HiPNeT-1:
A Highly Pipelined Architecture
for Neural Network Training

Krste Asanovié * 1
Brian E. D. Kingsbury *
Nelson Morgan *
John Wawrzynek

TR-91-035
October 1991

Abstract

Current artificial neural network (ANN) algorithms require extensive computa-
tional resources. However, they exhibit massive fine-grained parallelism and require
only moderate arithmetic precision. These properties make possible custom VLSI
implementations for high performance, low cost systems. This paper describes one
such system, a special purpose digital VLSI architecture to implement neural network
training in a speech recognition application.

The network algorithm has a number of atypical features. These include: shared
weights, sparse activation, binary inputs, and a serial training input stream. The
architecture illustrates a number of design techniques to exploit these algorithm-
specific features. The result is a highly pipelined system which sustains a learning
rate of one pattern per clock cycle. At a clock rate of 20MHz each “neuron” site
performs 200 million connection updates per second. Multiple such neurons can be
integrated onto a modestly sized VLSI die.

*International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704
t Computer Science Division, EECS Department, University of California at Berkeley, Berkeley, CA 94720



1 Introduction

Many neural network algorithms, including the popu-
lar error back-propagation algorithm, require a range
of arithmetic precisions for the variables used. Al-
though many of the proposed analog neural net-
work implementations promise excellent performance
in certain applications [Mea89, HTCB89], their rela-
tively low precision limits their general applicability.
Further, in general an artificial neural network will
form part of a larger information processing system
and so ease of system integration will be an important
design criterion. For these and other reasons [Mor90],
our group at ICSI is concentrating on the development
of purely digital VLSI connectionist hardware.

Part of our research is the investigation of general
architectural techniques which may be applied to such
systems. We are also working on the development of
CAD tools and library cells to support rapid VLSI
layout generation [MAKW90]. A number of exam-
ple systems are being implemented to guide our work.
The first of these is an architecture to perform neu-
ral network training for a speech recognition system
being developed at ICSI.

In this paper, we first describe the speech recogni-
tion application. We next explain modifications made
at the algorithmic level to enable efficient implementa-
tion of the network training algorithm in digital VLSI.
We then describe two alternative architectures to im-
plement these algorithms. The first is a relatively
low-cost solution, which makes one forward connec-
tion per cycle, but which takes 3 cycles for a complete
connection update. By examining ways to improve
the throughput of this system we arrive at a second
highly pipelined system which learns at the rate of
one pattern per clock cycle; each pattern requiring
10 connection updates per neuron in our algorithm.
We compare the performance/cost of these two archi-
tectures with that of alternative systems. Finally we
present our conclusions and the current status of the
work.

2 Artificial Neural Network

Algorithms

At ICSI we are developing a phoneme-based, speaker-
dependent continuous speech recognition system. The
system utilizes a layered ANN to generate emission
probabilities for a hidden Markov model (HMM) rec-
ognizer. We have shown that this method is an effec-
tive way to smoothly estimate joint densities with a
number of training samples that is insufficient for sim-
ple histogram-based techniques. The ANN is capable

of performing statistical pattern recognition over an
undersampled pattern space without many restrictive
simplifying assumptions. The ANN can also combine
multiple sources of evidence, such as multiple features
and contextual windows, in a straightforward and ef-
ficient manner. Initial experiments indicate that this
method compares favorably with conventional HMM
speech recognition methods [MB90].

In this system, continuous features (such as spec-
tra) are extracted from speech input and passed to
a vector quantizer that maps the input speech frame
into one of a set of prototype vectors or features. The
ANN is fed a sequence of vector quantized frames that
provide a sliding window into the input speech stream.
The ANN uses this contextual information to recog-
nize phonemes and/or generate the probability of each
phoneme given the input.

