and Ng but where the multiples are less than M3 and N; respectively. Region | corresponds to
three matrices whos dimensions are less than the LO blocking parameters.

In order to increase performance, mm.l gen can use an appropriate sub-matrix routinefor different matrix regions.
nm.l gen therefore takes the names of three routines, resolved at link time, that should be optimized for different
conditions. The meanings are as follows:

e gen_rout specifies the name of a general matrix multiply routine that can be used on any size matrix. This
argument must be present and, if no other routine names are given, thisroutinewill be used for al regions of al
the matrices.

e gen._nf _r out specifies the name of a “genera but no fringe” matrix mutliply routine that only operates on
matrices whose sizes satisfies M = mMy, K = kKo, and N = nNg for some non-negativeintegers m, k, and
n (i.e., the matrices must be multiples of the LO blocking sizes). If thisargument is provided, nml gen cals
this routine whenever sub-matrix sections are appropriately sized.
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Figure 7: Regions of the C matrix according to the LO and L1 blocking parameters. We assume that AM; > my > 0,
mp >0, N1 >ng > 0,andny > 0.

e fixed_rout specifiesthe name of amatrix mutliply routinethat operates only on matrices whose sizes satisfy
M = mMiMy, K = kK1Ko,and N = nN1 N (i.e., multiples of the L1 blocking sizes).

Figure 8 shows compl ete pseudocode for the operation performed by nml gen’sroutine. This strategy was chosen
to balance the tradeoff between overal code size and code size within aloop (due to I-cache limitations). Note that
fi xed_r out isonly caled once, but it will typically correspond to the largest matrix region (i.e., greatest number of
FLOPS). The other two routines are called depending on the size of the remaining matrix fringes.

nml gen aso takes a - sp option because it must know the blocking size offset in the K dimension that
fi xed_rout orgen_nf _r out use, and that depends on the software piplining option used to generate them. The
search scripts (see Section 4) waysensurethat f i xed_r out and gen_nf _r out use the same software pipelining
option, although there is no theoretica reason why thismust aways be the case.

3.3 Higher-level Cache Blocking

L2 cache blocking can also be performed using code produced by mml gen. Inthiscase, however, the meaning of the
arguments change slightly from the L1 blocking case. The- | O option becomes adummy argument which must be set
tol 1 1. The-1| 1 optionthen specifiesthelL2 cache blockingsizeandistypically setto-11 MoMiM, KoK1K>
NoN1 N, for L2 parameters M,, Ko, and N,. Also, the - sp option should be set to 1 indicating no additional
K-dimension offset. Finaly, at least asingle- gen_r out routine name must be given which specifies ageneral L1
blocked matrix multiply routine. An analogousstrategy can be used to produce L 3-blocked and even higher level code.

3.4 Routinelnterface

The code generators produce routines which conform to the following interface:

voi d
mul _npnp_np(
const int M
const int K,
const int N,
const <prec> *const A,
const <prec> *const B,

13



form € M-Block
forn € N-Block
for k € K-block
call fixed_rout();
if rest of K-dimensionisamultiple of KO
call gen_nf_rout();
if any K-dimensionremains
call gen_rout();
if rest of N-dimensionis amultiple of NO
for k € K-block
call gen_nf rout();
if rest of K-dimensionisamultiple of KO
call gen_nf rout();
if any K-dimensionremains
call gen_rout();
if any N-dimensionremains
for k € K-block
call gen_rout();
if rest of K-dimensionisamultiple of KO
call gen_rout();
if any K-dimensionremains
call gen_rout();
if rest of M-dimensionisa multiple of MO
forn € N-Block
fork € K-block
call gen_nf_rout();
if rest of K-dimensionisamultiple of KO
call gen_nf_rout();
if any K-dimensionremains
call gen_rout();
if rest of N-dimensionis amultiple of NO
for k € K-block
call gen_nf_rout();
if rest of K-dimensionisamultiple of KO
call gen_nf_rout();
if any K-dimensionremains
call gen_rout();
if any N-dimensionremains
for k € K-block
call gen_rout();
if rest of K-dimensionisamultiple of KO
call gen_rout();
if any K-dimensionremains
call gen_rout();
if any M-dimensionremains
forn € N-Block
for k € K-block
call gen_rout();
if rest of K-dimensionisamultiple of KO
call gen_rout();
if any K-dimensionremains
call gen_rout();
if rest of N-dimensionis amultiple of NO
fork € K-block
call gen_rout();
if rest of K-dimensionisamultiple of KO
call gen_rout();
if any K-dimensionremains
call gen_rout();
if any N-dimensionremains
for k € K-block
call gen_rout();
if rest of K-dimensionisamultiple of KO
call gen_rout();
if any K-dimensionremains
call gen_rout();

