
AXCIS: Rapid Processor Architectural Exploration using

Canonical Instruction Segments

by

Rose F. Liu

S.B., Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

c
�

Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 16, 2005

Certified by .
Krste Asanović

Associate Professor
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

AXCIS: Rapid Processor Architectural Exploration using Canonical

Instruction Segments

by

Rose F. Liu

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In the early stages of processor design, computer architects rely heavily on simulation
to explore a very large design space. Although detailed microarchitectural simulation is
effective and widely used for evaluating different processor configurations, long simula-
tion times and a limited time-to-market severely constrain the number of design points
explored. This thesis presents AXCIS, a framework for fast and accurate early-stage de-
sign space exploration. Using instruction segments, a new primitive for extracting and
representing simulation-critical data from full dynamic traces, AXCIS compresses the full
dynamic trace into a table of canonical instruction segments (CIST). CISTs are not only
small, but also very representative of the dynamic trace. Therefore, given a CIST and a
processor configuration, AXCIS can quickly and accurately estimate performance metrics
such as instructions per cycle (IPC). This thesis applies AXCIS to in-order superscalar
processors, which are becoming more popular with the emergence of chip multiproces-
sors (CMP). For 24 SPEC CPU2000 benchmarks and all simulated configurations, AXCIS
achieves an average IPC error of 2.6% and is over four orders of magnitude faster than
conventional detailed simulation. While cycle-accurate simulators can take many hours to
simulate billions of dynamic instructions, AXCIS can complete the same simulation on the
corresponding CIST within seconds.

Thesis Supervisor: Krste Asanović
Title: Associate Professor

3

4

Acknowledgments

First, I would like to thank Krste Asanović for being such a dedicated and supportive ad-

visor. I am immensely grateful for his invaluable guidance and encouragement throughout

this work.

I would like to thank Pradip Bose, at IBM Research, for introducing me to the field

of processor simulation. During my summers at IBM, he has been a wonderful mentor,

providing me with the skills and knowledge to pursue this work.

I also would like to thank the members of the SCALE Group for all their help and sup-

port. I would like to thank my parents, Francis and Chia, for their love and encouragement.

And finally, I would like to thank Vladimir for being the best husband I could ask for.

This work was supported by an NSF Graduate Fellowship and the DARPA HPCS/IBM

PERCS project number W0133890.

5

6

Contents

1 Introduction 13

2 Related Work 15

2.1 Reduced Input Sets . 16

2.2 Sampling . 16

2.3 Synthetic Trace Simulation . 17

2.4 Analytical Modeling . 18

2.5 AXCIS . 18

3 AXCIS Framework 19

3.1 Overview . 19

3.2 Dynamic Trace Compression . 22

3.2.1 Identifying Instruction Segments 22

3.2.2 Instruction Segment Anatomy . 25

3.2.3 Creating the Canonical Instruction Segment Table 29

3.2.4 CIST Data Structure . 32

3.2.5 Dynamic Trace Compression: An Example 33

3.3 AXCIS Performance Model . 34

3.3.1 Data Dependency Stalls . 35

3.3.2 Primary-Miss Dependency Stalls 36

3.3.3 Control Flow Event Stalls . 37

3.3.4 Program-Order Dependency Stalls 38

3.3.5 Calculating Net Stall Cycles . 40

7

3.3.6 Calculating IPC . 40

3.4 Stall Calculation during Dynamic Trace Compression 41

4 Evaluation 43

4.1 Experimental Setup . 43

4.2 Results . 46

4.2.1 AXCIS Accuracy . 46

4.2.2 AXCIS Performance Model Simulation Speed 51

4.2.3 CIST Size . 52

5 Alternative Compression Schemes 55

5.1 Compression Scheme based on Instruction Segment Characteristics 56

5.2 Relaxed Compression Scheme . 58

5.3 Optimal Compression Scheme for each Benchmark 61

6 Conclusion 69

6.1 Summary of Contributions . 69

6.2 Future Work . 70

6.3 Additional Applications . 70

8

List of Figures

3-1 Top level block diagram of AXCIS. 20

3-2 Example of an instruction segment. 21

3-3 Example of two overlapping instruction segments. 21

3-4 Class of machines supported by AXCIS 22

3-5 Instruction entry format. 26

3-6 Anatomy of an instruction segment. 27

3-7 Sample dependencies recorded for different instruction types. 28

3-8 Example of a CIST. 33

3-9 CIST building example. 34

3-10 Structural occupancies for each CIST entry. 38

4-1 Absolute IPC errors for 19 benchmarks and 12 configurations. 47

4-2 IPC errors of (a) applu, (b) facerec, (c) galgel, and (d) mgrid for

each configuration. 48

4-3 Absolute IPC error for 3 configurations with various latencies. 50

4-4 Normalized APM execution time vs. normalized number of CIST entries. . 52

4-5 Number of CIST entries and average APM execution times. 53

4-6 Number of instruction entry references in each CIST. 54

5-1 Comparison of the IPC errors obtained under the characteristics-based and

limit-based compression schemes. 57

5-2 Comparison of the number of CIST entries obtained under the characteristics-

based and limit-based compression schemes. 58

9

5-3 Comparison of the number of instruction entry references within a CIST,

obtained under the characteristics-based and limit-based compression schemes. 59

5-4 Number of CIST entries obtained under the relaxed and limit-based com-

pression schemes. 60

5-5 Number of instruction entry references in each CIST obtained under the

relaxed and limit-based compression schemes. 61

5-6 Absolute IPC error obtained under the relaxed compression scheme. 62

5-7 Number of CIST entries and average APM execution times obtained under

the relaxed compression scheme. 63

5-8 Number of instruction entry references in each CIST obtained under the

relaxed compression scheme. 64

5-9 Absolute IPC error for each benchmark obtained under its optimal com-

pression scheme. 65

5-10 Number of CIST entries and average APM execution times obtained under

the corresponding optimal compression scheme. 66

5-11 Number of instruction entry references in each CIST obtained under the

corresponding optimal compression scheme. 67

10

List of Tables

3.1 Processor configuration parameters supported by AXCIS. 23

3.2 Mapping of icache and branch prediction status flags to control flow event

stalls. 39

4.1 Inputs used for benchmarks with more than one reference input. 44

4.2 Minimum and Maximum processor parameters used by the DTC to gener-

ate the limiting configurations. 44

4.3 Twelve simulated configurations that span a large design space. 45

4.4 Functional unit latency parameters. 45

4.5 Cache, memory, and branch predictor configurations. 46

4.6 Three simulated configurations with various functional unit and memory

latencies. 49

11

12

Chapter 1

Introduction

In the early stages of processor design, computer architects are faced with exploring a

very large design space, which may include thousands of microarchitectural configurations.

Cycle-accurate simulation is effective and widely used for evaluating different processor

configurations. However, the long simulation times of these detailed simulators, along

with a limited time-to-market, severely constrain the number of design points explored.

Current detailed simulators are over thousands of times slower than native hardware.

For example, the popular simulator sim-outorder, of the SimpleScalar tool set [2],

simulates at around 0.35 MIPS on a 1.7 GHz Pentium 4 [1]. Depending on the bench-

mark size and level of simulated detail, simulation time for one run varies from hours to

weeks. Not only are the processors and memory systems modeled becoming more com-

plex, additional design constraints are also being introduced for next generation processors

such as power, temperature, and reliability, making simulators even more detailed. Also,

benchmarks are growing in size and complexity to match those of real-world applications.

