
Low-Power Single-Precision IEEE Floating-Point

Unit

by

Sheetal A. Jain

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

c© Sheetal A. Jain, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science
May 21, 2003

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Krste Asanovic

Assistant Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



2



Low-Power Single-Precision IEEE Floating-Point Unit

by
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Abstract

Floating point adders are area and power intensive, but essential in high performance
systems. The Software-Controlled Architectures and Low Energy (SCALE) project
requires a low-power single-precision IEEE floating-point adder cluster. Two adder
architectures, one containing a single longer computational path, and one containing
two shorter parallel computational paths were implemented using minimal area mod-
ules. Inputs to the parallel computational paths were registered, and only enabled
when that computational path was valid, reducing switching activity. Energy mea-
surements were made of the dual path adder with and without inhibit control and
the single path adder, to determine the most energy efficient design.
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Chapter 1

Introduction

High performance embedded systems require a low-power implementation of floating-

point operations. As Moore’s law continues to hold, more transistors are packed into a

smaller area, providing more potential computational power at a lower price over the

same area. As a result embedded systems are becoming ubiquitous, and increasingly

complex. Ever-increasing performance is demanded of such computing devices as cell

phones, laptops, PDAs and digital cameras. A software implementation of floating-

point operations is thus inadequate, and a hardware floating-point unit is required.

While speed and area are still important design considerations, power dissipation has

come to the forefront, since the amount of power dissipated in a circuit increases both

with clock speed and number of transistors. Therefore the floating-point unit on an

embedded system must be optimized for minimal power dissipation.

The SCALE (Software-Controlled Architectures and Low Energy) project pro-

poses a general purpose, high performance, configurable architecture for embedded

computing. A major SCALE design goal is providing software with fine grain control

over system power usage, using compile time knowledge to reduce energy dissipation

at run-time. A SCALE chip consists of an array of tiles connected via a fast com-

munication network. The proposed SCALE tile architecture contains a control unit,

local tile memory, a network switch connection and an array of parallel lanes, where

each lane contains multiple execution clusters[4].

The goal of this thesis is the implementation of a single precision IEEE compliant
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floating-point adder cluster for the SCALE architecture. The primary design goal is

minimal power dissipation.

A floating-point adder design with a single computational path was first imple-

mented in Verilog RTL and tested using Testfloat. This design was then modified

to have two parallel computational paths which made different assumptions about

the inputs, simplifying the logic inside the paths. This dual path design determines

which path is the correct one by the time each path has finished computing, and

propagates the result from the correct path onto the output. After functionality was

verified, both designs were synthesized to a standard cell library. By setting timing

constraints during synthesis, the critical path in each design was determined. Based

on this information and the desired cycle time, both designs were pipelined into three

stages. The first stage of the dual path adder contains the common logic for both

computational paths and determines which computational path will provide the de-

sired answer. Inputs to the other computational path are not enabled on the next

cycle, and thus internal nodes will not switch state, eliminating power dissipation due

to switching activity within that path. A version of the dual path design that did not

inhibit inputs to the computational paths was also implemented. The three designs

were reverified with Testfloat and resynthesized. The synthesized designs were placed

and routed, and underwent parasitic extraction to a transistor level model. A Spice

simulator was used to verify functionality and make power measurements.

1.1 Organization

This thesis is structured as follows. Chapter 2 provides an overview of the IEEE

floating-point standard and discusses SCALE specific design criteria. Chapter 3 dis-

cusses known algorithms and low-power optimizations for floating-point addition.

Chapter 4 describes the two floating-point adder designs implemented. Chapter 5

describes how the designs were implemented and tested. Chapter 6 presents area,

time and energy data about the designs. Chapter 7 concludes the paper and suggests

directions for future research.
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Chapter 2

Floating Point Unit Specifications

IEEE Standard 754 is the de-facto functional definition of floating point arithmetic.

This chapter presents the specifications of the standard relevant to floating point

addition. Interpretations of the standard’s options and other design criteria for the

SCALE floating-point adder are also presented.

2.1 IEEE Floating-Point Design Criteria

The IEEE standard defines floating-point number formats, floating point arithmetic

operations, conversions between other number formats, and floating-point excep-

tions [3].

2.1.1 Numerical encoding

The standard defines 32-bit single-precision and 64-bit double precision numbers. A

single-precision FP number is encoded by a 1-bit sign, an 8-bit exponent and a 23-bit

significand, as shown in Figure 2-1.

31 30 23 22 0

S Exponent Significand

1 8 23

Figure 2-1: Representation of Single-Precision IEEE FP Number
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Exponent values of 0xFF and 0x00 are reserved to encode special numbers such

as zero, denormalized numbers, infinity and NaNs. The mapping from an encoding

of a single-precision floating-point number to the number’s value is summarized in

Table 2.1.

Sign Exponent Significand Value Description
S 0xFF 0x00000000 (−1)S∞ Infinity
S 0xFF F 6= 0 NaN Not a Number
S 0x00 0x00000000 0 Zero
S 0x00 F 6= 0 (−1)S2−1260.F Denormalized Number
S 0x00 < E < 0xFF F (−1)S2E−1271.F Normalized Number

Table 2.1: Single-Precision FP Number Representation to Value Mapping

Normalized Numbers

For all ordinary numbers, the exponent field represents the exponent of a number

plus a bias of 127. A sign bit of 1 indicates a negative number. The highest bit of the

significand is always assumed to be 1, and therefore the representation only encodes

the lower 23 bits. This highest bit is often referred to as a hidden bit. These are

known as normalized numbers since the digit to the left of the binary point is 1.