Each vector quantized frame is represented using
unary encoding, that is, using a binary input neuron
for each possible feature value, only one of which can
be active at a time. For the networks described in
[MB90], the vector quantizer selects one from 132 fea-
tures and the ANN is fed a window of 9 frames. This
gives 132 x 9 = 1188 input layer neurons, of which
only 9 will be active in a given pattern. Additionally,
the bias is treated as an extra input neuron that is
always on, so that there are a total of 10 active inputs
per speech pattern. The output layer consists of 50-64
neurons, corresponding to the number of phonemes to
be recognized. The best experimental results for this
problem were obtained without hidden units, and so
the input layer is directly and fully connected to the
output layer. Error back-propagation training is used
[Wer74, RHWS6].

The network algorithms are summarized in the fol-
lowing equations. Input neuron ¢ is connected to out-
put neuron j by a weight w;;. The output of neuron
Jj is given by

0j = f(s;)
where
S5 = E OjWij
and
1
o)==

The training algorithm derives a weight update
value Aw;; using a cross entropy error criterion
[Hin87].

Awij = —(1(0]' — d]')OZ'
where d; is the desired output value for neuron j, and

« is the learning rate.
Figure 1 illustrates the network architecture.



Figure 1: Speech ANN Architecture

3 Algorithm Modifications for
Digital Hardware Implemen-
tation

We require no multiplications, since input values are
either 1 or 0. Within each frame only a single input is
active. We can split weight memory into 9 banks, one
per frame. The sum can then be efficiently computed

sj =Y W(k,v(k))

where W (k, v) selects weight v in weight bank k, and
v(k) is the feature recognized in input frame k. For
each neuron, we require only 9 additions to sum the
bias and the 9 connection weights for each input pat-
tern. In effect we have introduced a level of indirec-
tion to implement the sparse activation. We broadcast
only the address of the active input; since the inputs
are binary there is no need to broadcast a correspond-
ing value.

Some modifications were made to the weight stor-
age. The 9 input frames presented to the network
are grouped into three groups of three correspond-
ing to past, present, and future frames. Within each
group, the three weights corresponding to a given fea-
ture vector are tied together so that any update affects
all three. This modification was originally added to

improve generalization in the speech recognition sys-
tem, but has the additional advantage of reducing the
weight storage required in an implementation by a fac-
tor of three. The three frames within each group share
a single bank of weight memory. An additional minor
change is to restrict the number of features to 127
(plus 1 bias value) since powers of 2 are more natural
in the memory design. This reduction of the vector
quantization codebook by only 5 entries should have
little effect on performance, which has been found in
previous experiments to be fairly insensitive to code-
book size over a larger range.

Note that o; is 0 for inactive inputs so the corre-
sponding weights w;; need no updating during train-
ing. For the active inputs, the value of Aw;; is
—a(o; — dj) which is independent of 7. Hence, only
a single update value is needed for each neuron per
pattern. For each neuron we require 10 additions to
perform weight updates, 9 for the weights and one for
the bias.

One of the most important modifications to the
original algorithms is to operate with only the min-
imum required arithmetic precision. Reducing pre-
cision decreases weight storage requirements as well
as reducing datapath circuitry. Our simulations indi-
cate that a weight precision of 12-16 bits is sufficient
for learning our speech task with back-propagation.
Output values require 6-8 bits. These findings are
consistent with those discovered by other researchers
working with back propagation [BH88]. The systems
we describe here use 12 bit weights and 6 bit output
values. We use only the most significant 6 bits of the
stored weight in calculating the output value, and re-
strict weight increments Aw;; to 6 bits. The total
weight storage per neuron is 3 x 127 x 12 = 4572 bits
(not including the bias value).

With no performance degradation, a can be re-
stricted to negative powers of 2. This replaces the
learning rate multiplication with an arithmetic shift.

Finally, since the network contains no hidden layer
there is no interaction between output neurons and
so each neuron can be trained independently. This
allows an implementation to provide only a few physi-
cal neuron processors which are then multiplexed over
the complete network.

The above modifications were simulated on a Sun
Sparcstation-1. For a German language test set of
200 sentences, performance matched our previously
reported results to within a few tenths of a percent.
Thus it appears that a fixed-point algorithm with the
required simplifications for efficient VLSI implemen-
tation works essentially as well as the original floating-
point version.



