
The T0 Vector Microprocessor
Krste Asanovic

Brian E. D. Kingsbury

James Beck
Bertrand Irissou

Nelson Morgan
John Wawrzynek

University of California at Berkeley
and the

International Computer Science Institute

Primary support for this work was from the ONR, URI Grant N00014-92-J-1617,

Additional support was provided by ICSI.

the NSF, grants MIP-8922354/MIP-9311980, and ARPA, contract number
N0001493-C0249.

{krste,johnw}@cs.berkeley.edu

Slides from presentation at the Hot Chips VII conference, 15 August 1995..

Talk Outline

Why Vector Microprocessors?

T0 (Torrent-0) Microarchitecture
T0 Implementation and Packaging

Summary
Status

Torrent Instruction Set Architecture (ISA)



High-Performance, Programmable, Scalable DSP Architecture.
Goal:

Many new applications require high performance DSP, for
example, multimedia and human-machine interface.

Algorithms are constantly changing, and not all applications
warrant custom hardware development, so need
programmable DSP engine.

Software development is a major expense. Desire object
code compatibility while scaling parallelism up for
performance, or scaling parallelism down for cost.

Vector Instruction Set ArchitectureSolution:
Many compute-intensive DSP operations are vectorizable
and vector architectures are the most efficient way to run
vector code:

Low control complexity.

High throughput with multiple parallel and pipelined
    functional units.

Sustain high off-chip memory bandwidth with
    vector memory operations.

Add to conventional scalar instruction set to preserve
software investment.

Scale implementations between low cost and high
performance, with same object code.



Torrent User Programming Model

r31
r30

pc

hi
lo

r1
r0

031 031

031

General Purpose Registers Program Counter

Multiply/Divide Registers

vr0[0] vr0[1]
vr1[0] vr1[1]

vr15[0] vr15[1] vr15[31]

vr0[31]
vr1[31]

16 Vector Registers, each holding 32 x 32-bit elements.

vlr
Vector Length Register

vcond
vovf

031
Vector Flag Registers

vsat
vcount

031
Cycle Counter

CPU

VU
(COP2)

T0 Block Diagram

Conditional Move
Clip

Shift Right
Add

Shift Left
Logic

Vector
Registers

Logic
Shift Left
Multiply

Add
Shift Right

Clip
Conditional Move

Vector
Memory
Pipeline

I-Cache

SIP

Scalar

Address

Data

Scalar
Unit

Bus

Bus

Bus

Scan
Chains

VP0

VP1

128

32
28

8 8

VMP



T0 I-Cache and Scalar Unit

System Coprocessor 0

Instruction Cache MIPS-II 32-bit Integer RISC CPU
One instruction/cycle in 6 stage pipeline.
Single architected branch delay slot.
Annulling branch likelies.
Interlocked load delay slots.
3 cycle load latency (no data cache).
18 cycle 32-bit integer multiply.
33 cycle 32-bit integer divide.

1 KB, direct-mapped, 16 byte lines.
Cache line prefetch if memory otherwise idle:
    2 cycle miss penalty with prefetch,
    3 cycle miss penalty without prefetch.
Service misses in parallel with interlocks.

Exception handling registers.
Host communication registers.
32-bit counter/timer.

T0 Vector Memory Operations

Eight 8-bit elements per cycle.

Unit-stride with address post-increment

Eight 16-bit elements per cycle.
Four 32-bit elements per cycle.
+1 cycle if first element not aligned to 16 byte boundary.

Strided operations

One 8-bit, 16-bit, or 32-bit element per cycle.

Indexed operations (scatter/gather)

One 8-bit, 16-bit, or 32-bit element per cycle.
+ 3 cycle startup for first index.
Indexed stores need 1 extra cycle every 8 elements.

lwst.v vv3, t0, t1  # t1 holds byte stride.

lbai.v vv1, t0, t1  # t1 holds post-increment.

shx.v vv1, t0, vv3  # vv3 holds byte offsets.



T0 Vector Arithmetic Pipelines
Full set of 32-bit integer vector instructions: add, shift, logical.

Vector fixed-point instructions perform a complete scaled,
rounded, and clipped fixed-point arithmetic operation in one

Scale results by any shift amount.
Provides 4 rounding modes including round-to-nearest-even.
Clip results to 8-bit, 16-bit, or 32-bit range.