For example, some benchmarks in the SPEC CPU2000 [12] suite have more than 300 bil-

lion dynamic instructions. The additional complexity in both benchmarks and simulators

exacerbates long simulation time, further limiting design space exploration.

Because simulation time is a function of the dynamic program size, researchers have

proposed various techniques to decrease the number of simulated dynamic instructions.

These techniques include reduced input sets [6], sampling [13, 10], reduced traces [4], and

statistical simulation [3, 9, 8]. The reduced input set technique modifies the input data,

13

while sampling selectively simulates important sections of the dynamic instruction stream.

Statistical and reduced-trace simulation use short synthetic traces that are generated after

profiling the original dynamic trace. However, many of these techniques experience high

errors, in corner cases, because these reduced programs are missing simulation-critical

data. Therefore the challenge is to extract all data that affect simulation accuracy from

the full dynamic trace. A simulation technique that processes only this critical subset will

minimize simulation time without sacrificing accuracy.

We introduce instruction segments as a new primitive for extracting and representing

simulation-critical data from full dynamic traces. Simulation-critical data contained in

instruction segments include original dynamic instruction sequences as well as microarchi-

tecture independent and microarchitecture dependent characteristics. We also present AX-

CIS (Architectural eXploration using Canonical Instruction Segments), a new framework

for fast and accurate early-stage design space exploration. AXCIS abstracts each dynamic

instruction and its microarchitecture independent/dependent contexts into an instruction

segment. AXCIS then uses a compression scheme to compress the instruction segments of

the full dynamic trace into a table containing only canonical instruction segments (CIST -

Canonical Instruction Segment Table). CISTs are not only small, but also very represen-

tative of the full dynamic trace. Therefore, given a CIST and a processor configuration,

AXCIS quickly and accurately estimates performance metrics such as instructions per cy-

cle (IPC). We propose AXCIS as a complement to detailed simulation. Because CISTs can

be reused to simulate many processor configurations, AXCIS can quickly identify regions

of interest to be further analyzed using detailed simulation. In this work, we apply AXCIS

to in-order superscalar processors. In-order processors are becoming more popular with the

emergence of chip multiprocessors (CMP), which have stricter area and power constraints

and emphasize thread-level throughput over single threaded performance.

This thesis is structured as follows. Chapter 2 provides an overview of related works on

efficient simulation techniques. Chapter 3 describes the AXCIS framework and instruction

segments in detail. Chapter 4 evaluates AXCIS for accuracy and speedup, in comparison

with a cycle-accurate simulator. Chapter 5 proposes alternative compression schemes for

AXCIS and evaluates their speed and accuracy trade-offs. Chapter 6 concludes this thesis.

14

Chapter 2

Related Work

In large design space studies, architects may need to simulate and compare thousands of

processor configurations. Since detailed simulation is too slow to complete these studies

in a timely manner, much work has been done on reducing processor simulation time.

Many previously proposed techniques decrease simulation time by reducing the number of

dynamically simulated instructions. These techniques include reduced input sets, sampling,

and synthetic trace simulation. Another approach to improving simulation time is analytical

modeling, which does not involve any simulation to evaluate different configurations once

the analytical equations have been specified.

All these efficient simulation techniques produce results that approximate those ob-

tained using detailed simulation. These techniques are usually evaluated based on the ab-

solute and relative accuracies of their approximations. Absolute accuracy, which is harder

to obtain than relative accuracy, refers to the technique’s ability to closely follow the values

measured by the detailed simulator. Relative accuracy refers to the technique’s ability to

produce results that reflect the relative changes across a variety of processor configurations.

While absolute accuracy requires the absolute errors of the approximations to be small, rel-

ative accuracy can be obtained when the error is consistently positive or negative over a

broad range of configurations. Configuration dependence also plays a role in evaluating the

accuracy of these techniques. Configuration independent techniques produce results with

similar error regardless of the simulated configuration, while the error of configuration de-

pendent techniques vary depending on the simulated microarchitecture, making it difficult

15

to compare configurations.

2.1 Reduced Input Sets

Reduced input sets such as MinneSPEC [6] modify the reference input set to reduce

simulation time. Because the dynamic instruction sequence generated using reduced in-

put sets can be very different from that generated using reference input sets, the re-

duced input set technique cannot provide absolute accuracy but relative accuracy may be

achieved. Ideally, since the entire program is simulated, the dynamic execution characteris-

tics obtained from reduced and reference input sets should track. Therefore simulation

results from a reduced input set should correlate to those obtained from the corresponding

reference input set. However, as shown by Yi et al., the relative accuracy of the reduced

input set technique is poor [14]. Yi et al. also shows that the accuracy of reduced input sets

varies widely, depending on the simulated configuration. Therefore, low accuracy as well

as configuration dependence make reduced input sets less appropriate for design space ex-

ploration.

2.2 Sampling

Sampling performs detailed simulations on selected sections of a benchmark’s full dynamic

instruction stream, while functionally simulating the instructions and warming the microar-

chitectural structures before and between these selected sections. Functional simulation

and warming is needed to eliminate cold-start effects, to improve the accuracy of data gath-

ered during detailed simulation. Two popular sampling techniques are SimPoint [10] and

SMARTS [13]. SimPoint is based on representative sampling, which attempts to extract

a subset of the benchmark’s dynamic instructions to match its overall behavior. SimPoint

uses profiling and statistically-based clustering to select representative simulation points.

After simulation, SimPoint weighs the results from each simulation point to calculate the

final results. SMARTS is based on periodic sampling, where portions of the dynamic in-

struction stream are selected at fixed intervals (sampling units) for detailed simulation.

16

SMARTS optimizes periodic sampling by using statistical sampling theory to estimate er-

ror between sampled and reference simulations to give recommendations on sampling

frequency. This provides a constructive procedure for selecting sampling units at a desired

confidence level. To speed up functional simulation between sampling units, SMARTS

only performs detailed warming of microarchitectural structures in periods before the sam-

pling units. As shown by SimPoint, SMARTS and Yi et al. [14], these sampling techniques

have high absolute and relative accuracy and reduce simulation time. Although sampling

is an efficient way of performing detailed simulation, it is still not fast enough to quickly

explore large design spaces. For example, sampling techniques still have to simulate all

dynamic instructions, at various levels of detail, in order to avoid cold start effects. Also,

sampling techniques redundantly simulate branch predictors and caches when multiple pro-

cessor configurations share the same cache and branch predictor settings.

2.3 Synthetic Trace Simulation

Both statistical simulation [3, 9, 8] and reduced-trace simulation [4] use profiling to cre-

ate smaller synthetic traces. In statistical simulation, profiling gathers program execution

characteristics to create distributions, histograms, or graphs on basic blocks, instruction

contexts, dependence distances, instruction-type frequencies, cache miss rates, and branch

misprediction rates. Synthetic traces are then created by statistically generating a stream of

instruction types and then assigning dependencies based on the execution characteristics.