Figure 8: The structure of nml gen’sL1 and higher level cache blocking matrix multiply code.
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<dprec> *const C,
const int Astride,
const int Bstride,
const int Cstride

[, const <prec> al pha]
[, const <prec> betal);

Where, assuming aphaand beta are present, the operation correspondsto C' = « AB + 5C. mul _npnp_np isthe
default generated routine name but where the character 'p’ isnormaly 'f’, 'd’, or 'I’ for single, double, or extended
precision. <pr ec> isthe source matrix precision and <dpr ec> isthe destination matrix precision. A, B, and C' are
respectively M x K, K x N,and M x N matrices. Ast ri de (respectively Bst ri de and Cst r i de)isthe number
of elements between successive eementsin acolumn of A (respectively, B and C'). In other words, Ast ri de (resp.
Bstride,Cstri de)isthe number of elementsintheleading dimension of A (resp. B, C). Theal pha andbet a
parameters are optionally present depending on the values of the - al pha and - bet a command line arguments.

The meanings of the above parameters slightly change when transpose operations are specified. For example, to
generate code for the operation: C = o AT BT + 3C, the command lineis

mm.cgen -10 MD KO NO -11 ML K1 N1\
-prec single -alpha c -beta ¢ -opA T -opB T

The parameter semantics are now: transpose(A) (respectively transpose(B)) isa M x K (resp. K x N) matrix.
Astri de (resp. Bstri de)is, again, the number of e ements between successive elementsin a column of A (resp.
B). The default generated routine name a so changes to mul _npt npt _np.

For example, suppose we have three single precision matrices A, B, and C that are respectively of size M x K,
K x N,and M x N. For the operation C' = 0.14 B + 0.08, we would cal the generator as:

nm cgen -cb M0 KO NO -prec single -alpha c -beta ¢
which would produce aroutine caled as:
mul _nfnf nf(MKNAB,GCKNN,O.1,0.0);
If we, alternatively, knew apriori that « isfixed at 0.1 and / at 0.0, we would generate code using:
nm cgen -cb M) KO NO -prec single -alpha 0.1 -beta 0.0
and we would call
mul _nmfnf mf(MKNAB,CKNN):;

As another example, suppose we have three single precision matrices A, B, and C that are respectively of size
K x M,N x K,and M x N. For theoperation C' = 347 BT + 10C', we would generate code using:

mm.cgen -10 M0 KO NO -11 ML K1 N1\
-prec single -alpha ¢ -beta c -opA T -0pB T

and we would call the transpose-transpose routine as
mul _nftnft_nmf(MKNA B CMKN,3.0,10.0);

As yet another example, here is the calling sequence for non- sub-matrix-matrix multiply (i.e., the strides equal
the sizes) for al transposition possibilities; normal-norma (NN), normal-transpose (NT), transpose-norma (TN), and
transpose-transpose (TT):

/* NN, size(A = MK, size(B) = N, size(C = MN */
mul _nfrf_nf (MK NAB CKNN;
[* NT, size(A) = MK, size(B) = K, size(C) = MN */

/[* TN, size(A) = KxM size(B) = N
mul _nftnf_nf (MK NADBCMNN);
[* TT, size(A = KxM size(B) =

mul _nftnft_nf(MKNABCMKN;

Kx
Nx

mul _nfrft nf (MK NABCKKN):;
KX size(C = MN */
Nx

K, size(C) = MN */
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Recall that the C language stores matrices in row-order wherethe rows are the leading dimension (i.e., consecutive
memory |locationsare successive row € ements) but Fortran storesmatricesin column-order. Itisstill possible, however,
to use a C-based multiplier for Fortran matrices. For example, suppose you have three Fortran matrices A, B, and C
where A'ssize M x K,B’ssizeis K x N,andC'ssizeis M x K. TodoaNN matrix multiply in Fortran usinga C
routine, you would call the C NN routine as:

mul _nfnf_nf(NK MB,ACKMM;

If Assizeis M x K,B’'ssizeis N x K,and C'ssizeis M x K,todoaNT matrix multiply using a C routine,
you would call the C TN routineas:

mul _nftnf_nf (N K, MBACNMM;

The TN and TT cases are performed in asimilar way.

4 PHIPAC v1.0 Matrix Multiply Search Engine

The PHIPAC v1.0 matrix-multiply search scripts take parameters describing the machine architecture, including the
number of integer and floating-point registers and the sizes of each level of cache. For each combination of generator
parameters and compil ation options, the matrix multiply search script call sthegenerator, compilestheresulting routine,
linksit with timing code, and benchmarks the resulting executable.

To produce a complete BLAS GEMM routine, we find separate parameters for each of the four cases A x B,
AT x B, Ax BT, and AT x BT, For each case, the overall codeis structured as described in Section 3.2. The search
script performs the following top-level set of operations:

1. Find the best register (LO) blocking parameters My, Ko, and No. These are called the LO core parameters and
are used for sections |1 and 111 of the matrix in Figure 7.

