
A Fast Kohonen Net Implementation for

Spert-II

Krste Asanovi�c

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley
Berkeley, CA 94720-1776

Abstract. We present an implementation of Kohonen Self-Organizing
Feature Maps for the Spert-II vector microprocessor system. The im-
plementation supports arbitrary neural map topologies and arbitrary
neighborhood functions. For small networks, as used in real-world tasks,
a single Spert-II board is measured to run Kohonen net classi�cation at
up to 208 million connections per second (MCPS). On a speech coding
benchmark task, Spert-II performs on-line Kohonen net training at over
100 million connection updates per second (MCUPS). This represents
almost a factor of 10 improvement compared to previously reported im-
plementations. The asymptotic peak speed of the system is 213 MCPS
and 213 MCUPS.

1 Introduction

Spert-II is a workstation accelerator constructed around the T0 vector micropro-
cessor [1]. Although most production use of Spert-II systems has been to accel-
erate error backpropagation training of multi-layer perceptrons used within con-
tinuous speech recognition systems, we designed Spert-II as a 
exible, general-
purpose accelerator. In this paper we report on a second neural net applica-
tion, the Kohonen Self-Organizing Feature Map (KSOFM). We �rst review the
KSOFM classi�cation and training algorithms, then describe pertinent details of
the T0 vector microprocessor and the Spert-II system. In Section 4, we describe
the implementation and performance of the two core library routines, pattern
classi�cation and weight update, and show how these are used within a complete
benchmark application. We compare the benchmark results with previously re-
ported numbers before concluding.

2 Kohonen Net Algorithms

Kohonen self-organizing feature maps (KSOFM) are a class of arti�cial neural
networks that can form a non-linear mapping from a higher dimensional input
space to a lower dimensional neuron map with no external supervision [2]. They
have been used in a wide range of applications including image classi�cation and
data compression [3].



Once trained, the network can be used to classify novel patterns by �nding the
neuron with the weight vector closest to the input vector. Typically, a Euclidean
distance measure is used, and we can select the winning neuron, c(t), for an
input pattern X(t), using

c(t) = argmin
i

(kX(t)�Wik
2) (1)

where Wi is the weight vector for neuron i, and t is a discrete time index. The
location of the winning neuron within the neural grid represents the category of
the input vector.

During training, the weights are adapted according to

Wi(t+ 1) =Wi(t) + �(t) � �(t; d(i; c(t))) � (X(t) �Wi(t)) (2)

where �(t) is a global adaption rate that is typically reduced over the course of
the training procedure. The function d(i; c(t)) measures the distance in the neural
map of neuron i from the winner c(t). The neighborhood function �(t; d(i; c(t)))
restricts the weight updates to a neighborhood around the winning neuron. Typ-
ically, the size of the a�ected neighborhood is also reduced during the training
procedure.

Kohonen nets used in practice are quite small [3], and during training the
neighborhood radius shrinks rapidly so that it is only a few neurons wide for most
of the time.These attributes make Kohonen nets di�cult to parallelize e�ciently.
Finding the winning neuron requires global communication for every pattern.
During on-line training, only a few neurons' weights are updated at any time
step and this must be completed before presenting the next pattern. The training
algorithm can be modi�ed to run in \bunch" mode, with weights updated only
after presenting a group, or bunch, of patterns to allow a higher presentation rate
on parallel implementations, but this can cause slower algorithmic convergence
and longer overall training times [4].

3 T0 and Spert-II Overview

For the Spert-II project, we desired an architecture that was e�cient at running
not only a variety of neural network algorithms, but also other computation
intensive components within typical real-world applications. We also required
that the architecture be straightforward to program. These goals led us to design
a new vector instruction set architecture (ISA), \Torrent" [5], based on the
industry standard MIPS-II RISC ISA [6]. The Torrent ISA is very similar to that
of a traditional vector supercomputer [7], including vector registers, vector length
control, strided and scatter/gather vector memory instructions, and conditional
operations.