Denormalized Numbers

Denormalized numbers are defined as all numbers with an exponent field equal to zero

and a nonzero significand. The highest (or hidden) bit of the significand is assumed

to be zero. Since the digit to the left of the binary point is 0, these numbers are not

normalized. Denormalized numbers fill in the representation gap between zero and

the smallest normalized number.

NaNs

A NaN is indicated by an exponent equal to 0xFF and a nonzero significand. The

sign bit for a NaN is not interpreted. A NaN has no hidden bit. The standard defines

Signaling (SNaN) and Quiescent (QNaN) NanNs but does not specify how they are
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represented. The convention is for all QNaNs to have the highest bit of the significand

field set to 1. In the absence of a trap, any operation on a SNaN produces a QNaN.

Any operation on one or more QNaNs produces one of the input QNaNs as a result.

Infinity

Infinity is represented by an exponent of 0xFF and a significand of zero.

Zero

Zero is represented by an exponent and significand of zero. −0 and +0 always compare

equal, but the required sign bit is defined for the zero results of an operation. Any

operation on two nonzero operands that produces a zero result has a sign of + in

all rounding modes except round toward −∞. The effective addition of two zeros of

different sign follows the same convention. The effective addition of two zeros with

the same sign propagates that sign to the output in all rounding modes.

2.1.2 Rounding Modes

Four user-selectable rounding modes are defined: round to nearest even (RNE), round

toward +∞ (RP) , round toward −∞ (RM), and round toward 0 (RZ). The default

mode, RNE, rounds the intermediate result to the nearest representable number,

choosing an even number if the result is equidistant from the two nearest numbers.

The rounding mode affects the results of most arithmetic operations, the sign of zero

sums, and thresholds for the overflow and underflow exceptions.

2.1.3 Exceptions

The standard defines five types of exceptions: invalid operation, division by zero,

overflow, underflow and inexact. An exception is signaled by setting a status flag

and/or taking a trap. The returned result in the case of an exception depends on

whether the corresponding trap is enabled and on the rounding mode.
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Invalid Operation

The given operation cannot be performed on the operands. For an adder, these are

the effective subtraction of infinities and the input of a signaling NaN. In the absence

of a trap, the result is a quiescent NaN.

Division By Zero

Divisor is zero. In the absence of a trap, the result is an appropriately signed ∞.

Overflow

The rounded result of the operation is larger in magnitude than the largest possible

finite number that can be represented. The representation of the largest possible finite

single-precision number is E=0xFE, F=0x7FFFFF or equivalently, 3.6875 × 1019.

Table 2.2 summarizes the results of an overflow according to the rounding mode and

the sign of the intermediate result.

Rounding Mode Sign Result
Round to zero S (−1)S3.6875× 1019

Round to nearest even S (−1)S∞
Round toward +∞ + +∞
Round toward +∞ − −3.6875× 1019

Round toward −∞ + +3.6875× 1019

Round toward −∞ − −∞

Table 2.2: Results in the event of an untrapped overflow

Underflow

In absence of a trap handler, an underflow exception is raised when both the con-

ditions tininess and loss of accuracy are detected. Tininess occurs when a nonzero

result computed as though exponent range and precision were unbounded would lie

strictly between ±2−126, and may be detected either before or after rounding. Loss

of accuracy may be detected identically to the inexact exception or as a difference

between the delivered result and what would have been computed if the exponent

18



range was unbounded. An untrapped underflow exception does not affect the result

of an operation.

Inexact

An inexact exception is raised when the rounded result is not exact or an overflow

exception is raised and not trapped. The inexact exception does not affect the result

of an operation.

2.2 SCALE Floating-Point Design Criteria

The floating-point unit will operate on single-precision numbers. Since the SCALE

architecture makes use of the MIPS ISA, the encoding of rounding modes, the default

NaN, and the interpretation of the underflow exception are chosen so as to be MIPS-

compliant[5].

2.2.1 Rounding Modes

The SCALE floating-point unit supports all four rounding modes. The encodings for

the rounding modes are shown in Table 2.3 and are taken from the MIPS ISA.

Rounding Mode Encoding
Round to Nearest Even 00

Round to Zero 01
Round to +Infinity 10
Round to −Infinity 11

Table 2.3: Encoding of Rounding Modes

2.2.2 NaNs

If a NaN is generated as an output where neither input is a NaN, the output NaN is

0x7F7FFFFF, to be compliant with the MIPS ISA. If an input is a SNaN, the output
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will always be the QNaN formed by flipping the highest bit of the significand field.

If an input is a QNaN, the output will be that QNaN.

2.2.3 Exceptions and Denormalized Numbers

The SCALE floating-point adder supports three of the four relevant exceptions: in-

valid operation, overflow, and inexact. Two exceptions, denormal in and denormal

out, have been added to indicate a denormalized number as input and output, re-

spectively.

The adder signals an exception by setting a corresponding output flag at the same

time the sum is delivered. The adder does not support trap handlers for the excep-

tions. The surrounding hardware or a software handler may provide trap handlers,

as well as modify or propagate exception flags and the output sum to the software

interface of the floating-point unit.

Input and output denormalized numbers are flushed to zero. Although denor-

malized numbers could be handled by the adder with very little extra overhead in

area and time, the same is not true of the SCALE floating-point multiplier. The

increased cost in area, time and power necessary to support denormalized numbers

in the multiplier was deemed prohibitive. For the sake of consistency, the adder does

not handle denormalized numbers and therefore is not fully IEEE compliant. Should

IEEE compliance be desired in the overall system, a software handler will be able to

access the floating-point unit inputs, output sum and exception flags, and produce

the required result.

The underflow exception is signalled by detecting tininess after rounding and de-

tecting loss of accuracy as an inexact result, in order to be compliant with MIPS.