4 System Architecture

Both architectures described here share common fea-
tures at the system level. A complete system will
typically consist of a small array of chips connected
to an array controller, with each chip containing a
number of processing nodes. The array controller is
a simple microsequencer which will contain storage
for microcode and training data. The array operates
in a synchronous SIMD fashion with instructions and
training data broadcast from the controller. In a re-
search environment, the array controller will provide
an interface to a host workstation to allow training
data and programs to be downloaded, and to allow
weight values to be initialized, trained, and subse-
quently read.

5 Simple Architecture

The first architecture uses a relatively simple datap-
ath to implement the training algorithm. We include
this architecture in the paper to help explain and eval-
uate the enhancements present in the highly pipelined
architecture. The performance of this architecture is
also indicative of what would be expected for more
general purpose “neurocomputers”.

In the simple architecture, calculations for each neu-
ron are split between a synapse unit (SU) and an
output processor (OP). The SU contains the weight
and bias storage for a single neuron. The OP per-
forms sigmoid and error calculations and is time-
multiplexed between a small cluster of SUs as shown
in Figure 2. Each chip contains an integral number
of clusters. When training the network, each SU cal-
culates s; = >, W(k,v(k)) and passes this value to
the OP across the cluster I/O bus. The OP calculates
0; = f(s;), and forms the error term Aw;; which is fed
back to the SU across the error bus. The SU can then
perform weight updates with this error value. The
cluster I/O bus is also used to communicate weight
values between the host and SU weight RAM over a
global I/O bus.

Within each SU there are 384 words of 12 bit static
RAM. This corresponds to 3 x 127 = 381 words for
the three banks of shared weight storage, with a fur-
ther word for the neuron bias value (the two remain-
ing words are unused). The RAM is addressed with
247 =9 lines. The two most significant lines select
one of the three banks of weights or the bias value,
the lower lines select a weight value within a weight
bank. The array controller broadcasts RAM addresses
corresponding to feature numbers.

Figure 3 shows the SU datapath which includes a
14-bit saturating adder (i. e. an adder with overflow
and underflow sums clamped to the extreme values),
and a single accumulator register. In forward mode,

Cluster 1/0 Bus

Output Latch

—=

Accumulator

Clear

Weight
RAM

ﬁggfﬁ Error Latch
Error In

Figure 3: Synapse Unit Datapath

the accumulator builds up s; with weight and bias val-
ues read from memory. The sum is then stored in the
output latch for further processing by the OP. When
performing weight updates, the Aw;; value is read
from the error latch into the accumulator. Weight
values are then read from RAM, added to the error
value and written back to memory. The SU requires
one cycle for forward connections, and two cycles for
weight updates. The number of cycles corresponds to
the number of RAM accesses required.

The OP datapath consists of a PLA to implement
the sigmoid function f. Only the 6 most significant
bits of the output o; are used in calculating the sig-
moid. The logic to implement the error calculation
oj —d; is folded into the PLA, with an extra single bit
input added to indicate the desired output. This value
d; is derived by decoding the output neuron number
given in the training data broadcast by the array con-
troller. The output of the PLA is the error o; — d;.
This is fed to a short sign-extending shifter which im-
plements the learning constant a. The OP can pro-
cess one sum per cycle, but each SU takes multiple
cycles to form s; and to update weights. To improve
efficiency, a single OP is shared amongst 8 SUs. To in-
crease performance, error calculations are overlapped
with summations and weight updates.

Figure 4 shows the pipelining scheme in the sim-
ple architecture. The pipeline operates in two ba-
sic modes: forward mode when calculating s;, and
update mode when performing weight updates. The
forward pipeline is straightforward; weight values are
read from memory in one cycle and added to the ac-
cumulator in the next. In Figure 4 we show only 4
features per pattern to reduce the size of the diagram,
but for the speech algorithm there will be 9 features
plus 1 bias value per pattern. One cycle per weight is
required to perform the forward summation.