T0 (Torrent-0) is the �rst implementation of the Torrent ISA, and is a full-
custom single-chip vector microprocessor developed in a collaboration between
UCB and ICSI [8]. T0 was fabricated using 1.0�m scalable CMOS design rules



and two layers of metal. First silicon was received in April 1995, and is fully
functional with no known bugs. The die measures 16:75mm� 16:75mm, and
contains 730,701 transistors.

T0 includes a MIPS-II compatible RISC CPU with a 1KB on-chip instruction
cache, a �xed-point vector coprocessor, and an external memory interface with
a 128-bit data bus. The vector coprocessor contains a vector register �le and the
VP0, VP1 and VMP vector functional units. The vector register �le contains 16
vector registers, each holding 32 elements of 32 bits each.

VP0 and VP1 are vector arithmetic functional units that can perform 32-
bit integer arithmetic and logic operations with support for �xed-point scaling,
rounding and saturation. Multiplication is supported only in VP0, with 16-bit
� 16-bit multiplies producing 32-bit results. Both arithmetic units contain eight
parallel pipelines and can produce eight results per cycle.

VMP, the vector memory unit, handles all vector load/store operations.
Vectors in memory can consist of signed or unsigned, 8-bit, 16-bit, or 32-bit
operands, and are accessed with three types of vector load and store instruc-
tions: unit stride, non-unit stride, and indexed access. For unit stride accesses,
vector elements occupy consecutive memory locations and VMP can saturate
the memory system, moving 128 bits per cycle. The unit stride instructions also
allow a parallel arbitrary post-increment of the scalar base address register to be
speci�ed. For non-unit stride, elements are separated by a constant stride spec-
i�ed in a second scalar register. With indexed access, a vector register provides
a set of o�set pointers that are added to a scalar base address to form the e�ec-
tive address of the vector elements. The T0 memory interface has only a single
memory address port, limiting non-unit stride and indexed memory operations
to a rate of one element transfer per cycle.

All vector pipeline hazards are fully interlocked in hardware, and full vector
chaining is implemented. The elements of a vector register are striped across all
eight pipelines. With the maximum vector length of 32, a vector functional unit
can accept a new instruction every four cycles. T0 can saturate all three vector
functional units by issuing one instruction per cycle to each in turn, leaving a
single issue slot open every four cycles for the scalar unit. In this manner, T0 can
complete up to 24 results per cycle while issuing only a single 32-bit instruction
per cycle.

Spert-II is a double-slot SBus card that integrates a T0 processor running
at 40MHz with 8MB of external SRAM memory, and is used as an attached
processor for Sun-compatible workstations. The Spert-II programming environ-
ment runs on the host workstation and is built around the GNU tool set. The
tool set includes an unmodi�ed version of the gcc scalar optimizing C and C++
cross-compiler, and a version of the gas cross-assembler that we've extended to
recognize vector assembler instructions and to perform instruction scheduling
to avoid interlocks. Access to the vector unit is provided through an extensive
set of libraries or by coding directly in assembler. A small kernel running on
T0 implements the usual Unix operating system services by forwarding requests
to a server process running on the host. T0 has no 
oating-point coprocessor,



but the T0 kernel traps and emulates any MIPS-II 
oating-point instructions to
simplify software porting.

To date, 25 Spert-II systems have been installed at 8 sites in the USA and
Europe. For further information on T0 and Spert-II see [1, 5, 8].

4 Mapping Kohonen Nets to T0

We have implemented two vectorized library routines for KSOFMs. These are
both coded in assembler, but provide a standard C function interface. The rou-
tines have been designed to support arbitrary neural map topologies and arbi-
trary neighborhood functions. In addition, we have coded a full implementation
of Kohonen net training for a speech coding benchmark provided by EPFL.

4.1 Forward Pass

The �rst routine implements (1) and takes an input vector and a weight matrix
and �nds the neuron with the minimum squared Euclidean distance from the
input vector, using the following C interface:

int forward(size_t n_inputs, size_t n_neurons,

const short* X, const short* W, int rshift,

size_t* c, int* sum)

The weight matrix W[n inputs][n neurons] is arranged with the weights for
one neuron in one column of the matrix (an \input-major" layout) to allow the
forward pass to use unit stride when accessing the weights. The weights and the
input vector, X[n inputs], are represented as 16-bit values. The routine returns
the index of the winning neuron in the location pointed to by the c argument,
and a 32-bit representation of the squared Euclidean distance in the location
pointed to by the sum argument. This routine ignores the neural map topology;
it is the responsibility of the calling routine to convert the column index of the
minimum sum neuron back into coordinates in the neural map.