2. Find the best L1-cache blocking parameters M;, K1, and Ny.

3. Optionally, find the best LO blocking parameters M/§, K§, and N§ used to generate code to handle the matrix
fringes (see the do_LO_gen_f r ng option below). The resulting LO general blocking parameters are separate
from the LO core parameters, and are used for portions of the matrix with fringes less than any of the LO core
parameters in the respective dimension.

4. Findthe best L2-cache blocking parameters M,, K>, and N».

After these steps have completed, code is generated for each of the resulting blocking parameters which is then used
to produce a complete BLAS GEMM compatible matrix multiply.

Unlike the code generators, the search script options are specified in parameter files. The following sections
describe each of the above proceduresin detail by giving descriptions of al relevant search script options. The actual
syntax of the parameter files is described in example files that are included with the distribution.

4.1 Search Procedure

The PHIPAC v1.0 distribution contains: (1) the code generator for generating matrix-matrix multiply code in ANS|

C, (2) timing libraries to benchmark the performances of the generated matrix-matrix multiply code, and (3) search

scripts to find the code generator’s parameters that yield the code with the highest performance for a given system.
The basic top level command line call to the search script is:

search.pl [-long|-default|-short] -machi ne nachi ne_specs -prec [single|double] \
-ccopt conpiler_options -level [0]1]2]

The- nmachi ne option givesafile describing the machine specificationsand the- ccopt optiongivesafiledescribing
the desired compiler optimization options. The - | evel option says whether to search just for the register blocking
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parameters, or to also perform an L1 or L2 search.? The- | ong, - def aul t , and - short options say whether to
do along, medium, or short search. These options cause the search script to load different files that specify differing
degrees of search thoroughness— the meanings of 1ong, medium, and short are independent of the search scripts. The
parameter files can therefore be modified to create a custom search.

Thetop leve directory contains the following subdirectories:

e nmgen- 2. 0/ : Thissubdirectory containsthe C source codefor themmcgen and mml gen code generators.
They can be independently compiled on your system to yield the executable code generator. Alternatively, the
search scripts can be run to compile them automatically.

e ipm2.0/, rprf-v0_.19/ Interva Performance Monitor, version 2.0.[Asaa] and Redlization group (at ICSl)
Performance measurement library, alphaversion 0.19. [Asab].
These are thetiming libraries PHiPAC uses for benchmarking generated code. They provideauniforminterface
to awide variety of machine timerson avariety of platforms. These libraries are not documented in this paper.

e search-2.2/: Thissubdirectory contains PERL search scriptsthat find blocking parameters for the code generator
to produce optimally performing code on your system.

e rung/: This subdirectory contains a self-explanatory set of example parameter files to be used with the search
scripts.

411 GettingaBLAScompatible GEMM

The PHIPAC search scripts are capable of finding parameters to produce optimal BLAS compatible SGEMM or
DGEMM routines. We describe how to do this below.

1. Inther uns/ subdirectory, make a copy of thet enpl at e/ subdirectory to one corresponding to the machine
on which you plan to to run the search script. For instance, suppose your machine is named nyhost ; then you
can do thefollowing:

% cd PH PAC/ runs/
%cp -r tenpl ate nyhost

Thefilesinthet enpl at e/ subdirectory should not be changed (and will not be used by the search scripts),
since you may need to refer to them (or recopy them) when you run the search scripts on other hosts. When
you make the copy as above, thefilesinthenyhost / subdirectory will still have the prefix tagt enpl at e. In
subsequent steps, we shall assume you have renamed these files to remove the prefix tag.

2. Editthermachi ne_specs fileinther uns/ nyhost subdirectory to reflect the characteristics of the machine

(see Section 4.2). You need to supply the following information:

e number of single precision registers (if doing single precision search)

e number of double precision registers (if doing double precision search)

e L1 cachesizein bytes

e L2 cachesizein bytes (if it exists)

e L3 cachesizein bytes (if it exists)

e ANSI C compiler to be used
If the machine does not have an L2 (or L3) cache, the corresponding information may be omitted. If the
-1 evel option of thetop level search script indicates a higher level cache than that which size information has

been provided, the size information will be guessed using the size given for the previous cache level (see the
L1l cachesize, L2_cache_size, L3_cache_si ze optionsin Section4.2).

2In the machine specifications file, described in Section 4.2, you must provide the sizes of the L1 (and perhaps also the L2 and L3) cache. Just
providing those sizes, however, do not ensure that the corresponding cache level is searched. Itisthe- | evel option that controlsthe depth of the
cache search.
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. Edittheconpi | er _opt i ons fileinther uns/ myhost subdirectory to list the compiler optimization options
the search script should try (see Section 4.3). It iscommon to specify just one set of compiler optimization flags
since an entire search will be performed for each one.