Figure 4: Pipelining in Simple Architecture



In update mode, the value of Aw;; is read from the
error input latch and stored in the accumulator. Each
weight is read out from the RAM, added to the up-
date, and written back to RAM. To improve efficiency
pairs of updates are interleaved in the pipeline. While
the adder is summing the first weight and update, the
second weight is read from RAM. The updated first
weight is then written back to RAM while the second
weight is added to the update. Finally, the second up-
date is written back. Overall, it takes two cycles per
weight to perform the update.

A further level of pipeline interleaving is used to
overlap error calculations in the OP with weight cal-
culations in the SUs. At the end of the first forward
summation cycle, S7 is latched into the output regis-
ters of each SU (S, is s; for training pattern n). The
OP then sequentially scans these values and writes
back Ay to each SU (A, is Aw;; for training pattern
n). Concurrently, the SUs form S;. At the end of
the second summation cycle, the SUs switch to up-
date mode, reading in A; before starting to perform
weight updates for the first training pattern. The OP
concurrently performs error calculations for the sec-
ond training pattern, writing A, back into the SU in-
put registers. After the SUs finish performing weight
updates for the first pattern, they read in A, from
the input register and perform weight updates for the
second training pattern. The OP is idle during this
phase. After performing weight updates for the sec-
ond pattern, the SUs switch to forming summations
for the third pattern. The overall pattern of activity
repeats at this point.

5.1 Pipeline Hazards

This pipelining scheme is reasonably effective at keep-
ing the functional units busy, with each SU performing
one connection update every three cycles. However
this pipelining scheme does introduce a pipeline haz-
ard. In the example above, there is a Read after Write
(RAW) hazard if Sy is computed using weight values
that have yet to be updated with A;. This hazard
is unlikely to cause a problem with back-propagation
learning, since delaying updates in this way is simi-
lar to using pooled updates over a few patterns. Our
simulations indicate that ignoring this hazard has lit-
tle effect on learning performance in our application.

6 Pipelined Architecture

Whereas the simple architecture requires 30 cycles to
learn one input pattern, the second architecture learns
one pattern per cycle. This performance increase is
achieved by adding extra hardware, utilizing more ex-
tensive pipelining, and exploiting a greater degree of
specialization.

6.1 Improving Memory Bandwidth

Memory bandwidth is a major bottleneck in the first
architecture. The adders in the SUs are idle for half
the cycles in the update phase, since each update re-
quires two RAM accesses but only one addition. Over-
all, this means the adders are idle for 33% of the total
training time.

The RAM only supports one access per cycle. We
can save a third of this bandwidth if we note that
during training, the same weight value is read out once
to form s; then again to form w;; + Aw;;. We can read
the value out once and store it locally until the error
value returns from the output processor. If we make
the pipeline delay between the summation and update
passes constant, we can use a shift register to provide
this temporary storage.

We can further improve memory bandwidth by
physically splitting the RAM into the three banks cor-
responding to past, present, and future frames. Band-
width is improved both due to a wider datapath, and
also due to the individual RAMs being faster than
the larger combined RAM. In our design the smaller
RAMs can now support a read and a write access ev-
ery cycle. The read access is used to obtain a weight
for forward summation, while the write is used to store
an updated weight.

6.2 Increasing Training Input Band-
width

The features in a training pattern are used to address
the weight RAM. In the simple architecture, each in-
put pattern requires that a feature address be broad-
cast 3 times: once to read out the weight for forward
summation, once to read the weight to add an update,
and once to write back the updated weight. We have
already shown that the second RAM access can be
removed by storing the read weight value in a shift
register. We can remove the need to broadcast the
third address by storing the address used to read out
the weight in another shift register until the updated
weight needs to be written back.

We can further reduce the amount of training data
that is broadcast by training with a sequential speech
input stream, as opposed to randomly selecting subse-
quences from the speech stream. For some problems,
this could be undesirable, since sequences of repeated
features may cause the network to overlearn in a cer-
tain direction. Our simulations have shown no signif-
icant loss of performance for sequential as opposed to
randomized presentation of speech patterns for train-
ing, using the specific algorithm described above. This
effectively reduces our I/O bandwidth requirement by
a factor of 9 since we only need to broadcast one fea-
ture per cycle, storing previous frames’ features in a
further shift register.