These generated traces are simulated until performance converges to a value. The main

drawback of statistical simulation is that the instruction sequences in these synthetic traces

are not equivalent to the ones in the original dynamic instruction streams. This discrepancy

can cause large errors in performance simulation. In reduced-trace simulation, profiling

gathers information about each instruction, including the previous n instructions as con-

text. Instructions are then categorized, and these categories are used with the R-metric and

a graph of the program’s basic blocks to generate a synthetic trace tailored towards a target

system. The configuration dependent nature of these synthetic traces make reduced-trace

simulation less appropriate for large design space studies. Also, for some programs such

17

as gcc, reduced-trace simulation was not able to generate a representative synthetic trace.

2.4 Analytical Modeling

Analytical models abstract away detail and focus only on key program and microarchitec-

ture characteristics. These characteristics are then used to compute model parameters to

estimate performance. Once the analytical equations are specified, results for a particular

configuration can be obtained very quickly since no simulation is involved. Noonburg and

Shen [7] use probability distributions, of program and machine characteristics, in simple

functions to model parallelism in control flow, data dependencies, and processor perfor-

mance constraints on branches, fetch, and issue. Karkhanis and Smith [5] base their perfor-

mance model on ideal IPC, using only data dependencies, and later adjust for performance

degradation from cache and branch miss events. Analytical models are fast, generally accu-

rate, and provide valuable insight into processor performance. However, these models also

rely on many assumptions about the simulated microarchitecture, making them difficult to

modify and adapt to new designs. Therefore they are not suitable for detailed design space

exploration.

2.5 AXCIS

Like reduced input sets, sampling, and synthetic trace simulation, AXCIS also decreases

simulation time by reducing the dynamically simulated instructions. First AXCIS com-

presses the dynamic instruction stream, of a particular benchmark, into a CIST. During

compression, AXCIS also simulates a branch predictor and caches. Once created, the

CIST can be used to simulate a large set of configurations. Therefore, unlike sampling,

AXCIS does not need to simulate all dynamic instructions or re-simulate branch predic-

tors and caches for configurations sharing equivalent settings for these structures. Also,

because CISTs retain the original instruction sequences, CISTs can be more representative

of dynamic traces than synthetic traces. Because AXCIS is highly efficient, we propose

AXCIS as a complement to detailed simulation techniques such as sampling.

18

Chapter 3

AXCIS Framework

In this chapter, we describe the AXCIS framework and define instruction segments. In

particular, we describe how AXCIS compresses the dynamic traces into CISTs and how

CISTs are used to estimate processor performance.

3.1 Overview

AXCIS is divided into two stages: dynamic trace compression and performance model-

ing. In the first stage, the Dynamic Trace Compressor (DTC) identifies and compresses

all dynamic instruction segments into a Canonical Instruction Segment Table (CIST), as

shown in Figure 3-1 (a). In the second stage, the AXCIS Performance Model (APM) calcu-

lates the performance (IPC) of a particular microarchitecture given a CIST and a processor

configuration, as shown in Figure 3-1 (b).

An instruction segment is defined for each each instruction in the dynamic trace. The

instruction segment, of a particular dynamic instruction, consists of the sequence of instruc-

tions, starting from the instruction producing the oldest dependency and ending with the

dynamic instruction itself. This last instruction is termed the defining instruction of the seg-

ment because the instruction segment is defined for this particular instruction. All instruc-

tions in the instruction segment are abstracted into their instruction types (i.e. integer ALU,

floating point multiply, etc.) because the specifics of each instruction are not needed for

performance simulation. Figure 3-2 shows a sample instruction segment, whose defining

19

Instruction
Segment
Table

Canonical

Instruction
Segment
Table

Canonical

IPC

configuration
micro−arch.

Model

Performance

AXCIS

(b)

Dynamic Program

Compressor

Trace

(a)

Figure 3-1: Top level block diagram of AXCIS. (a) Dynamic trace compression. (b) Per-
formance modeling.

instruction is the last instruction in the portion of the dynamic trace shown. Overlapping

dependencies cause the instruction segments to overlap as well, as shown in Figure 3-3.

Note that we use the Alpha instruction set in all examples in this work.

A CIST contains one instance of all instruction segments defined in the dynamic trace.

All CIST entries are unique, and each entry in the CIST contains an instruction segment and

a frequency count. The frequency count represents the number of segments in the dynamic

trace that are canonically identical to the segment in the CIST entry. As the DTC identifies

instruction segments, it compares them to existing segments in the CIST. Compression

occurs when a newly identified segment is equal to an existing segment in the CIST. In this

case, the DTC increments the existing segment’s frequency count. If an equivalent segment

is not found, the DTC adds the new segment to the CIST. The compression scheme, used

by the DTC, defines instruction segment equality. Therefore by varying the compression

scheme, AXCIS can adjust the size of the CISTs as well as their representativeness to the

20

ldq r1 addr1
addq r2 r0 immediate
subq r3 r4 immediate
addq r4 r3 r1

defining instruction

Instruction SegmentDynamic Instruction Sequence

producer 1

producer 2

load_Mem

int_ALU

int_ALU

int_ALU

Context of the

instruction
defining

Figure 3-2: Example of an instruction segment. A portion of the dynamic instruction se-
quence is shown on the left. The instruction segment, shown on the right, is defined for the
last instruction in this sequence, termed the defining instruction. The defining instruction
has two dependencies, represented by arrows.

2 int_ALU

4 int_ALU

5 int_ALU

6 int_ALU

1 load_Mem

3 int_MULT

Figure 3-3: Example of two overlapping instruction segments. Instruction entry 5 is both
a defining instruction of the first segment, as well as a producer of a value consumed by
instruction entry 6.

dynamic trace.

The APM uses the structure of the CIST to perform dynamic programming to quickly

estimate instructions per cycle (IPC), for a given configuration. For each instruction seg-

ment in the CIST, the APM calculates the stall cycles of the defining instruction of the

segment. Once the APM has calculated the stall cycles of all defining instructions in the

CIST, the APM estimates IPC using the net stall cycles of the entire CIST. Note that the

use of different compression schemes in the DTC does not change how the APM calculates

performance.

In this work, we apply AXCIS to model the class of machines shown in Figure 3-4,

which include in-order superscalar processors, blocking L1 instruction caches, nonblocking

L1 data caches, and bimodal branch predictors. More specifically, these machines include

21

all configurations that can be described by instantiating the parameters listed in Table 3.1.

.

.

.
.
.
.

.

.

.
.
.
.

Completion

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. .

.

.

miss tags)
primary

(# of

(latency)

Main

Memory

int ALU float ADD/SUB

Issue

Fetch

PredictorBranch

(issue width)

. . .

LOAD/STORE

(latency)

. . .

. . .

. . .

(number of functional units)

. . .

. . .

. . .

. . .

. . .

. . .

Cache

Instruction

Blocking L1

Nonblocking
L1 Data
Cache

(predictor sizes & penalty) (organization and latency)

(organization and latency)

Figure 3-4: Class of machines supported by AXCIS. All parameterizable machine charac-
teristics are drawn with dashed lines and labeled in parentheses.

3.2 Dynamic Trace Compression

Dynamic trace compression is divided into two main tasks. The first task identifies the

instruction segment defined for each instruction in the dynamic trace. The second task

compresses the instruction segments into a CIST.