. Decide on the cache blocking levels (0, 1 or 2) you wish to search over. A higher level of blocking yields code
with a better performance on large matrices, but it aso takes amuch longer time. Usually, thelevel of blocking
should be the same as the number of levels of cache available on the machine (e.g., a machine with only L1
cache should be search for only level 1 blocking).

. Decide on the thoroughness of the search (i.e,, long, default or short). A long search is fully exhaustive, but
takes an extremely long time to finish (say, several weeks). A short search is much quicker (say, within a day
or two) but may not yield the best code. The default search is a compromise between these two extremes. The
actual search run time, however, depends on characteristics of the specific machine running the search script.

. To avoid spurious results, make sure the machine is unloaded before starting any search. Then start the
search as follow:

% cd runs/ myhost

% perl5 ../../search-2.2/search.pl [-long|-default]|-short] \
-machi ne machi ne_specs -prec [single|double] \
-ccopt conpiler_options -level [0]1]2]

For instance, to do along search for level 2 blocked DGEMM, you would run

% perl5 ../../search-2.2/search.pl -long \
-machi ne machi ne_specs -prec doubl e \
-ccopt conpiler_options -level 2

To do a short search for level 1 blocked SGEMM, you would run

% perl5 ../../search-2.2/search.pl -short \
-machi ne machi ne_specs -prec single \
-ccopt conpiler_options -level 1

To do a default search for register blocked DGEMM, you would run

Y% perl5 ../../search-2.2/search.pl -default \
-machi ne machi ne_specs -prec doubl e \
-ccopt conpiler_options -level 0

or simply

% perl5 ../../search-2.2/search.pl \
-machi ne machi ne_specs -prec doubl e \
-ccopt conpiler_options -level 0

As the search proceeds, files will be created in a performance directory — for the example above, the name of
that directory would ber uns/ nyhost / per f /. Each file contains the performance in MFLOPS for various
blocking sizes and has names such as.

LOCORE.{precision}.{matop}.{al phatype} .{ softpipe}.{ compopt }
LOCORE_amstsg.{precision}.{matop}.{a phatype} .{ softpipe} .{ compopt }
LOGEN.{precision}.{matop}.{alphatype} .{ softpipe}
L1.{precision}.{matop}.{a phatype}.{L 1type}
L2.{precision}.{matop}.{a phatype}
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where

e LOCORE, LOCORE_amstsg, LOGEN, L1, L2 correspond respectively to performance numbersfor the LO
fat-dot-product core, the LO amost-square core, the LO genera, the L1, and the L2 blocking case.

e {precision} isthe machine precision and iseither si ngl e or doubl e.

e {matop} isthematrix operationand iseither NN, NT, TNor TT.

e {alphatype} isthe aphatypeandiseither c or 1.

o {softpipe} isthe software pipeining optionand iseither 1A, 1B, 2nmm, 2| mor 3.

e {compopt} isthe tag from the compiler optimizationsfile (see Section 4.3).

e {L1type} indicates either nof ri nge_gener al orfi xed_nof ri nge_gener al (see Section 4.5).

Some exampl e file names include:

LOCORE. doubl e. NN. 1. 1B. CC

LOCORE. doubl e. NN. 1. 2ma. CC

LOCORE_al st sq. doubl e. NN. 1. 1B. CC
LOCORE_al st sq. doubl e. NN. 1. 2nma. CC
LOGEN. doubl e. NT. c. 1B

LOGEN. doubl e. NT. c. 2nma

L1. doubl e. NT. 1. nof ri nge_gener al

L1. doubl e. NT. c. fi xed_nof ri nge_gener al
L1. doubl e. NT. 1. nof ri nge_gener al

L1. doubl e. NT. c. fi xed_nof ri nge_gener al

The existence of each file indicates the completion of a checkpoint. That is, the search script will produce the
performance numbers for the blocking parameters corresponding to one file and only then create that file. If the
search script iskilled for some reason and then restarted, it will not regenerate the performance numbers if the
corresponding file exists, even if changes have been made to a parameter files. Therefore, if you first run, say,
ashort search and then later run adef aul t one, it might (depending on the contents of the corresponding
parameter files) be necessary to delete the appropriate performancefile.

When the search script is finished with an entire step of the procedure listed in Section 4, files with the names
LOCORE_top.{precision}, LOGEN_top.{precision}, L1 top.{precision}, and L2_top.{precision} will be created
that givethetop performersin each category. The blocking numbersin thesefilesare ultimately used to produce
theresulting BLAS GEMM.

. When the search script terminates, a subdirectory called PH PAC_.sgermmor PHi PAC dgenmwill be created
(depending on the chosen precision). You can then compile the corresponding GEMM library as.