Partial Sum

Fore =

Weight Read
Weight
RAM SR

Address SR

To

Next
SuU

Aw :ﬁ/o

Figure 5: Synapse Unit

We can save a further factor of 3 in required weight
memory bandwidth by noting that frames are pre-
sented sequentially, and in each weight bank weights
are shared. When a new feature is shifted into one of
the weight banks, we read the corresponding weight
from RAM and store this in a shift register. For the
next two patterns we reuse this weight rather than use
the shifted feature address to reread the same weight

bank.

6.3 Improving Computational
Throughput

The simple architecture has only a single adder. This
is used for both forward summation and backward
weight update. Since individual synapse units take
multiple cycles to build up s;, a single output proces-
sor is shared between multiple synapse units.

In the highly pipelined system, each neuron has 3
SUs, one for each shared weight bank. The datapath
of a single SU is shown in Figure 5. Control signals
have been omitted for clarity. Each SU contains three
adders, two for forming forward summations and one
to perform weight updates. In total each neuron now
has 9 adders in its SUs.

Since each neuron can now process a complete pat-
tern in each cycle, it is necessary to have a separate
OP for each neuron. The OP is shown together with
the three SUs in Figure 6. The OP now contains a
separate register to hold the bias value. There are 3
adders arranged in a two level tree to complete the
forward summation from the values generated by the
SUs and the bias register. The summation is passed
through a sigmoid/error PLA to form Aw;;. A chain
of 2 adders accumulates error values for the 3 cycles
that each input feature is used in a weight bank, so
that only a single add and write is required in the SU

weight RAM to implement the 3 weight updates for
this feature. The bias register has a separate adder
for updates.

In total, each neuron now contains 15 adders, each
of which is busy on every cycle.

6.4 Pipeline Operation

The operation of a SU proceeds as follows. On every
cycle a new feature address is passed into the SU. This
address is used to read the RAM to get the current
value of that feature’s connection weight. The weight
is moved into the forward adder chain to form a new
partial sum with the preceding two weights. The read
weight value is also stored in the “Read Weight Shift
Register” so that it can be added to the update value
when it arrives from the OP. The corresponding fea-
ture address is stored in the “Address Shift Register”.
The “Address S.R.” is also used to delay the feature
address for three cycles before passing it on to the next
SU in the same neuron. As update values arrive from
the OP, they are added to the weight value emerg-
ing from the “Read Weight S.R.” and written back to
weight RAM using the feature address emerging from
the “Address S.R.”.

The two stage adder tree in the OP sums the par-
tial sums from the 3 SUs with the bias value and
then passes this through the sigmoid/error PLA. The
emerging error value is passed into a two adder chain
which forms the sum of the new update value with
the two preceding update values. This accumulated
update value is then passed back to the SUs and the
bias register.

6.5 Pipeline Hazards

The overall effect of these enhancements is to achieve
a throughput of one pattern learned every clock cycle.
However, as with all deeply pipelined systems, there
is a danger of pipeline hazards.

The Read After Write hazard present in the sim-
ple case is still present but to a greater degree. The
pipeline is deeper, so it takes more cycles for the
weight update for a training pattern to be reflected
in the weight RAM. In addition, when a weight value
is read from RAM, it is used for several further pat-
terns without rereading the value from RAM. Again,
the overall effect of this Read After Write hazard is
not necessarily harmful to learning performance, and
our simulations indicate that we can ignore this.

The highly pipelined case also introduces a more
serious Read After Write hazard. Consider a serial
input stream with two neighboring identical features.
The weight updates for patterns containing the first
feature will not be written back to RAM before weight
values are read out for the second feature. Sometime
later the updates for the first feature will be added to



Desired Output

SU1+SU 2 SU 3

+
L earning
Constant
{:a Feature
Aw
I1/0 Bus

Figure 6: Neuron

the read weights and written back to RAM. However
in the next cycle updates for the second identical fea-
ture will be added to the original weights and written
to RAM, effectively overwriting the updates made for
the first feature. In general, weight updates are lost
for all but the last of a set of matching features in a
time window equal to the depth of the pipeline.