The routine has two nested loops, an outer loop over groups of 32 weight
matrix columns, and an inner loop that traverses the weights down a column.
The last iteration of the outer loop can process less than 32 columns by setting
the vector length register. In each iteration of the inner loop, up to 32 16-
bit weights are loaded from one row of the matrix into a vector register using
a unit stride load. A single 16-bit input vector element is read into a scalar
register, then subtracted from the weights' vector register. The di�erence of
two signed 16-bit numbers requires 17 bits to be represented completely, but
the T0 multiplier takes only 16-bit inputs. The subtract operation con�gures
the arithmetic pipeline to shift the result one bit to the right, rounding o�
the low order bit with jamming. The 16-bit rounded di�erence is then squared
using the multiplier, yielding a 32-bit result. This multiplier result must be
rounded down to leave headroom for the subsequent accumulation. The rshift
parameter to the routine speci�es how many bits to round o� the multiplier



result. This rounding is performed using round-to-nearest-even as part of the
multiply instruction. The rounded multiplier results are accumulated using a
32-bit saturating addition. Usually, the rshift parameter will be determined by
the input dimension, and is set to the smallest value that guarantees no over
ow
during accumulation. T0 has a saturation 
ag register with sticky bits that keep
track of any saturations, and the forward routine uses these to return a boolean
value indicating if saturation occurred. The inner loop requires one scalar load,
one unit stride vector load, and three vector arithmetic operations, subtract,
square and sum, to compute up to 32 connections. The squaring operation can
only be performed with the multiplier in VP0, so the inner loop is unrolled to
perform two weight matrix rows at a time to create an even number of vector
arithmetic operations per loop iteration. This allows optimal scheduling of the
loop across the two vector arithmetic units. The inner loop takes 12 cycles to
compute up to 64 connections, giving an asymptotic peak of 213 MCPS.

To locate the winning neuron, the routine holds an index for each element in
a separate vector register. These indices are initialized from memory at the start
of the routine, and then incremented with a vector add as the routine steps over
the columns of the matrix. Two global vector registers hold the 32 minimum
sums seen so far and the 32 indices of these minima. The inner loop completes
with summed distances for up to 32 neurons in a vector register. These new
sums are compared to the global sums at each element position, and if smaller,
the sums and indices at each element position are copied into the global vector
registers using vector conditional move instructions.

At the end of the outer loop, the 32 global minimum sums and indices must
be reduced down to a single minimum sum and index. Torrent provides a vector
extract instruction that can move a sub-vector from the middle of one vector
register to the start of another. Associative reductions are coded by extracting
the last half of a vector, combining this with the �rst half using the appropriate
associative operator, e.g., sum or minimum, then halving the vector length and
repeating until the reduction is complete. On T0, the vector extract instruction
executes in VMP to allow vector arithmetic instructions to be overlapped and
the complete sum and index reduction operation takes 45 cycles.

Table 1 gives the measured performance of the forward pass routine on T0
for various sized networks taken from [3].

4.2 Weight Update

The second routine implements (2) with the following C interface:

int update(size_t n_inputs, size_t n_neurons, size_t stride,

const short* X, const short* F,

int rshift, short* W)

The routine modi�es weights for n neurons neurons located in contiguous
columns of the weight matrix starting at the location pointed to by W. The
stride argument gives the total number of neurons in the array, and hence the



Table 1. Spert-II KSOFM forward pass performance on real-world networks taken
from [3].