3.2.1 Identifying Instruction Segments

All simulation-critical data relating to one dynamic instruction can be compactly repre-

sented by an instruction segment. An instruction segment contains both microarchitecture

independent and dependent characteristics. Microarchitecture independent characteristics

22

Parameter
of functional units for each instruction type (14 types)
Latency of each instruction type
Branch misprediction penalty
Issue bandwidth
of primary-miss tags supported by data cache
Instruction and data cache access latencies
Memory latency
Instruction and data cache organizations:
(# of blocks, block size, associativity, replacement policy)
Bimodal Branch Predictor table size
Return address stack size

Table 3.1: Processor configuration parameters supported by AXCIS.

are inherent within the program and do not depend on machine configuration, while mi-

croarchitecture dependent characteristics refer to locality characteristics that depend on

cache and branch prediction architectures.

Microarchitecture Independent Data

Each dynamic instruction has associated microarchitecture independent data such as in-

struction type, context, and set of data and program-order dependencies.

AXCIS categorizes the instructions into 14 types: integer ALU, integer and floating

point multiplies, integer and floating point divides, floating point add, floating point com-

pare, floating point to integer converter, floating point square root, load cache access, load

memory access, store cache access, store memory access, and nop.

We only consider read-after-write (RAW) data dependencies, since write-after-read

(WAR) and write-after-write (WAW) hazards either do not occur or are generally elimi-

nated in in-order architectures. We ignore memory address dependencies between store

and load instructions because the effects of these dependencies are already modeled by the

memory instruction types. In in-order machines, if a producing store instruction has not

completed due to a cache miss, the consuming load instruction will also miss in the data

cache. Therefore the effects of this memory dependency will be captured by the cache miss

event and represented by the memory access instruction type.

23

In order for the APM to model structural hazards that limit issue width in multiple-issue

machines, the DTC must capture the program order of dynamic instructions. This is done

using program-order dependencies which form between consecutive dynamic instructions.

Except for the first instruction, every instruction is dependent on its preceding instruction

in the dynamic trace.

Each dynamic instruction belongs to a particular program context, which is defined by

the dependencies of the instruction. The context of an instruction refers to the instruction

sequence, starting from the producer of the instruction’s oldest dependency and ending with

the instruction itself.

Microarchitecture Dependent Data

Each dynamic instruction has associated microarchitecture dependent data such as instruc-

tion cache hit/miss, data cache hit/miss, and branch prediction/misprediction results.

The DTC simulates a branch predictor and instruction and data caches. During dynamic

trace compression, only the organizations of these structures need to be specified. Latency

assignments are not needed. For caches, the DTC needs to know their sizes, associativities,

and line sizes. For branch predictors, the DTC needs to know the type of branch predictor

and the sizes of their associated buffers. By simulating these structures, the DTC deter-

mines whether each instruction hit or missed in the instruction cache. If the instruction

follows a branch, the DTC determines the type of the branch (taken/not taken) and whether

or not it was correctly predicted. If the instruction is a load or store, the DTC determines

if it hit or missed in the data cache. Hits in the data cache refer to both true hits as well as

secondary misses. On true hits, data is found in the cache. On secondary misses, data is

not yet in the cache, but a request has already been sent to fetch the line from memory. All

hits in the instruction cache are true hits because we model in-order processors that block

until the required instruction is fetched from memory.

In order for CISTs to be general enough to support non-blocking data caches with a

varying number of outstanding misses, the DTC also records cache line dependencies and

primary-miss dependencies. Cache line dependencies form between consumers of cache

accesses (that are not primary misses) and the most recent primary miss of the requested

24

cache line. Cache line dependencies allow the APM to simulate a wide range of latencies by

distinguishing between true cache hits and secondary misses, in a non-blocking data cache.

Primary-miss dependencies form between two adjacent primary misses, and are used by the

APM to simulate a varying number of outstanding misses, by modeling structural hazards

on primary miss tags.

Because the DTC simulates caches as well as a branch predictor, the resulting CISTs

can only be reused to simulate configurations sharing the same branch predictor and cache

organizations. Although this constraint still allows CISTs to support a large number of

configurations, CISTs can be made more general to support an even wider range of ma-

chines by having the DTC simultaneously simulate multiple caches and branch predictors

to create different segments for the same dynamic instruction. Then all the segments can

be compressed into one multi-configuration CIST, where each CIST entry has a separate

frequency count for each cache and branch predictor organization.

3.2.2 Instruction Segment Anatomy

For each dynamic instruction, the DTC identifies its corresponding instruction segment.

Each instruction segment contains some data and a sequence of instruction entries to rep-

resent the context of the defining instruction, which is the last instruction entry in this

sequence. The specifics of the data, stored in the segments and instruction entries, depend

on the particular compression scheme used by the DTC. The following descriptions of the

instruction segment anatomy are based on the limit-based compression scheme presented

in Section 3.2.3.

A sample instruction entry is shown in Figure 3-5. Each instruction entry contains the

following fields:

Instruction type - One of 14 types.

Sorted set of dependence distances - Captures all dependencies of an instruction entry.

A dependence distance refers to the number of dynamically executed instructions in

the sequence starting from the producer down to, but not including, the consumer

associated with the dependency.

25

CIST index - CIST index of the instruction segment defined for this instruction entry.

Icache status - Hit or miss in the instruction cache.

Branch prediction status - Predicted or mispredicted during fetch. In blocking instruc-

tion caches, instructions that do not immediately follow branches are automatically

correctly predicted because the instructions immediately following branches experi-

ence all associated stall cycles. If the instruction immediately follows a branch, the

type of branch (taken or not taken) is also recorded.

Min/Max stall cycles - Used by the DTC to find canonically equivalent segments. Sec-

tion 3.2.3 describes this field in detail.

Type Dep_Dist_Set

5

CIST Index

{ 5, 9, na, na, na }

Icache_stat

miss

bpred_stat
correct

taken

stalls<min, max>

< 2, 10 >LD_L1

Figure 3-5: Instruction entry format.

Instruction segments also contain pairs of minimum and maximum structural occupan-

cies pertaining to the defining instruction. Structural occupancies are snapshots of microar-

chitectural state (e.g. issue group size) at the time an instruction is evaluated for issue.

The pairs of min/max structural occupancies of the defining instruction are used with the

min/max stall cycles of instruction entries to identify canonically equivalent instruction

segments. Figure 3-6 shows the anatomy of an instruction segment and its corresponding

dynamic code sequence.

The first five instruction entry fields are required for all compression schemes explored

in this thesis. Only the last field (min/max stall cycles) and the min/max structural occu-

pancies are specific to the limit-based compression scheme described in Section 3.2.3.

Sorted set of dependence distances

The following four types of dependencies are recorded in the dependence distance set:

1. Data dependency

26

iALU
fADD

min

...

...

...

...

iALU
fADD

max

...

...

...

...

min
max

Dynamic Instruction Sequence

ldq r1 addr1
addq r2 r0 immediate

...

...

int_ALU ...

int_ALU ...

producer 2 instruction entry

producer 1 instruction entry

Instruction Sequence:

min instructions issued
max instructions issued

subq r3 r4 immediate

load_Mem ...

int_ALU ...addq r4 r3 r1

Instruction Segment

defining instruction entry

Context of the

instruction
defining

min/max structural occupancies:

issue width occupancy <min, max>:

primary−miss tag occupancy <min, max>:

functional unit occupancy <min, max>:

Figure 3-6: Anatomy of an instruction segment.