Tininess after rounding is defined as the computation of a nonzero result that lies

between ±2−126. However, in the case of addition, any such result would be a rep-

resentable denormalized number. Therefore tininess is already signalled by the de-

normal out exception. Loss of accuracy is already signalled by the inexact exception.

The underflow exception signal can be generated by other hardware or by a software

handler, depending on how IEEE compliance is to be handled in the overall system.
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Therefore, the adder does not implement the underflow exception.

2.2.4 Comparison Unit

The SCALE floating-point adder contains a comparison unit and outputs a 2-bit value

to indicate which of the four predicates, less than, equal, greater than or unordered,

is true. The encodings for the predicates are shown in Table 2.4. x

Predicate Symbol Encoding
Less Than < 00

Equal = 01
Greater Than > 10

Unordered ? 11

Table 2.4: Encoding of Comparison Predicates

2.2.5 Timing

The SCALE floating-point adder should run at 200 MHz when the Verilog model is

synthesized using the standard cell library. It will therefore be pipelined into at most

four stages with a 5 ns cycle time.
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Chapter 3

FP Addition Architectures

This chapter describes algorithms that detect exception conditions during floating-

point addition, perform the addition of two normalized numbers, and round the re-

sulting sum. This chapter also presents previously published approaches to low-power

floating-point adder design.

3.1 FP Addition Algorithms

Two standard floating-point addition architectures are presented in algorithmic form.

Both algorithms are presented as if operating on single-precision normalized inputs.

For ease of notation, the following quantities are defined:

Let {sa, ea, fa} and {sb, eb, fb} be the signs, exponents and significands respectively

of two input floating-point numbers a and b. Let SOP denote whether the operation

is a subtraction (1) or addition (0).

3.1.1 Single path adder

1. Compute the effective operation seff = SOP
⊕

sa
⊕

sb.

2. Calculate δe = |ea − eb| and identify the input containing larger significand.

3. Assign (e1, {1, f1}) and (e2, {1, uf2}) to be the exponents and significands of the

inputs with the larger absolute value and smaller absolute value, respectively.
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4. Shift uf2 right by max(δe, 24) places to align it with f1, producing f2.

5. Compute the significand sum f sum = f1 ± f2 according to seff.

6. Normalize the result by shifting f sum until the highest bit of the significand is

1 and assign it to f norm.

7. Increment or decrement e1 by the shift amount of the prior step to produce the

exponent of the result.

8. Round f norm. Renormalize the significand and increment the exponent if nec-

essary.

This is the basic implementation of a floating-point adder. It has the advantage

of low area, and the disadvantage of high latency.

3.1.2 Dual path adder

The design is split into a near (N) path and a far (R) path. The near path assumes

the effective operation is a subtract and the absolute value of the exponent difference

is less than 2. The far path assumes the opposite. Each path computes the operation

in parallel, and the correct output is selected at the end.

The computation carried out in each path is almost identical to that of a single

path adder. However, in the near path uf 2 need only be shifted by at most one place

to the right, which eliminates a step that executes in logarithmic time. In the far

path f sum will only need to be shifted by at most one place to normalize the result,

again eliminating a logarithmic time step[9, 8].

A dual path adder is faster than a single path adder, but takes more area and

consumes more power.

3.1.3 Rounding

The rounding logic is identical in the single path and dual path adders. Rounding is

implemented as follows:
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After uf2 is shifted to align it with f1, it is computationally expensive, as well

as unnecessary to keep all the lower bits of f2. To ensure accurate computation and

rounding, it is sufficient to keep 3 extra bits of uf 2 that are shifted beyond the width

of the significand. These lowest three bits are known as the guard, round, and sticky

bits respectively , and are carried throughout the computation. The sticky bit is the

OR of all bits of f2 that have been shifted out of range. Within the rounding unit,

the guard bit indicates whether to round down or round up in either round infinite

mode. Round to zero can be accomplished by truncation. Round to nearest even

mode is accomplished by rounding up if the guard bit is set, and then pulling down

the lowest bit of the output if the round and sticky bits are zero. It has been shown

that the four rounding modes can be reduced to a single rounding mode by adding a

3-bit rounding mode specific injection signal to the normalized sum and truncating

the output. For example, in round to nearest even mode, the injection would be 100,

so that if the guard bit was set, there would be a carry in to the lowest bit of the

significand representation, incrementing the significand by one[7].

3.1.4 Exceptions

The overflow exception is set by checking if the exponent sums in the normalization

or rounding stages overflow. Since the maximum possible exponent for a normalized

number is 0xFE, the sum result must also be less than 0xFF.

Since SCALE does not implement the underflow exception, the conditions neces-

sary to detect it are not described.

The inexact exception is signalled when the result is not exact, i.e., cannot fit into

the representation. Therefore it is raised when there is an overflow or when either

the guard, round or sticky bit is set.

The denormal out exception is signaled when the exponent sum underflows (be-

comes negative or zero) in the normalization stage.

The invalid operation and denormal in exceptions are trivial.
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3.2 Low-Power Adder Architectures

Approaches to low-power adder design fall into two categories: the elimination of

features and microarchitectural optimizations. The simplification of rounding modes

and the reduction of significand bandwidth fall into the former category. Schemes

that selectively enable computational paths, such Pillai et al.’s low-power triple path

adder would fall into the latter category.

3.2.1 Simplification of Rounding Modes

Supporting all four rounding modes as specified by the IEEE standard can be quite

expensive. Round to nearest even mode requires an extra addition as well as a possible

normalization shift. Both round towards +∞ and −∞ have the same requirements

and thus no energy would be saved by only eliminating one of these three modes.

However, limiting rounding to round to zero mode will save energy, as it eliminates

both control logic, an extra addition, a normalization shift and a mux. The penalty

is a reduction in the accuracy of calculations and possibly misleading results. For

certain applications, where less accuracy is required, this optimization is worthwhile,

but it is not suitable for SCALE.