% cd PH PAC_sgemm or % cd PH PAC dgenmm
% make % rmake

Thiswill yieldal i bsgemm a or | i bdgenmm a in that subdirectory. Thisisthe PHiPAC optimized GEMM
library routinefor your machine.

. At this stage, you can restart the whole search process from step 4 for the other GEMM library routine; for
instance, if you have just generated the DGEMM library routine, you can repeat steps 4 to 7 for the SGEMM
library routine.

. We encourage you to send us your search results and the performance of thelibrary routine on your machine so
we may make it available for othersto use. To do so, first go intother uns/ nyhost subdirectory:

%cd ..

Now benchmark the SGEMM library:
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% perl5 ../../search-2.2/tine_genm pl machi ne_specs single
and benchmark the DGEMM library:
% perl5 ../../search-2.2/tine_genm pl machi ne_specs doubl e

These will report the performance of the library routines on square matrix multiplicationfor alist of sizes such
that all three matrices (A, B and C) occupy at most 16MB of memory.

After these benchmarking scripts have completed, do
%tar -cvf perf.tar perf

to create an archive of al performance readings obtai ned during the search and the benchmarking. Finally, make
the file available to use by sending phi pac@ csi . ber kel ey. edu mail containing a URL where we may
obtain the resulting tar file.

4.2 Machine SpecificationsFile

The machine specifications file provides all machine specific information to the search engine. This file is separate
from the others as it might be used in future releases to search operations besides matrix multiply.

e numsi ngl e_prec_regi sters, numdoubl e_prec_regi sters,
L1 cachesize, L2.cachesize, L3_cachesize: The numsingleprec._registers and
numdoubl e_prec_regi st ers parameters specify the number of single precision and double precision
floating point registers respectively. ThelL1_cache_si ze,L2_cache_si ze and L3_cache_si ze parame-
ters specify the sizes (in bytes) of the level-1, level-2 and level-3 data caches of the machine running the search
script. If the machine running the search script has only alevel-1 cache, then the L2_cache_si ze parameter
may be omitted, and correspondingly for theL3_cache_si ze. In such case, when needed (i.e,, if the- | evel
option of thetop level search specifies a higher level than cache size information is specified), these parameters
are assumed to be eight times the size of theimmediately preceding cache.

e conpi |l er: Theconpi | er parameter specifies the path name of the ANSI-C compiler to use. Additional
options to be passed to the compiler may aso be specified. For instance, a compiler that supports different
versions of the C language may be given the option that specifies ANSI-C conformance. Optionsto increase the
maximum macro size supported by the C pre-processor should also be provided here. These additional options
are given every time the compiler is called. Therefore, code-optimization options should not be specified here.
Instead, those options should be listed in the file specified by theconpi | er _opti ons_fi | e parameter.

e generat or opts: Any additional options to be passed to the generator (besides those controlled by the
search script itself) can be given throughthegener at or _opt s parameter. These additional optionsare given
every timethe code generator is called. For anormal run of the search script, no additional generator optionsis
necessary.

e tiner_args: The tiner_args paameter specifies any options to be passed to the underlying

IPM/RPRF [Asaa, Asab] timer program for benchmarking.

4.3 Compiler SpecificationsFile

This file simply specifies the optimization options for the compiler that the search script should use to compile the
meatrix code. Multiple compiler options can be specified and an entire search will be performed for each one. For
index purposes, each set of compiler optionsis preceded by atext tag.
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4.4 Register (LO) Parameter Search

The core register block search evaluates all combinations of values of My and Ny where 1 < MoNy < NR and where
NR isthe number of machine floating-point registers. The aboveis searched for Ko € Ko where K¢ isdetermined by
thekO_set parameter (see below). Each blocking parameter tripleis selected at random from the satisfying set and
is used to generate code which is subsequently benchmarked.

The majority of the computation, especialy for larger matrices, is performed by the core My x Ko x No register
blocked code. Our LO core search strategy, therefore, produces code containing only this core (i.e., no fringe code),
which decreases compile time, and for each LO parameter set, we benchmark only a single matrix multiply with size
M = My, N = Ng, and K = kK for some large integer & (we call thisa“fa” dot-product). The parameter & is
chosen such that the three matrices occupy some percentage of the L1 cache (although this can be set to either the
L2 or L3 depending on a search option). While this case ignores the cost of the M- and N-loop overhead, we have
so far found that this approach produces good quality code in less time than had we searched larger matrices. We
neverthel ess also provide the option to search matrices that fit in cache and are almost square. See the options bel ow.

e one st age_hol dstri pe A, one_stage_hol dstri pe B, two_stage.l oad.mult,
two_st age_nul t _,add, three_stage : These specify the software-pipelining options that are corre-
spondingly passed to the code generator mmcgen (see Section 3.1.2). Any combination of these optionsis
allowed but at least one of them must be specified. All of them will be searched in an attempt to find the best.