Application
Neuron
Topology

Input
dimension

Spert-II
(MCPS)

Speech coding 10�10 12 100.1
16�16 12 132.9
20�20 12 134.0

Radar clutter classi�cation 10�10 11 93.4
20�20 11 130.9

Gas concentration 12�12 32 159.3

Binocular Receptive Fields 16�16 256 208.9

element stride between rows in the matrix. The input vector is X[n inputs] as
before. The F[n neurons] array holds 16-bit coe�cients representing the value
of the update factor �(t) � �(t; d(i; c(t))) for each neuron. Depending on the
topology of the neural map, the update routine might be called multiple times
to update all neurons in the neighborhood of the winner. For example, with a
1-D grid it need only be called once, but with a 2-D grid it would be called once
for each row in the neighborhood.

There are two nested loops in the routine. The outer loop processes the input
vector 32 elements at a time, loading up to 32 16-bit elements of the input into
a vector register. The inner loop operates on one neuron at a time, updating
all weights connected to the inputs loaded in the outer loop. The 16-bit neuron
weights are accessed using a strided vector memory load instruction. The weights
are subtracted from the input vector elements to �nd the element distances,
with jamming performed as in the forward pass to round the di�erence back to
a 16-bit value. The 16-bit update factor for this neuron is loaded into a scalar
register and multiplied by the di�erence to give a 32-bit result. This result is
rounded down by the number of bits given in rshift using round-to-nearest-
even rounding before being added in to the original weight vector using a 16-bit
saturating addition. The weight vector is �nally written back to memory with a
strided vector store.

For each group of up to 32 weights, the inner loop performs 1 scalar load, a
strided vector load and store, a vector subtract, a vector multiply, and a vector
add. The time is dominated by the strided memory operations which require one
cycle to transfer each element, but all other operations can be overlapped with
the memory transfers, giving a peak rate of 2N + 1 cycles to update N weights.
This rate represents only 9.2% of peak arithmetic performance, but fortunately
training neighborhoods shrink rapidly in practice, and so only a small fraction
of the neurons need to be updated.



4.3 Speech Coding Benchmark

To measure training performance, we used a benchmark supplied by EPFL,
Switzerland [4], which uses a KSOFM to implement speech coding by vector
quantization. This benchmark has 12-dimensional input vectors mapped to a
2-dimensional neuron grid of varying size. A set of 30,000 training patterns were
supplied.

The global adaption rate function is:

�(t) =
�0

1 +K� � t
(3)

where t is the number of patterns presented to the network, �0 is the initial
adaption rate, and K� is a time constant that controls how fast the adaption
rate decreases.

The size of the neighborhood decreases over time according to:

R(t) = 1 +
R0

1 +KR � t
(4)

where R0 de�nes the initial radius, and KR is a time constant that controls the
rate at which the radius shrinks. The neighborhood function, �, drops linearly,
from 1 at the winning neuron to 0 for neurons outside radius R(t). The distance
function, d(t; c(t)), is the Manhattan distance on the 2-D grid.

The Spert-II implementation of this benchmark is written in C++, with calls
to the two assembler functions. The adaption rate parameter calculations are
performed in software-emulated 
oating-point, converted to 16-bit �xed-point,
and then cached in a 2-D array of neighborhood adaption factors. The conversion
keeps track of the �xed-point exponent of the maximumadaption factor to set the
rshift parameter to the update routine appropriately. Computing new adaption
rate parameters for every pattern is time consuming. Fortunately, updating the
parameters more slowly seems to have little e�ect on convergence. For the timings
below, the adaption rate parameters were updated after every 100 patterns.

For each pattern that is presented, it is necessary to map from the winning
neuron index to 2-D neural map coordinates. This mapping is pre-computed and
held in lookup tables. The C++ code manages the clipping of the neighborhood
at the edges of the 2-D map, and calls the update routine with the appropriate
pointers into the weight and cached factor matrices.

EPFL supplies the training data already converted to a 16-bit �xed-point
representation. We have found no signi�cant di�erence between 
oating-point
and �xed-point trained nets in either convergence rate or �nal quantization dis-
tortion across a range of training parameters.

Table 2 shows training performance on the EPFL speech coding benchmark.
Training time is given over all 30,000 patterns. These are small networks and
small training databases, with total run times of around one second, yet T0 still
achieves high performance. Table 3 compares Spert-II performance with other
reported implementations of this task [3, 9]. On larger networks and with larger
training sets, the performance will asymptotically approach the peak forward
pass performance, yielding up to 213 MCUPS.