3.2.2 Reduction in significand bandwidth

The area, and by extension the power consumption of a floating-point adder is highly

dependent on the width of the significand. Reducing the width of the significand

representation can save significant amounts of power [10]. This approach is suitable

for specialized applications when precision may be sacrificed.

3.2.3 Low-power triple path adder

This architecture contains 3 datapaths, of which only one is operational at a time.

Two of the paths are identical in functionality to the far and near paths described

in the dual path adder. The third path is a bypass path which takes care of infinite
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inputs, NaN, and the case when the exponent difference is greater than the width of

the significand field. For each computation, signals are only propagated to the path

that computes the correct result. The inputs to the other two paths are inhibited

by clock gating, eliminating power dissipation via switching on these paths. Power is

also reduced by implementing pseudo Lazy Zero Anticipation (LZA) logic instead of

a Count Leading Zeros module and merging rounding with significand addition. For

single-precision formats, it is estimated that this scheme cuts power consumption by

90% when compared to a similarly configured floating-point adder that implements

full LZA [6].

The dual path design presented in this thesis uses the same concept of inhibiting

computational paths, but implements and enables the computational paths differ-

ently.
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Chapter 4

Floating Point Adder Design

A single path and dual path adder were both implemented and have identical function-

ality. The single path adder provides a base line for measuring power consumption.

The dual path adder attempts to minimize power consumption by reducing switch-

ing activity. Once it is determined whether the result of an input will come from

the R-path or N-path, inputs are not propagated down the unused path. Therefore

on a given cycle, power dissipation due to switching activity is eliminated on the

unused path. In addition, for each integer add operation in the datapath, an adder

customized for that operation is implemented. These customized integer adders are

smaller in area than a multipurpose integer adder, and will dissipate less power.

4.1 Customized Integer Adders

A multipurpose integer adder performs addition and subtraction, as well as outputting

control signals that indicate if the result is negative, equal to zero, or overflows. For

each adder or subtractor in a datapath, the multipurpose adder was modified to

create a custom module that only performed the necessary operation and output

the necessary control signals. In the N-path of the dual path adder, the significand

adder always performs a subtract. Removing the addition functionality of the adder

eliminates a 25 bit mux. If two unsigned numbers are to be added, the result can

never be zero. Removing the test for zero equality eliminates ORing all the bits of
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the result together.

The custom adder that saved the most area in comparison to a multipurpose

adder operates on inputs of unequal width. Datapaths in both floating-point adders

contain integer additions between such operands. In particular, the addition used to

perform rounding has an operand of less than 4 bits and an operand of at least 25

bits. The adder module takes in the length of each input as a parameter. The logic is

simplified for the higher order bits of the larger input, reducing both area and latency.

In datapath diagrams, these adders are represented as shown in Figure 4-1.

U

+

Figure 4-1: Adder with Unequal Size Inputs

4.2 Single Path Adder

The overall block diagram for the single path adder is shown in Figure 4-2.

The control unit calculates all exceptions, the effective operation seff, and the

output sign sign, as well as various control signals for the datapath. The datapath

contains an exponent and significand decoder, a swap unit, a shifter, an adder, a

normalization unit, a rounding unit and an output selection unit. All modules except

the exponent and significand unit are shown on the datapath diagram in Figure 4-3.

4.2.1 Exponent and Significand Decoding

The exponent and significand decoder produces signals used by the control unit to

determine if the inputs are NaN, infinite, zero or denormalized. The signals, their

descriptions and the logic equations used to calculate them are listed in Table 4.1.
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Signal Meaning Calculation
z exp a Exponent Field of ina all zeros NOR of ina[30:23]
z exp b Exponent Field of inb all zeros NOR of ina[30:23]

ones exp a Exponent Field of ina all ones AND of ina[30:23]
ones exp b Exponent Field of inb all ones AND of ina[30:23]

nz sig a Significand Field of ina not all zeros OR of ina[22:0]
nz sig b Significand Field of inb not all zeros OR of ina[22:0]

Table 4.1: Exponent/Significand Decoder Signal Summary

4.2.2 Swap Unit

The components of the swap unit are shown in the datapath diagram in Figure 4-3. A

summary of relevant signals in the swap unit appears in Table 4.2. Two adders com-

pute the differences exp ab diff and exp ba diff, and the control unit inputs exp ab neg

and exp ab z. An adder computes the control unit inputs sig ab neg and sig ab z. The

control unit uses these signals to compute signal blarger, which is then used to select

pre exp shift, e1, f1 and uf 2. Since pre exp shift is 8 bits wide, its top 4 bits are ORed

together to produce the 5-bit shift amount exp shift.

Signal Meaning Calculation

exp ab diff ea − eb ina[30:23] − inb[30:23]
exp ba diff eb − ea inb[30:23] − ina[30:23]
exp ab neg ea < eb Byproduct of ina[30:23] − inb[30:23]
exp ab z ea = eb Byproduct of ina[30:23] − inb[30:23]

sig ab neg fa < fb Byproduct of ina[22:0] − inb[22:0]
sig ab z fa = fb Byproduct of ina[22:0] − inb[22:0]
f1 Significand of larger input Mux ina[22:0], inb[22:0] with blarger
uf2 Unshifted significand of smaller input Mux ina[22:0], inb[22:0] with blarger
e1 Exponent of larger input Mux ina[30:23], inb[30:23] with blarger

pre exp shift |ea − eb| Mux exp ab diff, exp ba diff with blarger
exp shift Shift amount for uf 2 to align with f1 pre exp shift with top bits ORed together

Table 4.2: Swap Unit Signal Summary

4.2.3 Sticky Shift Unit

This custom shift unit takes the 23-bit significand uf 2 and shifts it right by exp shift

bits to align it with f1. Before shifting, uf 2 is concatenated with a single 1 to the
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left, and 3 zeros to the right. The 1 represents the hidden bit of the significand not

present in the significand field. The places of the zeros represent the added guard,

round and sticky bits. As bits are shifted out, they are ORed with the sticky bit.