Our simulations indicate that this weight update
hazard is not detrimental to learning performance
[Koh]. This is perhaps surprising, but one explana-
tion is that successive updates to the same feature
would tend to move the network too far towards one
direction in the search space.

For other algorithms and for deeper pipelines this
overwriting of weight updates may still be a prob-
lem. We can avoid this consequence of the Read After
Write hazard by using a technique analogous to regis-
ter forwarding in pipelined register-register architec-
tures [HP90]. We store recently updated weight values
together with their RAM addresses in an associatively
searchable shift register. The shift register can be
searched using the address of an incoming weight up-
date. If there is a match, the updated weight value is
read out from the shift register and summed with the
new update. Otherwise, the previously read weight
emerging from the “Read Weight S.R.” is added to
the update. The newly updated weight value is then
shifted back into the weight update forwarding unit
together with the RAM address, while concurrently
being written to RAM. In this manner, we can sustain
one pattern per cycle throughput without discarding
updates. In practice, only one copy of the address
shift register needs to be maintained for an entire ar-

ray. Broadcast signals would control local multiplex-
ers selecting either the read weight or the updated
weight.

In order to simplify the hardware, we may choose to
only catch weight update hazards over a time window
smaller than the pipeline depth. The simplest scheme
only checks if the current feature is the same as the last
feature, and hence only needs to remember the last
update. Our simulations indicate that this minimal
scheme would catch 84% of these update hazards for
our database.

7 Implementation

Figure 7 shows the layout of a test chip containing
the SU datapath for the simple architecture. This
has been successfully fabricated through MOSIS in
a 2um double-metal CMOS process. The device is
operational at its design clock rate of 20MHz. The
sigmoid PLA has also been successfully fabricated and
tested at the same clock rate. The static RAM design
is currently in fabrication.

The simple datapath includes most of the cells re-
quired for the highly pipelined architecture, and we
are currently in the final stages of layout. A floorplan
is given in Figure 8. This has been laid out as a row
to facilitate placing multiple pipelined neurons on a
die. Including routing area, each neuron processor oc-
cupies an area approximately 8000 x 2000 = 16M 2.
The three synapse units are on the right, with the
output processor on the left. In decreasing order of
size, the three blocks within each synapse unit are



- L

Figure 7: Simple Processor

the 32 x 48 bit weight RAM, the datapath (including
the read weight shift register), and the address shift
register. The three blocks in the output processor are
the forward datapath including bias register, the error
datapath including the « shift unit, and the sigmoid
PLA (again in decreasing order of size). The figures
in the following section are taken from this floorplan;
we do not expect the final area to deviate significantly
from these estimates.

8 Performance/Cost Compar-
isons

One of the major attractions of ANN algorithms is
that they exhibit massive parallelism and require only
moderate arithmetic precision, hence allowing a wide
variety of solutions to attain high performance. Given
that high performance is readily obtainable, it is nec-
essary to account for cost when comparing alternative
architectures.

One technology-independent way of expressing sili-
con resource consumption is to consider the die area
expressed as the square of the minimum length unit, or
A parameter [Mea89]. In Table 9 we have abbreviated
Connections Per Second as CPS, while the unit per-
formance normalized by the scalable area (using A? )
is called the COnnection Rate Density (CORD). Simi-
larly, for the case in which learning is included, we give
the Connection Updates Per Second (CUPS), as well
as the corresponding area-normalized measure of Con-
nection Update Rate Density (CURD). The ETANN
performance figures come from Intel’s data sheet, that
for the Texas Instruments’ TMS320C30 is from mea-

i
|

©1990

IGI
B

Datapath Chip Layout

sured speed, and the performance of the circuits pro-
posed here is derived from simulations. All these fig-
ures represent the maximum observable throughput
for each architecture.