Table 2. Performance of Spert-II on the EPFL benchmark for KSOFM training for all
30,000 training patterns. The neighborhood is updated after every 100 patterns with
the initial radius, R0, set to half the grid dimensions. The other training parameters
are �0 = 0:1, K� = 0:0025, and KR = 0:02.

Neuron
Topology

R0

Spert-II
Time (s)

Spert-II
(MCUPS)

10�10 5 0.795 45.2
16�16 8 1.072 86.0
20�20 10 1.431 100.6

Table 3. Reported performance numbers for KSOFM [3, 9]. aMantra I runs a smaller
problem (6�10) due to memory limitations. bRENNS numbers are estimated based on
[3], with the 100 neuron curve used for the benchmark �gure, and the 10,000 neuron
curve for the peak.

System Clock Measured 10x10 benchmark Estimated peak
(MHz) Number PEs (MCUPS) Number PEs (MCUPS)

Sparcstation-20/51 50 1 3.46 - -
Cray T3D 150 25 4.75 256 435
CNAPS (EPFL) 20 100 4.50 512 23
CNAPS (ASI) 20 - - 256 54
Mantra Ia 8 400 0.47 400 20
RENNESb 32 15 < 4:00 15 < 15

Spert-II 40 1 45.20 1 213

5 Summary

We have presented a Kohonen net implementation for the Spert-II vector micro-
processor system. The implementation is built around two vectorized routines
that can be used with arbitrary neural maps and neighborhood functions. The
vectorization technique described here should provide good performance on other
vector machines, including traditional vector supercomputers.

The two vectorized routines were used to build a complete training applica-
tion used as a benchmark. This implementation is signi�cantly faster than other
systems for this small benchmark task, which represents the small networks in
current use. Unlike competing neuro-computers, Spert-II achieves this high e�-
ciency without sacri�cing generality or a convenient programming environment.

Performance on larger networks is also important, as faster hardware makes it
more practical to simulate larger networks and could encourage new applications.
Spert-II's predicted peak performance on large networks is surpassed only by a
large multi-million dollar MPP system.



6 Acknowledgements

Thanks to Paolo Ienne and Thierry Cornu for providing the speech coding bench-
mark, and to Je� Bilmes for comments on an earlier draft of the paper. Primary
support for this work was from ONR URI Grant N00014-92-J-1617, ARPA con-
tract number N0001493-C0249, NSF Grant No. MIP-9311980, and NSF PYI
Award No. MIP-8958568NSF. Additional support was provided by ICSI.

References

1. Wawrzynek, J., Asanovi�c, K., Kingsbury, B. E. D., Beck, J., Johnson, D., Morgan,
N.: Spert-II: A vector microprocessor system, IEEE Computer, 29(3):79{86, March
1996.

2. Kohonen, T.: Self-organizing formation of topologically correct feature maps, Bio-
logical Cybernetics, 43(1):59{69, 1982.

3. Myklebust, G., Solheim, J. G.: Parallel self-organizing maps for actual applications,
Proceedings of the IEEE International Conference on Neural Networks, Perth,
1995.

4. Cornu, T., Ienne, P.: Performance of digital neuro-computers, Proceedings Fourth
International Conference on Microelectronics for Neural Networks and Fuzzy Sys-

tems, September 1994, 87{93.
5. Asanovi�c, K., Johnson, D.: Torrent architecture manual, Technical Report, Com-

puter Science Division, University of California at Berkeley, CSD-97-930, 1997.
6. Kane, G.: MIPS RISC Architecture (R2000/R3000), Prentice Hall, 1989.
7. Russel, R. M.: The CRAY-1 computer system, Communications of the ACM,

21(1):63{72, January 1978.
8. Asanovi�c, K., Beck, J.: T0 engineering data, Technical Report, Computer Science

Division, University of California at Berkeley, CSD-97-931, 1997.
9. Ienne, P., Cornu, T., Kuhn, G.: Special-purpose digital hardware for neural net-

works: An architectural survey, Journal of VLSI Signal Processing, 13(1):5{25,
1996.

This article was processed using the LaTEX macro package with LLNCS style