e al pha_equal s_one, al pha_arbitrary: If al pha_equal s_one or al pha_arbitrary isse, sep-
arate code for the case when « = 1 and & = ¢ where ¢ # 1 (respectively) is generated and benchmarked. Any
combination of these optionsis alowed, but at least one of them must be set. The & = 1 case requires fewer
operations than the arbitrary case and might also, therefore, require different blocking parameters for optimal
performance. Asdescribed in Section 3.1, mm.cgen generates different code for these two cases.

e mat op_NN, nmat op_NT, matop_TN, nmatop_TT:If mat op_NN, nat op_NT,mat op_TNormat op_TTis
set, the code for Normal-Normal, Normal-Transpose, Transpose-Normal or Transpose-Transpose (respectively)
matrix multiplication is generated and benchmarked. The differing routines are subsequently used for the
resulting full BLAS GEMM.

e aut o.bl ocki ngs, kO_set, blockingsfile: Iftheaut o_bl ocki ngs parameter is set, the set of
LO blocking triples (Mo, Ko, No) to be benchmarked will be generated automatically from the combination
of the kO_set parameter (see below) and the number of floating point registers available in the appropriate
arithmetic precision. The values of Mg and No will be restricted to arangein such away that My Ng isno more
than the number of machine registers. The values of K will be taken from those given in the set specified by
thekO_set parameter.

If thebl ocki ngs_fi | e parameter is specified, however, the LO blocking space is created from the blocking
sizes listed in the file whose name is given by bl ocki ngs_fil e. This option exists since, for certain
workloads, it might be advantageous to search only a certain set of LO blocking sizes (see the next option).

e auto_matrixsi zes, fill _cache_percentage,
mat ri xsi zesfile: If theauto_matri xsi zes parameter is set, each blocking triple will be bench-
marked on an automatically generated set of matrix sizes chosen to make al three matrices fit within the cache
(either L1, L2, or L3 depending on the options below). The resulting MFLOPS rate is taken to be the perfor-
mance. Thefi || _cache_per cent age vaueistherelative percentage of data cache that the three matrices
should occupy. For example, if thisisset to 80, thematrix sizeswill be chosen so that al three matrices combine
tofill 80 percent of the cache.

If themat ri xsi zesfil e parameter is specified, every set of LO blocking sizes will be benchmarked on
the set of matrix sizes listed in the file name. The resulting performance is taken to be the harmonic mean of
the MFLOPS rate achieved by the code on al matrix sizes. This mode of performance measure is suitable for
generating high performance code for a predetermined set(s) of matrix sizes (which are typically smal). The
fill _cache_per cent age parameter has no effect when this mode of performance measure is used.

e use fatdot, use._al nst sq: When the aut o_natri xsi zes parameter is set, one out of two perfor-
mance readings is chosen to represent the performance of the current LO blocking. This LO blocked code is
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Figure9: The LO general search uses aworkload consisting of matrix shapes as listed in thisfigure. The collection of
matrix sizes used is as shown where m, k, or n takes on powers of two between 1 and respectively My, Ko, and No.

timed both for a fat dot-product matrix workload and for an amost-square matrix workload. A fat dot-product
was described above. An amost square matrix has dimensions M = mMy, K = kKo, and N = nNy where
m, k, and n are chosen so that the three matrices jointly occupy fi | | _.cache_per cent age percent of the
cache and are as “square’ shaped as possible. If theuse_f at dot parameter is set, the performance for the fat
dot-product workload is used as the ultimate performance for the current blocking sizeand if theuse_al nst sq
parameter is set, the performance for the almost-square workload is used as the ultimate performance. Using
different shapes to determine the ultimate performance will yield different optimal blocking sizes for differing
matrix workloads.

e do_LO gen_frng: Whenthedo_LO_gen_f r ng optionis set, an additiona LO blocking search is performed
after the L1 search. This additional search finds the best LO general blocking parameters for the matrix fringes
(i.e., those portion of the matrices that are not amultipleof Mg, Ko, or Np). It doesthisby, for each LO blocking
parameter triple, selecting and then benchmarking a set of matrix sizesthat are similar in shape (see Figure 9) to
the matrices that typically occur at the fringes. The ultimate result isan additional set of LO blocking numbers
M{§, K§, or N§ whichareused for theroutinegen_r out () aslistedin Figure8. Thisoptionwill aso produce
code that is faster on small matrices.

e benchnmar k_l O_out _of _| 2: When thebenchmar k_| 0_out _of _| 1 optionis set, the matrix sizes that are
used to benchmark the LO parameters are set according to the L2 cache rather than the L1 cache. Thisis so that
the core code instruction scheduling should be optimized for memory accesses that are typically out of L1 cache
rather than within.