Note that in the table no figures are included for
learning on the ETANN chip, since this is done off-
chip on the host. Due to relatively slow tunneling
mechanisms that are used for writing analog weights
on this chip, another IC that did include on-chip learn-
ing would probably have a CURD measure that was
roughly comparable to the TI chip. Note that the
ETANN has the analog equivalent of 6-bit weights
as compared to 32-bit floating point on the TI; for
most applications, this would probably be insufficient
for convergence of the back-propagation learning al-
gorithm.

For forward activation, the ETANN chip is consid-
erably faster than either of our designs. However, nor-
malizing for area, we find that our circuits have similar
performance. Furthermore, since our circuits are de-
signed for sparse activation, they can be expected to
operate much more efficiently for that case than the
ETANN, where many synapses would be idle during
a forward cycle.

The pipelined design represents an extreme in
special-purpose design, and as such is the highest per-
formance in the table. However, the simple datapath
provides some flexibility over the the more complex
design. The number of features per pattern can be
varied easily, and there is no fixed separation of the in-
put into weight banks. Forward propagation is faster
than update mode for this case.

For some points of comparison on measured net-
work learning performance, a single-board Ring Ar-



Figure 8: Highly Pipelined Architecture Floorplan

System Area (A?) CPS CUPS CORD | CURD
Simple Datapath 8 x 10° 20 x 10° 6.7 x 10° 2.5 0.8
Highly Pipelined | 16 x 10° | 200 x 10° | 200 x 10° 12.5 12.5
ETANN 300 x 10° | 2000 x 10° - 6.7 -
TMS320C30 700 x 10° 16 x 10° 4 x10° 0.02 0.006

Figure 9: Performance/Cost Comparison

ray Processor (RAP) using 4 TMS320C30 chips
achieves about 13 MCUPS [MBAB90], while a Sun
SparcStation-1 attains around 0.4 CUPS. For the
sparse activation case treated in this design, each of
these figures is several times lower. The special pur-
pose designs can sustain their maximum throughput
on this algorithm. A typical Sun training run takes
several hours, while the comparable figure for a sys-
tem based around a single pipelined “neuron” would
be expected to take a few seconds. This would permit
real-time adaptation to changes in the acoustic envi-
ronment, for instance, with a time constant of a few
seconds. Thus, a single pipelined circuit gives several
orders of magnitude higher throughput than the more
versatile programmable systems.

One of the interesting lessons in this study, under-
scored by the layout diagrams, is that designs are
limited by the required weight memory area. Conse-
quently, there is probably little advantage to be gained
by using analog processing, even in those cases when
it is simpler and more area-efficient, if the information
storage is still most effectively and flexibly done using
digital techniques.

9 Conclusions

A highly pipelined neuron training architecture sus-
taining 200 million connection updates per second
within a small silicon area (16mm? in a 2um CMOS
process) has been presented. Several such neuron sites
can be integrated onto a modestly sized VLSI die to
achieve raw performance comparable with special pur-
pose analog designs.

The ANN training algorithm has a number of fea-
tures which would significantly complicate an analog
implementation. Although 6 bits are sufficient for for-
ward propagation, weights need to be stored to 12-bit

accuracy for successful learning. Analog circuitry can
be designed with such precision, but such design is
difficult and the results are unlikely to be compact or
to scale well with shrinking process geometries.

Most analog neural net implementations have im-
plemented non-sparse activation with a multiplier per
synapse, using a simple 2-dimensional connection pat-
tern [Mor90]. The speech algorithm targeted here
has sparse activation, and so this simple approach
would be extremely inefficient with less than 1% of
the synapses active at a time. Further, only a simi-
lar small fraction of the system I/O will be usefully
employed. In this case the digital approach is more
efficient, since a single arithmetic unit operates on
a large bank of weight memory, and only the ad-
dresses of active inputs are broadcast. An inactive
synapse consumes no processing power or I/O band-
width and occupies only a few relatively small RAM
cells. Adding such virtualization to the existing ana-
log schemes would be difficult, and it is likely that the
necessary digital circuitry would dominate the proces-
sor area leaving little advantage, if any, to an analog
approach.