4.2.4 Significand Addition

The significand addition unit contains an adder which computes the significand sum

f sum according to seff. The hidden significand bit is inserted before the highest

bit of f1 and three zeros are placed after the lowest bit of f1. Therefore f sum =

{1, f1, 000} ± f2.

4.2.5 Normalization Unit

The components of the normalization unit are shown in the datapath diagram in

Figure 4-3. A summary of relevant signals in the normalization unit appears in

Table 4.3. The Count Leading Zeros (CLZ) module counts the number of leading

zeros in the result f sum and stores it in incr. The shift unit takes in f sum and shifts

it right by incr bits to produce the result f norm. An adder takes e1 and adds or

subtracts exponent increment incmod according to expfn, producing exp norm.

f sum is a 28-bit quantity which decomposes into an overflow bit, the unit bit,

23 significand bits, and the 3 extra (guard, round, sticky) bits. Hence if f sum[27] is

set, the exponent needs to be incremented by one, and 00001 should be muxed into

{expfn,incmod}. However, if Zero In is set, the exponent should not be incremented,

and 00000 is muxed into {expfn,incmod}. In all other cases, the exponent needs to

be decremented by incr−1, so {1,incfix[4:0]} is muxed into {expfn,incmod}.

f norm is a 28-bit quantity which decomposes into the unit bit, 23 significand bits

and 4 extra bits (guard, round, sticky1, sticky2). In order to make rounding decisions,

it suffices to know if the guard bit is set and if any of the round or sticky bits are set.

Therefore the round and sticky bits are ORed together, concatenated with the guard

bit, and placed in control unit input frac bits.
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Signal Meaning Calculation
expfn Exponent Operation, Subtract=1 Muxed by Zero In AND f sum[27]

exp n1 exp norm < 0 Byproduct of e1± incmod
exp v1 exp norm > 0xFF Byproduct of e1± incmod
exp z1 exp norm = 0 Byproduct of e1± incmod

exp norm Normalized exponent e1± incmod
f sum Significand sum f2± {1,f1,000}

frac bits Control unit input for rounding {f norm[4],OR of f norm[3:0]}
incfix Intermediate exponent increment incr-1

incmod Exponent increment Muxed by Zero In AND f sum[27]
incr Number of leading zeros in f sum CLZ Unit

f norm Normalized result f sum rightshifted by incr bits
Zero In ina = 0 or inb = 0 From Control unit

Table 4.3: Normalization Unit Signal Summary

4.2.6 Rounding Unit

The components of the rounding unit are shown in the datapath diagram in Figure 4-3.

A summary of relevant signals in the rounding unit appears in Table 4.4. The control

unit supplies the signal injection, which is set according to the rounding mode. The

result f norm inc contains the rounded result. If the sum overflows, output SIG OVF

is set so the control unit can select incremented exponent exp norm inc as the output

exponent.

Signal Meaning Calculation
injection Rounding increment From Control Unit

f norm inc Rounded result f norm + injection
exp norm inc Incremented exponent exp norm + 1

SIG OVF Significand addition has overflowed f norm inc[26]

Table 4.4: Rounding Unit Signal Summary

4.2.7 Output Select

The control unit provides the signals exp sel and sig sel to select the output expo-

nent and significand respectively. It also provides the output sign, which is assigned

to out s[31]. The components of the output select unit are shown in the datapath
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diagram in Figure 4-3.

A significand of all zeros is selected if the output is zero or infinity. A significand of

0x7FFFFFF is selected if the output is a SNaN or the maximum possible representable

value. The significand f1 is selected if only one input was zero or the output is a

QNaN. If the output is a QNaN, then out s[22:0], the highest bit of the significand

field, is set to 1. The output f norm inc is selected otherwise. If the rounding mode is

RNE, and frac bits=10, then out s[0], the lowest bit of the significand field, is pulled

low.

The zero exponent is selected if the output is zero. An exponent of 0xFF is selected

if the output is NaN or infinity. An exponent of 0xFE is selected if the output is the

largest possible finite number. If the significand sum overflowed in the rounding

stage and none of the inputs were zero, then the exponent becomes exp norm inc.

Otherwise the exponent is exp norm.
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4.3 Dual Path Adder

The block diagram for the dual path adder is shown in Figure 4-4. The control unit

calculates all exceptions and the output sign seff, as well as various control signals

for the datapath. The datapath contains an exponent and significand decoding unit,

a swap unit, the N-path, the R-path and an output select unit.

The exponent and significand decoder is identical to that described in the single

path adder. The swap unit is also identical to that described in the single path adder,

with the exception that it produces an extra signal large diff, which indicates if the

exponent difference is greater than 1. This is produced by ORing together the top 7

bits of pre exp shift.

The pipeline registers after the swap unit only pass inputs to the N-path and R-

path modules if the enable signals is N and is R respectively, are high. Control unit

signals that are inputs to the N-path and R-path modules are also registered and not

propagated to the modules unless the appropriate enable signal is high.

4.3.1 N-path

A datapath diagram for the N-path module is shown in Figure 4-5. A summary of

relevant signals appears in Table 4.5.