2. Cache line dependency

3. Primary-miss dependency

4. Program-order dependency

All instructions referenced by the dependence distance set are included in the instruc-

tion segment sequence. These instructions as well as any intermediate instructions form

the context of the defining instruction of the segment. If any of the first three types of

dependencies exist in a dependence distance set, the previous instruction would already be

included in the instruction segment. Therefore the dependence distance set does not need

to explicitly record program-order dependencies for instructions that have other dependen-

cies. The dependence distance set explicitly records program-order dependencies only for

instructions without other types of dependencies.

The number of elements in the dependence distance set varies between 1 and 5. Integer,

floating point, and cache-hit instructions have up to 4 entries in their dependence distance

sets. Up to 2 entries correspond to the producers of the operands, and up to 2 entries cor-

27

respond to the producers of cache line dependencies. Cache line dependencies only occur

if the immediate producers are loads that hit in the cache. Cache-miss instructions have up

to 5 entries in their dependence distance sets. Four of these entries are identical to the ones

described above. The last entry corresponds to the producer of the primary-miss depen-

dency, which is the previous primary cache miss. Except for the first dynamic instruction,

instructions without any other dependency have at least the program order dependency.

Figure 3-7 shows the dependencies recorded for each type of instruction.

int_MULT ...

int_MULT ...

int_MULT ...

non mem ins w/ deps mem ins ...

ins w/o deps ...

(a) (b)

(c)

load_L1 ...

cache line

data

dependency

dependency

dependency

dependency
primary−miss

load_Mem lineA ...

store_Mem lineB ...

load_L1 lineA ...

load_L1 lineB ...

store_Mem lineB ...

load_Mem lineA ...

load_Mem lineC ...

load_L1 lineA ...

load_L1 lineB ...

program−order

Figure 3-7: Sample dependencies recorded for different instruction types. The depen-
dencies shown correspond to the defining instruction of each segment. (a) Dependencies
recorded for non-memory access instructions. (b) Dependencies recorded for memory ac-
cess instructions. (c) Dependency recorded for instructions with only one dependency.

In order to maintain a reasonable instruction segment length, we limit the maximum in-

struction segment size by recording only dependence distances less than MAX DEP DIST.

By varying MAX DEP DIST, we can play with the inherent trade-off between accuracy

and CIST size. In general, large MAX DEP DISTs produce good accuracy but larger

CISTs. Small MAX DEP DISTs leave out information from the instruction segment, and

28

therefore produce poorer accuracy but smaller CISTs. We set MAX DEP DIST to 512.

We further minimize the length of each instruction segment by pruning away non-crucial

dependencies that do not cause stalls in any configuration. Primary consumers are the first

instructions to experience all stalls corresponding to the producer. Secondary consumers

follow primary consumers in program order, and never experience any stalls from the pro-

ducer. Therefore we do not need to record the dependency of a secondary consumer.

3.2.3 Creating the Canonical Instruction Segment Table

The DTC profiles the dynamic trace one instruction at a time. For each instruction, the

DTC first identifies the corresponding instruction segment, by gathering the simulation-

critical data described above. The DTC then determines the uniqueness of the instruction

segment by comparing the segment to the entries in the Canonical Instruction Segment

Table (CIST). If the instruction segment is canonically equivalent to an entry in the CIST,

then the frequency count of the CIST entry is incremented. If the instruction segment does

not match any entry in the CIST, then it is added to the CIST. In this manner, the CIST only

contains unique instruction segments. The DTC also records the total number of dynamic

instructions into the CIST.

Compression Scheme and Definition of Segment Equality

Because the definition of segment equality determines when instruction segments are com-

pressed, it has a large impact on the number of entries in the CIST, which affects the

accuracy of AXCIS. A relaxed equality definition results in high compression but poor ac-

curacy, while a strict definition results in high accuracy but poor compression. Therefore

the goal is to find a canonical equality definition with the best accuracy and compression

trade-off.

An ideal equality definition should compare only instruction segment characteristics

that affect performance. Comparisons of other characteristics overly constrain the defini-

tion and produce larger CISTs, without improving accuracy. The number of stall cycles

experienced by each instruction directly affects performance. Therefore, the DTC should

29

compress two segments, A and B, if the stall cycles of their defining instruction are equal in

all configurations to be simulated using the CIST. We define canonical equality as follows.

For all configurations � , two segments � and � are equal if

����� �	��
������� ����������������� ���!
"������ ���#�$�����%���&� ��� �')((3.1)
* '+� ,-�/.0���213��4652'�52'67 * '+����� �8�! * '+� ,-�/.0���213��4652'�52'67 * '+���2� �9� �

where
"��%��� �:���$���������;� ��� are the stall cycles experienced by the defining instruction of

segment � in configuration
�
, and

* '+� ,	��.<����13��465='65='>7 * ')�%��� �9� is the instruction type of

the defining instruction of segment � . The instruction type is used by the APM to calculate

stall cycles, given a particular configuration.

However, because the DTC does not have full knowledge of the simulated microarchi-

tecture and it is not practical to simulate all possible microarchitectures, exact stall cycles

cannot be determined during trace compression. Therefore, the DTC matches instruction

segments based on heuristics to approximate canonical equality. We explore several com-

pression schemes in this thesis. One is described in the rest of this chapter, and the others

are described in Chapter 5.

Compression Scheme based on Limit Configurations

In order to get some idea of the stall cycles experienced by an instruction, the DTC simu-

lates two microarchitecture configurations. We use these two configurations to approximate

the set of all configurations to be simulated using the CIST. The basic intuition is that if

two segments have the same stall cycles under two very different configurations, they are

more likely to have the same stall cycles under all configurations. We chose these two con-

figurations to be the limiting (minimum and maximum) microarchitecture configurations

to be simulated using the CIST.

Using these limiting configurations and instruction segments, the DTC calculates the

minimum and maximum stall cycles for each instruction. Sections 3.3 and 3.4 describe the

stall calculation procedure in detail. This pair of limiting stall cycles is recorded with each

instruction entry, and is the first characteristic that is compared when determining segment

30

equality.

The minimum and maximum stall cycles provide a range of possible stall cycles. De-

pending on the configuration, the exact number of stalls experienced by an instruction can

be anywhere in this range. Therefore, even if the defining instructions of two segments

have identical stall pairs, there is no guarantee that their exact stall cycles are equal. There-

fore, we also compare minimum and maximum structural occupancies to more accurately

determine canonically equivalent segments.

Structural occupancies play a large role in determining the exact stalls seen by an in-

struction. Because the DTC simulates two limiting configurations, there are two sets of

structural occupancies pertaining to a defining instruction. These occupancies include:

Issue group size: an integer representing the number of instructions in the current issue

group.

Functional unit allocation: an array of integers, where each element represents the num-

ber of units allocated for a particular functional unit type, in the current issue group.

Primary-miss tag usage: an array of integers. The array size is determined by the number

of primary-miss tags in the specified data cache configuration. Each element in the

array corresponds to the number of cycles before the miss tag can be re-allocated.

The DTC also compares the types of the defining instructions in the segments. Dur-

ing performance modeling, the APM matches latencies with instruction types, to calculate

exact stalls. Therefore instruction type information must not be lost.