e benchnar k. 0_out _of I 3: The benchnmar kI 0_out _of I3 is similar
to the benchmar k_I 0_out _of _| 2 option except that the matrix size is chosen to be L3 sized rather than
L2

45 L1 CacheBlock Search

We perform the L1 cache blocking search after the best core register blocking is known. We would like to make
the L1 blocks large to increase data reuse but larger L1 blocks increase the probability of cache conflicts [LRW91].
Tradeoffs between M- and N- loop overheads, memory access patterns, and TLB structure a so affect thebest L1 size.
We currently perform a relatively simple search of the L1 parameter space. For the Dx D square case, we search the
neighborhood centered at 3D? = L1 where L1 isthe L1 cache size in elements. We set M to the values |¢ D/ Mo
where ¢ € O (thisis selected, as described below, by a parameter but atypical set is® = {0.25,0.5,1.0,1.5,2.0})
and D = /L1/3. K; and N; are set similarly. We benchmark the resulting (for the example, 125) combinationswith
meatrix sizes that either fit in L2 cache, or are within an upper bound (currently eight timesthe L1 size) if no L2 cache
exists.
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The following describes the search parameters relevant to L1 searching.

e | 1 usenofringegeneral, |1usefixednofringe_general: These options seect up to two
different strategies that search for and time code that handles section |11 of the matrix in Figure 7. If only
| 1_use_nof ri nge_gener al isset, L1 blockingwill be searched using only thegeneral no fringeand general
matrix subroutines(i.e., in Figure8, theonef i xed_r out () cal will actualy beacall tothegen_nf _r out ()
routing). If only | 1_use_fi xed_nof ri nge_gener al isset, L1 blocking will be searched using the fixed,
general no fringe, and general matrix subroutines (i.e., in Figure 8, theonef i xed_r out () call will actually
be a call to a genuine fixed-size matrix routine). If both options are set, both cases will be timed and only the
best performer will ultimately be retained. This option therefore potentially controls one aspect of the tradeoff
between code-size and performance.

e mratios, k_ratios, n.ratios: These parameters specify the factorsin the L1-block ratio space (i.e,
the set ® as described above). The cross-product of the three sets is used to compute the ratio triples (so if
each ratio parameter contains five values, the result is 125 ratio triples). Given the optimal LO blocking sizes
(Mo,Ko,No) and an L1-block ratiotriple(m,. k. ,n.), theL1 blockingsizes (M1,K,N1) are computed asfollows.
Using the L1 data cache size, the largest S' is computed such that the three matrices A, B and C will together
requirefi | | _.cache_per cent age percent of theL1 cache assuming they are S x S square. Then, M1, K3,
and N; are computed as thelargest integers for which the L1 blocked matrix (M Mo, K1Ko, N1 Np) islessthan
or equal to (m, S, k.S, n,9).

e fill cache_percentage: Thefill _cache_per cent age vaueisthe percentage of the L2 data cache
that is occupied by matrices used to benchmark the L1 blocking numbers.

e benchnmar kI 1_out _of _| 3: When theoptionbenchmar k_| 1_out _of _| 3 isset, the matrix sizes that are
used to benchmark the L1 parameters are set according to the L3 cache rather than the L2 cache. Thisis so that
the search should optimize the L1 blocking for memory accesses that are typically out of L2 cache rather than
within.

4.6 L2 CacheBlock Search
The L2 cache blocking search, when done, is performed similar to the L1 search. Thefollowing optionsare available.

e mratios, kratios, n.ratios: These parameters specify how to compute the set of L2 blocking sizes
to be benchmarked. Likeinthe L1 case, they specify ratios of a square size but in this case the square sizeis
computed using the L2 cache size.

e fill cache_percentage: Thefill _cache_percent age vaueisanaogoustothel 1 case, but hereit
selects a percentage the L3 data cache size.

4.7 Short/Default/Longsearch

Asmentioned in Section 4.1, the- shor t , - def aul t , and - | ong flagsto thetop level search script each indicate a
different set of configurationfiles. Each of - short, - def aul t, and - | ong specifies threefiles which indicate how
thoroughly to perform the search. Thesefilesliveinthesear ch- 2. 2/ directory and are called respectively:

opt _short.LO_search
opt _short.L1 search
opt _short.L2 search
opt _default.LO_search
opt _default.L1l search
opt _default.L2 search
opt | ong. LO_search
opt _long. L1 search
opt _long. L2 _search

To create a custom search, therefore, the above files should be modified. The filesnamed LO_sear ch, L1 _sear ch,
andL2_sear chinther uns/ nyhost directory exist only for documentation and are not actually read by the search
script.
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Sun HP IBM SGI SGI SGI