Signal Meaning Calculation

f sum N Significand sum {1, f2[22:0], 0} − f2[24:0]
incr N Number of leading zeros in f sum N CLZ unit

f norm N Normalized result Shift f sum N left incr places
f norm inc N Rounded result f sum N + inject N

f res N Output significand {f norm inc N[23:2],!sig sel N&f norm inc N[1]}
exp norm inc N Incremented Normalized Exponent exp norm N+1

SIG OVF N Significand Addition Overflow f norm inc N[25]
inject N Rounding Increment From Control Unit
exp n1 N exp norm N < 0 Byproduct of e1−incr
exp v1 N exp norm N > 0xFF Byproduct of e1−incr

exp norm N Normalized exponent e1−incr
frac bits N Control unit input for rounding f norm N[0]

Table 4.5: N-path Signal Summary

The N-path module performs the functions of the sticky shift unit, significand
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adder, normalization unit and round unit from the datapath of the single path adder.

The implementation of these units inside the N-path module differs from the single

path adder in the following ways:

Since the exponent difference of the inputs is no greater than one, a 2-way mux

suffices to align uf 2 with f1, and only a single extra guard bit needs to be concatenated

with uf2 prior to shifting. This eliminates the sticky shift unit.

Since the significand operation is a subtraction, the result f sum N is only 25 bits

wide and contains no overflow bit. The number of leading zeros incr N thus represents

both the number of places by which f sum N must be shifted to normalize it and the

increment by which the exponent e1 must be decremented. This eliminates an 8-bit

adder and 6-bit mux. The subtraction cannot overflow so only exp z1 N and exp n1 N

are output to the control unit.

Since there is a single guard bit, frac bits N and injection N are 1-bit signals. After

rounding by injection the output significand f res N is equal to f norm inc N[23:1].

sig sel N pulls down f res N[0] when in RNE mode. The signal SIG OVF N is set

to f norm inc N[25] and is used to mux either exp norm N or exp norm inc N from

exp res N.

4.3.2 R-path

A datapath diagram for the R-path module is shown in Figure 4-6. A summary

of relevant signals appears in Table 4.7. The R-path module performs the same

functions as the N-path module from the datapath of the single path adder. The

implementation of these units inside the R-path module differs from the single path

adder in the following ways:

Since if the operation is a subtraction, the exponent difference is greater than one,

the number of places by which the 28-bit significand sum f sum R must be shifted

can be no greater than 2. Since there are no more than 3 leading zeros, there are

only 4 possible values for the final exponent field: e1 − 1, e1, e1 + 1 and e1 + 2.

Table 4.6 shows the increments added to exp1 to calculate exp norm inc and

exp norm in the single path adder. The R-path adds the increment in the third
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Single Path Increment Dual Path Incr.
incr R exp norm exp norm inc exp norm R

0 +1 +2 +2
1 +0 +1 +1
2 -1 +0 -1

Table 4.6: Exponent Increments in the R-Path and Single-Path Datapth

column of the table to e1 to calculate exp norm R. The desired exponent result will

be identical to either e1 or the calculated value of exp norm R for the 7 highest bits.

It is thus possible to generate the appropriate exponent result by selecting either e1

or exp norm R and modifying the lowest bit. This logic is computed by the control

unit and is dependent on SIG OVF R, incr R, exp norm R[0] and e1[0]. This scheme

eliminates 2 8-bit adders, and a 6 and 8-bit mux.

The exponent operation expfn and number of leading zeros incr are computed

by simple logic operations as shown in Table 4.7. A 3-way mux performs the nor-

malization shift, with f sum[27:26] as select inputs. This eliminates the CLZ module

and a shifter. After rounding by injection the output significand f res is equal to

f norm inc[24:2]. sig sel pulls down f res R[0] when in RNE mode. SIG OVF R is

equal to f norm inc R[26].

Signal Meaning Calculation

f sum R Significand sum {1, f2[22:0], 000} − f2[26:0]
incr R Number of leading zeros in f sum R f sum R[27],!f sum R[27]

expfn R Exponent Operation, Subtraction=1 NOR of f sum R[27:26]
f norm Normalized result Shift f sum R with 3-way mux

f norm inc R Rounded result f sum R + inject R
f res R Output significand {f norm inc R[24:3],!sig sel R&f norm inc R[2]}

exp res R Output exponent {exp norm R[7:1],exp norm R[0]&exp sel R}
SIG OVF R Significand Addition Overflow f norm inc R[26]

inject R Rounding Increment From Control Unit
exp n1 R exp norm R < 0 Byproduct of e1−incr
exp v1 R exp norm R > 0xFF Byproduct of e1−incr R

exp norm R Normalized exponent e1−incr R
frac bits R Control unit input for rounding {f norm[2],OR of f norm[1:0]}

Table 4.7: R-path Signal Summary
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4.3.3 Output Select

The output selection unit is similar to that of the single path adder. The control

unit provides the selection signals exp sel and sig sel and the output sign. The signif-

icand selection logic differs from that of the single path only in that instead of signal

f norm inc, it appropriately chooses either f res N or f res R, and that the logic to

pull down out[0] in RNE mode has been moved into the R-path and N-path modules.

The exponent is selected from among 0x00, 0xFE, 0xFF, exp res N, exp res R and

e1. The selection criteria for 0x00, 0xFE, and 0xFF are identical to those in the single

path adder. exp res N is selected as the output when the N-path is enabled. When

the R-path is enabled, either e1 or exp res R may be selected, as described previously.
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Chapter 5

Implementation and Testing

5.1 Test Strategy

The single path and dual path adders were both implemented in the Verilog hardware

description language. Softfloat is a software implementation of the IEEE floating-

point standard written in C [1]. Testfloat is a complementary program that tests

whether a floating-point implementation conforms to the IEEE standard [2]. The

test harness makes use of the addition test vectors provided with Testfloat as well as

C functions in the Testfloat and Softfloat libraries.