To summarize, two instruction segments are equal if:

1. The pairs of limiting stall cycles, corresponding to the defining instruction, are equal.

2. The pairs of issue group sizes are equal.

3. All elements in the pairs of functional-unit allocation arrays are equal.

4. All elements in the pairs of primary-miss tag usage arrays are equal.

5. The instruction types of the defining instruction in the segments are equal.

31

Efficient Lookup in CISTs

In order to check for canonical equivalence, each new instruction segment needs to be

compared to existing CIST entries until either a match is found or all entries have been

searched. Since CISTs can grow to tens of thousands of entries, the time required using

a linear search algorithm is unacceptable. Therefore we hash the CIST entries into a hash

table (CIST Hash Table) to speed up the lookup process. For each new instruction segment,

the DTC computes its hash and only compares the segment with entries hashed to the

corresponding index of the CIST Hash Table. The DTC calculates the hash of an instruction

segment by computing the XOR of all characteristics that determine segment equality.

3.2.4 CIST Data Structure

CISTs compactly record simulation-critical data by exploiting the repetition of instruction

segments from loops, function calls, and code re-use. Note that CISTs contain only the

information needed for accurate performance simulation. CISTs cannot be used to recreate

the original dynamic trace.

A CIST is essentially an ordered array of instruction segments, as shown in Figure 3-8.

CISTs have the following properties:

� Each CIST entry contains an instruction segment and its corresponding frequency

count. The frequency count indicates the number of times a canonically identical

segment has been encountered in the dynamic trace.

� CIST entries are ordered based on their first occurrence in the dynamic program

trace.

� Each CIST entry introduces a new instruction to the CIST. This new instruction is

the defining instruction of the instruction segment contained in the CIST entry.

� CIST entries may refer to defining instructions of previous CIST entries.

� Because instruction segments overlap, a particular instruction may be referenced by

multiple CIST entries.

32

.

.

.

4

3

2

1

total dynamic instructions: 4Index

frequency: 1

frequency: 1

frequency: 1

frequency: 1

2

3

4

2

1

1

2

1

3

Figure 3-8: Example of a CIST. The instruction entries in the CIST are numbered according
to their order of appearance in the dynamic trace. Using these numbers for reference,
one can see that CIST entries follow program order, each CIST entry introduces one new
instruction, and CIST entries overlap and point to previous entries.

3.2.5 Dynamic Trace Compression: An Example

The left side of Figure 3-9 shows a sequence of dynamic instructions, numbered in pro-

gram order. The dashed lines represent dependencies between the instructions. The boxes

group the instructions according to their instruction segments. For example, instruction 1

does not depend on any previous instructions and therefore is the sole instruction in the

segment. Instructions 1 through 4 belong in instruction 4’s segment because instruction 1

is the earliest producer of a value consumed by instruction 4. The right side of Figure 3-9

shows the CIST corresponding to this dynamic sequence of instructions. Because none

of the segments shown are canonically equivalent to each other, each CIST entry has a

frequency count of 1 and no compression occurs.

33

.

.

. .
.
.

Dynamic Instruction Sequence

CIST

frequency: 1

frequency: 1

frequency: 1

frequency: 1

Index total dynamic instructions: 4

2

4

2

3

1

2

3

4

11

2

3

4

1

1

3

2

Figure 3-9: CIST building example.

3.3 AXCIS Performance Model

Given a CIST and a processor configuration, the APM computes performance in terms of

instructions per cycle (IPC). IPC is expressed as:

*�� � ,������� * '+� �����>� � 5���'+�
,������� * ')� �����>� � 5���'+�
	 � *
", � � �
"��%��� �:��������� (3.2)

The total number of instructions is recorded in the CIST and refers to the number of in-

structions profiled by the DTC. The job of the APM, is to calculate the net stall cycles

experienced by the entire CIST. Note that net stall cycles may be negative for multiple-

issue machines.

As mentioned earlier, stall cycles experienced by different instructions may overlap.

Therefore a naive method that sums the stall cycles of individual instructions, without

34

modeling overlap, overestimates the total number of stall cycles and produces a pessimistic

IPC. Stall overlap is confined within the instruction segment primitive. Therefore stalls

experienced by an instruction, within some segment, cannot overlap with the stalls of an

instruction outside the segment. Based on this principle, the APM accurately calculates the

stall cycles of an instruction by taking into account stall cycles of preceding instructions in

its segment.

The APM exploits the order-dependent nature of this algorithm by using dynamic pro-

gramming to quickly calculate the net stall cycles for an entire CIST. Because each CIST

entry introduces one new instruction, only the stall cycles of this new instruction must be

calculated. The stall cycles of the other instructions in the CIST entry can be obtained

from the defining instruction entries of previous CIST entries. Also, since CIST entries are

created in program order, the APM can calculate the stall cycles of each new instruction

sequentially, starting from the first CIST entry. Using dynamic programming, the amount

of work required to calculate the net stall cycles of an entire CIST is directly proportional

to the number of CIST entries. Because the number of CIST entries can be thousands of

times smaller than the total dynamic instructions, the APM can simulate much faster than

conventional cycle-accurate simulators.

Stall cycles are caused by the following factors: data, primary-miss, and program-order

dependencies as well as control flow events. Each factor associated with an instruction

results in some number of stall cycles. If an instruction is affected by more than one factor,

its net stall cycles is the maximum of all its stall cycles. The APM calculates the stalls from

each type of factor separately, and then takes the maximum to compute the net stalls for an

instruction entry. The net stall cycles, of the entire CIST, is the sum of all defining instruc-

tion entry stalls weighted by the corresponding frequency counts of their CIST entries. The

following sections describe the APM’s stall calculation methodology in detail.

3.3.1 Data Dependency Stalls

Data dependency stalls are caused by read-after-write and cache-line dependencies. These

dependencies cause stalls when a consumer is ready to issue but its operands have not been

35

produced. Data dependency stalls depend on the latency of the producer, the dependence

distance between the producer and consumer, and the stall cycles of all intermediate in-

structions between the producer and consumer.

The stall cycles caused by one data dependency is expressed by the following equation.

1&����13�8.
"��������%��� ��'+� � � � � � � ��� '��$��� . ���/(�>�$� � ��� 13�8. 1&5 � � �
���	��
�	���������������� ������� �	�	�"!#� � � �
"������ ���#�$�����%��5=')� � � (3.3)

The latency of the producer is provided by the input configuration. The dependence dis-

tance is recorded in the instruction entry of the consumer. The net stalls of the other instruc-

tions have already been calculated by the APM and can be looked up in their corresponding

instruction entries in the CIST.

For each defining instruction entry in the CIST, the APM computes all its corresponding

data dependency stalls. Then the APM calculates its net data dependency stalls by taking

the maximum of the stalls.

� � � 13 ��%(��8.
"������2����� ��'+� � � � � � %$ �'& ��(% ���(��8. � �������� � ��(� ��%(��8. � ������2�)(��+*,*,* �
(3.4)

3.3.2 Primary-Miss Dependency Stalls

Primary-miss dependency stalls occur in memory access instructions that cannot issue be-

cause all primary-miss tags are in use.

In the nonblocking data cache modeled by AXCIS, a primary-miss tag is allocated for

each outstanding memory access. These miss tags are de-allocated when the memory ac-

cess completes. The APM uses primary-miss tag arrays (one type of structural occupancy),

shown in Figure 3-10 (a), to maintain the status of these tags. The size of the array cor-

responds to the number of miss tags in the configuration, and each element represents the

number of cycles until the tag becomes available. The APM creates a primary-miss tag

array for each CIST entry with a memory access defining instruction. If the defining in-

struction of the CIST entry has a primary-miss dependency, the values of the array are

36

copied from the array of the producer. If the defining instruction does not have a primary-

miss dependency, all the entries in the array are initialized to -1. This indicates that all miss

tags are available this cycle. Memory access instructions that do not have a primary-miss

dependency, are either the first memory access or the dependence distance (to the previous

primary-miss) is greater than MAX DEP DIST.