Sparc-20/61 712/80i RS/6000-590 Indigo R4K Challenge| Octane
Processor SuperSPARC+ PA7100LC RIOS-2 R4K R8K R10K
Frequency (MHz) 60 80 66.5 100 90 195
Max Instructions/cycle 3 2 6 1 4 4
Peak MFLOPS (32b/64b) 60/60 160/80 266/266 67/50 360/360 390/390
FP registers (32b/64b) 32/16 64/32 32/32 16/16 32/32 32/32
L1 Data cache (KB) 16 128 256 8 - 32
L2 Data cache (KB) 1024 - - 1024 4096 1024
oS Sun0S4.1.3 | HP-UX 9.05 AIX 3.2 Irix 4.0.5H IRIX6.2 IRIX6.4
C Compiler Sunacc2.0.1 | HPc899.61 IBM xlc 1.3 | SGI cc3.10 SGlI cc SGI cc

Search results
PHIPAC version alpha alpha alpha alpha new new
Precision 32b 64b 64b 32b 64b 64b
Mo,Ko,No 24,10 31,2 2,1,10 2,10,3 24,14 42,6
M1,K1,N1 26,10,4 30,60,30 105,70,28 30,4,10 | 200,80,25 12,249
CFLAGS -fast -O | -O3-garch=pwr2 | -O2 -mips2 -n32 -mips4 -O3
Table 1: Workstation system details and results of matrix multiply parameter search.
5 Results

We ran the search scriptsto find the best register and L1 cache blocking parameters for six commercial workstation
systems. These systems have different instruction set architectures and widely varying microarchitectures and memory
hierarchies. The results are summarized in Table 1.

The SGI R8K and R10K searches used version 1.0 of the code generator and search scripts, while other results
were obtained with our earlier PHiPAC aphareease. Figures 10-13 plot the performance of the resulting routines
for dl square matrices M = K = N = D, where D runs over powers of 2 and 3, multiples of 10, and primes, up
to a maximum of 300. We compare with the performance of a vendor-optimized BLAS GEMM where available. In
each case, PHiPAC yidds a substantia fraction of peak performance and is competitive with vendor BLAS. Due to
limited availability, we could only perform an incompl ete search on the R8K and R10K, and so these are preliminary
performance numbers. There is also potentia for improvement on the other machines when we rerun with the newer
version. For completeness, we a so show the poor performance obtained when compiling a simple three nested loop
version of GEMM with FORTRAN or C optimizing compilers.

The PHiPAC methodol ogy can a so improve performance even if thereis no scope for memory blocking. In Figure
16 we plot the performance of a dot product code generated using PHiPAC techniques. Although the parameters used
were obtained using a short manual search, we can see that we are competitive with the assembly-coded SGI BLAS
SDOT.

In some of the plots, we see that PHIPAC routines suffer from cache conflicts. Our measurements exaggerate this
effect by including all power-of-2 sized matrices, and by allocating all regions contiguously in memory. For matrix
multiply, we can reduce cache conflicts by copying to contiguous memory when pathological strides are encountered
[LRW91]. Unfortunately, thisapproach does not help dot product. One drawback of the PHiPAC approach is that we
can not control the order compilers schedul e independent loads. We've occasionaly found that exchanging two loads
in the assembly output for dot product can halve the number of cache misses where conflicts occur, without otherwise
impacting performance.

6 Status, Availability, and Future Work

This paper has demonstrated our ability to write portable, high performance ANSI C code for matrix multiply using
parameterized code generators and atiming-driven search strategy. We have described the PHiPAC V 1.0 rel ease which
contains matrix multiply generators, search scriptswrittenin per |, and timing libraries.

In generd, the current PHiPAC release finds extremely good L O core matrix multiply routines. Our current strategy,
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Figure 10: Performance of single precision matrix multiply on a Sparcstation-20/61.
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Figure 13: Performance of double precision matrix multiply on an IBM RS/6000-590. We show the DGEMM from
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however, for decomposing matrices for performing L1 and L2 matrix multiply and the associated search strategy is
rather naive. We are currently working, therefore, on abetter L1 and L2 blocking strategy and accompanying methods
for search based on more intelligent criteria[LRW91].

The PHIPAC GEMM can be used with Bo Kagstrom’'s GEMM-based BLASS package [BLL93] and LAPACK
[ABB*92]. We have a so written parameterized generators for matrix-vector and vector-matrix multiply, dot product,
AXPY, convolution, and outer-product, and further generators, such as for FFT, are planned.

We have created a Web site from which the release, and all relevant documentation, is available and on which we
plan at some point to list blocking parameters and GEMM librariesfor many systems[BAD™].

We wish to thank Ed Rothberg of SGI for help obtaining the R8K and R10K performance plots. We aso wish to
thank Nelson Morgan who provided initial impetusfor thisproject, Dominic Lam for work on theinitial search scripts,
and Richard Vudoc and Sriram lyer for new work on the PHiPAC project.
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