Multiplier in VP0 provides 16-bit x 16-bit -> 32-bit pipelined multiplies.

Vector arithmetic operations have 3 cycle latency.

pass through pipeline.

VP0 and VP1 each produce up to 8 results per cycle.

T0 Vector Conditional Operations

Vector conditional move:

cmvgtz.vv vv1, vv2, vv3
# if (vv2[i] > 0) then vv1[i] = vv3[i]

Vector condition flag register:

flt.vv vv1, vv2    # Set flag bits.
# vcond[i] = (vv1[i] < vv2[i])

cfc2 r1, vcond     # Read into scalar reg.

Executed in either arithmetic pipeline.

Vectorize loops containing conditional statements.

Vector compare:

slt.vv vv2, vv5, vv6
# vv2[i] = (vv5[i] < vv6[i])



T0 Vector Editing Instructions

Scalar insert/extract to/from vector register element.
Vector extract supports reduction operations:

Separates data movement from arithmetic operations.

Executed in vector memory unit.

0 1 2 3 4 5 6 7 8 9 101112131415

0 1 2 3 4 5 6 7 8 9 101112131415

vext.v vv2, t1, vv1

vv2

vv1

Software can schedule component instructions within reduction.

Avoids multiple memory accesses.

X

T0 Pipeline Structure

R M WR M WR M WR M WR M W

F D

R X1 X2 W

R M W

CPU

VMP

VP0

N

R M WR M W

R X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 W

WM

VP1
R X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 WR X1 X2 W



Code Example

lhai.v vv1, t0, t1     # Vector load.
hmul.vv vv4, vv2, vv3  # Vector mul.
sadd.vv vv7, vv5, vv7  # Vector add.
addu t2, -1            # Scalar add.
lhai.v vv2, t0, t1     # Vector load.
hmul.vv vv5, vv1, vv3  # Vector mul.
sadd.vv vv8, vv4, vv8  # Vector add.
addu t7, t4            # Scalar add.

(taken from matrix-vector multiply routine)

Execution of Code Example

lhai.v
hmul.vv
sadd.vv
addu
lhai.v
hmul.vv
sadd.vv
addu

CPU VMP VP0 VP1

time

Instruction issue
Operations



T0 Vector Unit Hazards
All vector unit hazards fully interlocked in hardware.

Vector instruction startup fully pipelined to eliminate strip-
mining overhead.

Each functional unit has independent ports into vector register
file so no chain slot time and no vector register access
conflicts.

All RAW, WAR, and WAW hazards on vector registers fully
chained to reduce latency and decrease vector register
pressure.

Philosophy: Trade small amount of extra control logic for
increased utilization of multiple, expensive datapaths.

T0 External Interfaces

Based on JTAG, but with 8 bit datapaths.
Provides chip testing and processor single-step.
Supports 30 MB/s host-T0 I/O bandwidth.

Serial Interface Port

Hardware Performance Monitoring
Eight pins give cycle by cycle CPU and VU status.

Fast External Interrupts
Two prioritized fast interrupt pins with dedicated interrupt vectors.

External Memory Interface
Supports up to 4 GB of SRAM with 720 MB/s bandwidth.
SRAM access wave-pipelined over 1.5 cycles.
Industry standard 17ns asynchronous SRAM for 45 MHz.



T0 Die Statistics
Technology:
   1.0 µm MOSIS scalable CMOS rules, 2 metal, 1 poly.
        Contacted M1 pitch 3.25 µm
        Contacted M2 pitch 3.75 µm
   Fabbed in HP’s CMOS 26G process.

Die Size: 16.75 mm x 16.75 mm

Transistor Count: 730,701

Clock Frequency: 45 MHz

Power Supply: 5 V

Power Dissipation: <12 W

T0 Status
First silicon received 3 April 1995.

No bugs.

SPERT-II systems running applications.

Measured performance on neural net training:

5x tuned code on IBM RS/6000-590.
20x tuned code on Sun Sparcstation-20/61,



Summary
With a fully programmable, scalable, vector-register
instruction set architecture, T0 sustains up to 720
million arithmetic ops/s while accessing up to 360
million operands/s from main memory, and with up to
30 MB/s of concurrent I/O,

...with roughly 3/4 million transistors (1 G 2),

...at 45 MHz in a 1 µm 2-Al CMOS process,

...in less than 10 person years from no ISA to running
applications.