After initializing the primary miss tag array, the APM updates the array to correspond

to the current cycle, instead of the cycle the producer was issued. To do this, the APM com-

putes the number of elapsed cycles since the producer was issued. The number of elapsed

cycles is calculated by summing the dependence distance to the producer with the net stalls

experienced by all intermediate instructions (between the producer and consumer).

�:���$����� ���� .>� � (13�8. 1&5 � � 	
� �
)�	��� �	������
����� ������� � ���"!#� � � �
"������ ���#�$��������5=')� � � (3.5)

The APM then subtracts the elapsed cycles from each entry of the primary-miss tag array.

If no producer exists, the array remains unmodified.

Next, the APM calculates the primary-miss dependency stalls by finding the minimum

value in the array. This value is the minimum number of cycles before a primary-miss tag

is available.

� $ 13�8.
"������2� $ * � � � ,����&� . �/5 � �/� � 5 ��� �� 7 � � �� � (3.6)

3.3.3 Control Flow Event Stalls

Control flow event stalls are caused by instruction cache misses, branch mispredictions,

and correctly predicted taken branches.

The icache and branch prediction status flags of an instruction, recorded by the DTC,

directly map to the instruction’s control flow event stall cycles. Table 3.2 shows the control

flow stalls of an instruction based on its icache and branch prediction status flags.

Instructions that hit in the instruction cache will not experience any stalls, unless they

follow mispredicted or taken branches. Mispredicted branches break the current issue

37

. . .

. . .

intALU Load Store

functional−unit allocation array:(c)

(b)
4

(a) primary miss tag array:

2 6 45 100 200

of cycles until miss tag can be re−allocated

of primary miss tags

of instructions in current issue group

of load instructions issued this cycle

3 1 0

of instruction types

issue group occupancy:

Figure 3-10: Structural occupancies for each CIST entry.

group and cause the corresponding number of stall cycles before another useful instruc-

tion can be issued. Correctly-predicted taken branches also break the current issue group,

resulting in at least one stall cycle.

3.3.4 Program-Order Dependency Stalls

Program-order dependency stalls are caused by structural hazards on issue bandwidth and

functional units.

The APM models issue width limitations using issue group occupancies. An issue

group occupancy, shown in Figure 3-10 (b), is an integer representing the number of in-

structions in the current issue group. The APM creates an issue group occupancy for each

CIST entry. The issue group occupancy of the first CIST entry is initialized to zero, be-

cause no instructions have been issued this cycle. The defining instructions of all other

CIST entries have a program-order dependency on their preceding instruction. Therefore

the issue group occupancies of these other CIST entries are copied from the entries of their

producers.

38

Icache Status Branch Status CF Dep Stall Cycles
hit mispredicted & taken misprediction penalty
hit mispredicted & not taken misprediction penalty
hit correctly predicted & taken 0
hit correctly predicted & not taken -1
miss mispredicted & taken memory latency +

misprediction penalty
miss mispredicted & not taken memory latency +

misprediction penalty
miss correctly predicted & taken memory latency
miss correctly predicted & not taken memory latency - 1

Table 3.2: Mapping of icache and branch prediction status flags to control flow event stalls.

Structural hazards occur when too many instructions of one type are ready to issue in

one cycle. AXCIS assumes that all functional units are fully pipelined. Therefore at the

beginning of each cycle, all functional units are available. The APM models functional-

unit structural hazards using functional-unit allocation arrays, shown in Figure 3-10 (c).

Each element of the array corresponds to the functional units of one instruction type. The

elements contain the number of instructions, of that type, that are being issued this cy-

cle. The APM creates a functional-unit allocation array for each CIST entry. Except for

the first entry, the arrays of all other entries are copied from the producing CIST entry of

the program-order dependency. The array, of the first CIST entry, is initialized to all ze-

ros. AXCIS may be extended to model partially pipelined functional units by applying the

technique used to model primary-miss tags.

The APM calculates the program-order dependency stalls, of each CIST entry, by com-

paring the issue group occupancy and functional-unit array with constraints specified in the

input configuration. For example, if the issue group occupancy is less than the maximum

issue width, the instruction will not experience any hazards from limited issue bandwidth.

Also, if the corresponding functional unit array entry is less than the number of available

units of that instruction type, the instruction will not experience any functional-unit struc-

tural hazards. When no structural hazards are detected, the program-order dependency

stalls are set to -1. This indicates that the instruction issues in the current cycle. When

structural hazards are detected, these stall cycles are set to 0, indicating that the instruction

39

issues in the next cycle.

��� 13�8.
"��%����� � ��� � no structural hazards� � structural hazards
(3.7)

3.3.5 Calculating Net Stall Cycles

After calculating the stalls from each type of dependency, the APM computes the net stall

cycles, of a defining instruction entry, by taking the maximum of the stalls.

� � �
"������ ���#�$����� $ � & � � � � 13 ���13�8.
"��%����� � (3.8)
� $ 13�8.
"������2� �
��� ���%� '6�
"��%����� �
��� 1&�8.
��������� �

Then the APM issues the instruction by updating the occupancies of the correspond-

ing CIST entry. If Net Stall Cycles is negative, the instruction issues in the current issue

group. In this case, the APM increments the issue group occupancy and the corresponding

functional-unit array entry. Otherwise, the instruction issues in a new group. In this sec-

ond case, the APM sets the issue group occupancy and the corresponding functional-unit

array entry to 1. All other entries in the functional-unit array are set to 0. If the instruc-

tion accesses memory, the APM makes two updates to the primary miss tag array. In the

first update, the APM simulates the net stall cycles experienced by the instruction by sub-

tracting these stalls from each array entry. In the second update, the APM resets the entry

containing the minimum cycles with the memory latency subtracted by 1.

3.3.6 Calculating IPC

To calculate instructions per cycle (IPC), the APM needs to first compute the net stall cycles

of the entire CIST. In the previous sections we described how to calculate the net stall cycles

for each defining instruction entry. To calculate the net stall cycles of the entire CIST, the

APM takes the weighted sum of the stall cycles and frequency count of each CIST entry.

40

The stall cycles of each CIST entry correspond to the stall cycles of the defining instruction

of that entry.

� *
", � � �
"������ �:���$����� �
����� ���� ��
��� � � � �	�#��5 ��

� � �
"������ ���#�$�����%��13��4652'�5='>7 * ')����5 �9�
(3.9)

With this value and the total instructions, the APM computes IPC using Equation 3.2.

3.4 Stall Calculation during Dynamic Trace Compression

The DTC computes the minimum and maximum stall cycles of each instruction using the

same methodology as the APM. However, there are two main differences. The first differ-

ence is that the DTC computes two stall cycle values for each dynamic instruction, using

the two limit configurations. The APM computes only one stall cycle value corresponding

to the input configuration. The other difference is that the DTC only computes the stall

cycles for the current instruction. The APM computes the stall cycles for all defining in-

structions in the CIST. Also, the APM computes the net stall cycles of the entire CIST to

calculate IPC.