Comparing the simple and highly pipelined digital
architectures it is clear that in this case there is a sig-
nificant performance/cost advantage to utilizing fewer
high performance processors. The silicon area is dom-
inated by the weight RAM. Adding more processor
circuitry doubles the total area but increases perfor-
mance by much larger factors. We believe this will
be true even with more general purpose neural archi-
tectures, including those with off-chip weight mem-
ory. The maximum performance/cost should be first
obtained with a single processor. Replicating proces-
sors can increase overall performance, but can at best
maintain only the same level of performance/cost as
the single processor being replicated.

While somewhat slower but programmable ap-



proaches (such as the programmable RAP) are per-
haps better suited to research in the network algo-
rithms themselves, architectures such as the one pre-
sented here demonstrate the performance that can be
achieved with relatively conventional design methods
for fully-defined applications. Fast and flexible CAD
techniques are also being developed to make this kind
of design a practical solution to systems that require

this throughput [MAKW90] [Asa].

10 Acknowledgements

Phil Kohn ran many of the simulations discussed in
the paper. We also thank James Beck for his con-
structive criticism and advice throughout this work.
The National Science Foundation has provided ex-
plicit support for this project with Grant No. MIP-
8922354, and also with Graduate Fellowship support
for Brian Kingsbury. John Wawrzynek received sup-
port from the National Science Foundation through
the PYI award, MIP-8958568. Finally, we gratefully
acknowledge the support of the International Com-
puter Science Institute.

References
[Asa] K. Asanovi¢. OctC++: A C++ inter-
face to the Oct database. ICSI Technical
Report. In preparation.

[BHSS] T. Baker and D. Hammerstrom. Modifi-
cations to artificial neural network mod-
els for digital hardware implementation.
Technical Report CS/E 88-035, Depart-
ment of Computer Science and Engineer-
ing, Oregon Graduate Center, 1988.

[Hin87] G. Hinton. Connectionist learning pro-
cedures. Technical Report CMU-CS-87-

115, Carnegie Mellon, 1987.

[HP90] J. L. Hennessy and D. A. Patterson.
Computer Architecture — a quantative

approach. Morgan Kaufmann, 1990.

[HTCB89] M. Holler, S. Tam, H. Castro, and
R. Benson. An electrically trainable ar-
tificial neural network (ETANN) with
10240 ” Floating Gate” synapses. In In-
ternational Joint Conference on Neural

Networks, pages 11-191-196, 1989.
[Koh]

P. Kohn. Personal communication.

[MAKW90] N. Morgan, K. Asanovié¢, B. Kingsbury,
and J. Wawrzynek. Developments in dig-

ital VLSI design for artificial neural net-

10

[MBY0]

[MBAB0]

[Mea89]

[Mor90]

[RHWS6]

[WerT4]

works. Technical Report TR-90-065, In-
ternational Computer Science Institute,

1990.

N. Morgan and H. Bourlard. Continu-
ous speech recognition using Multilayer
Perceptrons with Hidden Markov mod-
els. In Proc. IEEE Intl. Conf. on Acous-
tics, Speech, & Signal Processing, pages
413-416, Albuquerque, USA, 1990.

N. Morgan, J. Beck, E. Allman, and
J. Beer. RAP: A Ring Array Processor
for Multilayer Perceptron applications.
In Proc. IEEE Intl. Conf. on Acoustics,
Speech, & Signal Processing, pages 1005—
1008, Albuquerque, New Mexico, 1990.

C.A. Mead. Analog VLSI and neural sys-
tems. Addison-Wesley, 1989.

N. Morgan, editor. Artificial Neural
Networks: FElectronic Implementations.
Computer Society Press Technology Se-
ries. Computer Society Press of the
IEEE, Washington, D.C.; 1990.

D.E. Rumelhart, G.E. Hinton, and R.J.
Williams. Learning internal representa-
tions by error propagation. In Parallel
Distributed Processing. Exploration of the
Microstructure of Cognition, volume 1.

MIT Press, 1986.

P.J. Werbos. Beyond Regression: New
Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Dept.
of Applied Mathematics, Harvard Uni-
versity, 1974.