A C++ library interfaces directly with the Testfloat and Softfloat libraries, provid-

ing wrapper functions to retrieve test vectors and use the Softfloat addition operation.

The Softfloat implementation of addition handles denormalized numbers, so a wrap-

per function masks the imputs and outputs of the Softfloat function call to flush

denormalized numbers to zero. This wrapper function also raises the Input Denormal

and Output Denormal exceptions. A PLI Interface implements the mapping between

the verilog function calls and the wrapper functions. The Verilog test code instan-

tiates the adder under test and calls the appropriate PLI function to get the input

operands and results. It compares the output floating-point number and exceptions

from the adder module and the Softfloat function call, printing out discrepancies to

the terminal.

The single and dual path adders are logically equivalent. They pass all the Test-
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float test cases. With the modification to flush denormalized numbers to zero, there

is only one difference in the output of the adder modules and the Softfloat implemen-

tation. If both inputs are QNaNs, the standard requires that one of them be output,

and sometimes our adder implemenation does not choose the same NaN to output as

Softfloat.

5.2 Toolflow

CAD tools from both Cadence and Synopsis were used to synthesize the design to

the TSMC’s Artisan 0.18µm library. Figure 5-1 illustrates the steps involved.

Cadence Physically Knowledgeable Synthesis (PKS) takes in Verilog RTL and

performs synthesis and place and route. It outputs a netlist of the synthesized de-

sign as a Verilog file and the placement information as a DEF file. PKS was given

constraints on area and time using a script file

A Perl script takes the DEF file containing placement information from PKS and

replaces Metal 1 layers with Metal 2 or Metal 3, outputting a new DEF file.

Silicon Ensemble takes in the altered DEF file, and routes all signals, includ-

ing power and ground. It outputs the layout as a GDSII file and the routing and

placement information in a DEF file.

Assura takes in the synthesized Verilog netlist, the GDSII layout of the circuit and

leaf cells, a DRC techfile, and a Spice netlist of the standard cells. Assura performs

layout vs schematic verification (LVS) and produces a Spice file of the design with

extracted parasitics.

Nanosim takes in the design Spice file, a set of test vectors and a Spice model. It

simulates the Spice design with the input test vectors and checks the results against

the output test vectors. The log file contains the results of the simulation as well as

power and timing reports.
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5.3 Pipelining the Dual Path Adder

The timing goal was a cycle time of 5ns and either 3 or 4 pipeline stages. An un-

pipelined Verilog model was run through the synthesis, with timing budgets of 15ns

and 20ns. In both cases, the critical path ran through the R-path. The delay along

the critical path for the dual path adder is summarized in Table 5.2.

Operation Output Arrival Time (ns) Unit Delay (ns)
15ns 20ns 15ns 20ns

Input Register 0.21 0.38 0.21 0.38
Significand Subtraction 2.64 2.75 2.43 2.37
Blarger Control Logic 3.04 3.29 0.40 0.54

Mux to Select f1 3.34 0.30
Mux to select uf2 3.63 0.34

exp shift 3.51 0.17
R-Shift 5.39 5.39 1.88 1.76

R-Significand Add 8.85 9.97 3.46 4.58
R-mux 9.56 10.61 0.71 0.64
R-or 9.68 10.73 0.12 0.12

Round Significand 12.35 14.31 2.67 3.58
Ctl Logic 12.85 15.39 0.50 1.08

Significand Mux 13.84 16.29 0.99 0.90

Table 5.2: Dual Path Adder Critical Path Delay

The total cell area when synthesized with a timing budget of 15ns was 29189.16

µ2. The cell area when synthesized with a timing budget of 20ns was 26910.58 µ2.

The slack time when run with a timing budget of 15ns was 1.06 ns (output delay

estimated at 0.1ns) , and the total delay when run with a timing budget of 20ns was

only 1.29 ns over 15ns. Therefore, a 3 stage pipeline with a 5ns cycle time should be

achievable without a polynomial growth in area.

The first set of pipeline registers was placed directly after the swap unit, as by the

time the outputs from the swap unit were ready, the control logic would have figured

out if the N-path was in use or the R-path. The second set of pipeline registers

was placed after the CLZ module in the N-path and after significand addition in the

R-path. The adder was then resynthesized.
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5.4 Pipelining the Single Path Adder

The timing goals for the single path adder were a cycle time of 5ns and either 3 or

4 pipeline stages. An unpipelined verilog model was run through the synthesis, with

timing budgets of 15ns and 20ns. The delay along the critical path for the single path

adder is summarized in Table 5.4.

Operation Output Arrival Time (ns) Unit Delay (ns)
15ns 20ns 15ns 20ns

Input Register 0.23 0.31 0.23 0.31
Significand Subtraction 2.47 2.68 2.24 2.37
Blarger Control Logic 2.80 3.23 0.33 0.35

Muxing of uf2 3.26 3.77 0.46 0.54
Sticky Shift 4.75 5.40 1.49 1.43

Significand Addition 8.07 9.23 3.32 3.83
CLZ 10.34 11.71 2.27 2.48

Normalization Shift 10.66 12.47 0.32 0.76
Significand Rounding 13.05 15.17 2.45 2.70

Control Logic 13.70 16.16 1.21 1.01
Significand Mux 14.56 17.20 0.78 1.04

Table 5.4: Single Path Adder Critical Path Delay

If the design is pipelined in 4 stages, at least one stage will have an estimated

delay of greater than 5 ns, according to the 20ns synthesis results. However, the rest

of the stages would have delays of less than 4 ns. Each additional pipeline stage adds

complexity to the logic and approximately 2000 µ2 per 32-bit register. The total cell

area when synthesized with a timing budget of 15ns was 26,248.25 µ2. The cell area

when synthesized with a timing budget of 20ns was 23,926.75 µ2. At 15ns, there is

still room to cut time without a polynomial growth in area. Therefore, the area of a 3

stage single path adder ought to be comparable or not much more than the area of a 4

stage single path adder. The dual path adder is also being pipelined in 3 stages, so a

3 stage single path adder will provide a more representative baseline for comparison.

The single path adder was therefore pipelined in 3 stages and resynthesized.
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Chapter 6

Results

Three adder configurations are examined. The first configuration is the single path

adder, which is pipelined into 3 stages in order to achieve comparable performance

to the dual path adders. The second configuration is a 3 stage dual path adder with

both paths operating at all times. The third is a 3 stage dual path adder with inputs

to the nonconducting path disabled. All three adders have a cycle time of 5ns and

hence run at 200 MHz.

6.1 Energy Measurement Methodology

Nanosim reports average and RMS block power for individual blocks during a simula-

tion. The desired measurement is energy dissipated per operation, which is estimated

from the average power measurements from Nanosim using the following formula:

Energy

Operation
= µW × 5ns

Operation
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6.2 Energy Dissipation Results

Each adder was tested in Nanosim on a suite of 100 random test vectors that were

pulled from testfloat. The results of the simulation and total cell area for the three

configurations are displayed in Table 6.1.

Adder Cell Average Energy/
Model Area (µ2) Power (µW) Operation (pJ)

Single Path 31188.33 8884 44
Dual Path (no inhibit) 44696.84 13970 69

Dual Path (inhibit) 47836.96 10401 52

Table 6.1: Area and Energy Dissipation Results

The single path adder uses 63.6% of the power of the dual path no inhibit adder

and 85.4% of the power of the dual path inhibit adder. If using a dual path adder,

inhibiting inputs leads to a 25.5% reduction in power.
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Chapter 7

Conclusion

The dual path inhibit adder demonstrated the viability of disabling inputs to unused

modules to reduce switching energy. Understandably, this implementation did not

come close to the 90% theoretical savings of a triple path adder architecure posited

by Pillai et al.[6]. These results depend on the inputs being evenly distributed, which

is certainly not the case for our 100 test cases. In addition, the triple path adder

bypassed both the R and N paths when the exponent difference is greater than the

width of the significand. Under the worst case scenario assumption that the bypass

path is never used, it is proposed that the triple path adder would still use 50% of

the energy of a different implementation.

The triple path adder implemented rounding and addition in one step, as well as

pseudo Leading Zero Anticipation (LZA) logic, neither of which were implemented by

the dual path adder. The adder model used as its baseline is assumed to implement

full LZA and add significands with a carry-select adder. Clearly, the triple path

and dual path adder architectures are too different to expect similar performance

improvements. In addition, the triple path adder is a theoretical design that has not

been implemented and measured. It is assumed that a module which is not enabled

does not dissipate power (neglecting static power dissipation) when calculating power

consumption.

Our real world implementation of the dual path inhibit adder is most productively

evaluated by comparing it with other adders implemented with the same process.
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The dual path inhibit adder uses 74.5% of the energy of an ordinary dual path adder.

However, the single path adder offers superior performance to both dual path adders

in every respect. This adder is smaller in area, meets the same timing goals and uses

less energy than either version of the dual path adder. It is expected that a single

path adder design is smaller and slower than a dual path adder design. Even though

the N-path and R-path modules of the dual path adder are shorter than the single

path adder datapath, when the extra control logic and muxing is taken into account,

the total area of active modules in the dual path adder is larger than the total area

of the single path adder on most cycles. In addition, the inactive path which is not

switching, is still dissipating static power. Therefore it is unsurprising that the single

path adder uses less energy than the dual path adders.

It is worth noting that more effort was required for the single path adder to meet

timing goals than the dual path adders. Assuming the output port delay to be 0.1ns,

the slack time of the unpipelined single path adder when run with a timing budget

of 15ns was 0.34 ns. The slack time of the unpipelined dual path adder was 1.06

ns. It is possible that were both adders resynthesized with tighter timing constraints,

the single path adder would fail to meet timing at a larger cycle time and/or the

area of the single path adder would approach that of the dual path adder. Once the

floating-point adder is synthesized to target the custom datapath cells, it will have

to meet a 2.5ns cycle time spec. Given that the inhibit enabled dual path adder only

uses 17% more energy per operation than the single path adder with the current time

spec, it is possible that it may outpace the single path adder when synthesized with

the custom cells and a shorter cycle time. This design space would be worth exploring

in the future.

Another design space worthy of exploration involves the rearrangement of the dual

path adder datapath to allow more hardware to be inhibited. The significand subtract

in the first stage of the pipeline is not really necessary, as the inputs can be swapped

based solely on the relative sizes of the exponents. In the R-path, the significand

size is irrelevant. In the N-path, both f sum 1=f1 − f2 and f sum 2=f2 − f1 could

be calculated in parallel and muxed to produce f sum. The time taken by the extra

54



mux stage would be offset by the time gained by not computing a 23-bit subtraction.

The design would have to be repipelined, as the current first stage would become

much faster. A portion of the N and R path logic would be brought into the first

stage. If this logic could be inhibited midcycle, perhaps through the use of latches, a

larger fraction of the module would not be switching on a given cycle, reducing power

dissipation.

If the SCALE chip were to be fabricated tomorrow and the desired speed was

200 MHz, the correct floating-point adder design to use would be the single path

adder. However, if timing is to be pushed, both adders should be resynthesized to

determine which dissipates less power at higher speeds. Time and interest permitting,

the recommended partial redesign of the dual path adder will decrease latency and

could decrease power consumption.
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