41

42

Chapter 4

Evaluation

This chapter evaluates the accuracy and efficiency of AXCIS compared to detailed cycle-

accurate simulation. We start by describing our experimental setup, and then we present

and analyze the results.

4.1 Experimental Setup

We evaluated AXCIS against our baseline cycle-accurate simulator, SimInOrder. SimI-

nOrder models the same processor characteristics as AXCIS. For example, SimInOrder

models an in-order superscalar processor that takes into account RAW data dependencies,

structural hazards, bimodal branch prediction, blocking L1 instruction cache, and non-

blocking L1 data cache.

AXCIS and SimInOrder are implemented on top of sim-safe, an instruction-level

execution-driven simulator from the SimpleScalar 3.0 tool set. We also used the cache

and bpred frameworks, from SimpleScalar, to model branch predictors and caches in both

AXCIS and SimInOrder.

In our experiments, we used Alpha binaries of SPEC CPU2000 benchmarks [12], ob-

tained from the SimpleScalar website [11]. For each benchmark, we used the correspond-

ing reference input sets. Table 4.1 shows the inputs we used for benchmarks with more

than one reference input set.

We evaluated AXCIS, using the limit-based compression scheme, on 19 benchmarks

43

Benchmark Input
art reference input with

-startx 110 -starty 200 -endx 160 -endy 240
bzip2 source
eon rushmeier
gcc 166
gzip graphic
perlbmk splitmail 704 12 26 16 836
vortex lendian2

Table 4.1: Inputs used for benchmarks with more than one reference input.

for 15 configurations. In total, we ran 285 experiments. Due to the long simulation times

of SimInOrder, we limited each run to 10 billion instructions. The two limiting configu-

rations, used by the DTC to compress instruction segments, are generated using the pa-

rameters specified in Table 4.2. Parameters describing minimum bandwidth and maximum

latency are used to generate the minimum configuration. On the other hand, parameters

describing maximum bandwidth and minimum latency are used to generate the maximum

configuration.

Parameter Minimum Maximum
issue width 1 10
primary miss tags 1 20
units for each instruction type 1 10
branch misprediction penalty 1 9
int alu/nop latency 1 9
int mult latency 4 72
int div latency 8 144
float add/cmp/cvt latency 2 36
float mult latency 3 36
float div latency 8 144
float sqrt latency 10 216
L1 latency 2 27
memory latency 8 450

Table 4.2: Minimum and Maximum processor parameters used by the DTC to generate the
limiting configurations.

In order to examine the behavior of AXCIS across a wide range of designs, we sim-

44

Configurations
Parameter 1 2 3 4 5 6 7 8 9 10 11 12

issue width 1 1 1 1 4 4 4 4 8 8 8 8
primary-miss tags 1 1 8 8 1 1 8 8 1 1 8 8
memory latency 10 200 10 200 10 200 10 200 10 200 10 200
units: int alu/nop 1 1 1 1 4 4 4 4 8 8 8 8
units: int mult/div 1 1 1 1 2 2 2 2 4 4 4 4
units:
float add/cmp/cvt 1 1 1 1 4 4 4 4 8 8 8 8
units:
float mult/div/sqrt 1 1 1 1 2 2 2 2 4 4 4 4
units: load/store 1 1 1 1 4 4 4 4 8 8 8 8

Table 4.3: Twelve simulated configurations that span a large design space.

ulated 12 configurations for each of 7 integer and 12 floating-point benchmarks. These

configurations were selected to span a large design space. We would have simulated more

configurations, but we were constrained by the long simulation times of our detailed base-

line simulator, SimInOrder. Table 4.3 shows the 12 configurations that were simulated.

We distributed these configurations evenly throughout the design space, in order to obtain

meaningful distributions on the results. In these configurations, we varied issue width,

number of primary-miss tags, memory latency, and number of functional units, while fix-

ing the functional unit latencies to the values shown in Table 4.4. We also fixed the cache

and branch predictor configurations to those shown in Table 4.5.

Parameter Latency
int alu/nop latency 1
int mult latency 8
int div latency 16
float add/cmp/cvt latency 4
float mult latency 4
float div latency 16
float sqrt latency 24
L1 latency 3
branch misprediction penalty 3

Table 4.4: Functional unit latency parameters.

45

Structure Configuration
L1 instruction cache 16KB, direct mapped, with 32 byte blocks
L1 data cache 16KB, 4-way associative, with 32 byte blocks
Memory access bus width 32 bytes
Branch predictor bimodal
Branch target buffer 512 sets, 4-way associative
Return address stack 8 entries

Table 4.5: Cache, memory, and branch predictor configurations.

4.2 Results

The results presented in this chapter are produced by AXCIS using the limit-based com-

pression scheme described in Section 3.2.3.

4.2.1 AXCIS Accuracy

Accuracy is measured in terms of absolute error between the IPC estimates obtained from

AXCIS and SimInOrder.

�
Absolute IPC error

 � � �
�� � & � *
 *�� � �
�5 � * ' � � (�� � * � � �

�5 � * ' � � (�� � *�� �

Figure 4-1 summarizes the IPC errors for each benchmark. The average IPC error,

over all configurations and benchmarks, is 4.8%. AXCIS performs better on the integer

benchmarks, with an average error of 2%, while the average error for the floating point

benchmarks is 6.5%. Excluding facerec, and galgel, the average errors of all bench-

marks are within 10%, and 15 of the 19 benchmarks have average errors within 5%. The

maximum average errors are observed for galgel at 26.8%, followed by facerec at

14.3%. All median errors are within 10.8%, and 15 of the 19 benchmarks have median

IPC errors less than 5%. Except for four floating point benchmarks (applu, facerec,

galgel, and mgrid), the maximum errors for all benchmarks are within 10%.

Using the limit-based compression scheme, AXCIS is highly accurate for the majority

(15) of benchmarks over all configurations simulated. Except for four floating point bench-

marks (applu, facerec, galgel, and mgrid), the range of absolute IPC errors for

46

0%

5%

10%

15%

20%

25%

30%

35%

40%

am
m

p
ap

plu
ap

si ar
t

eq
uak

e

fa
ce

re
c

galg
el

lu
ca

s
m

es
a

m
grid

sw
im

wupwis
e

bzip
2

eo
n

gap gcc
gzip

per
lb

m
k

vo
rte

x

A
b

so
lu

te
 IP

C
 E

rr
o

r
P_25
P_MIN
P_50
P_MAX
P_75
ave. IPC error

93.6%

Floating Point Benchmarks Integer Benchmarks

Figure 4-1: Absolute IPC errors for 19 benchmarks and 12 configurations.

each benchmark is less than 10% over all configurations. This small range of errors shows

that the accuracy of AXCIS is generally configuration independent. However, for these

four floating point benchmarks, the accuracy of AXCIS varies widely depending on the

configuration. For example, galgel experiences errors ranging from 0.05% to 93.6%.

Memory latency and the number of primary-miss tags are two configuration parameters

that highly influence the accuracy of AXCIS, for these exceptional benchmarks. As can

be seen in Figure 4-2 (a) - (d), configurations with the same memory latency and number

of primary-miss tags have similar errors. This suggests that our model, for primary-miss

structural hazards, performs poorly for these benchmarks. From these four exceptional

cases, we also observed that larger memory latencies result in higher errors than smaller

memory latencies, while holding the number of miss tags constant.

Although, Figure 4-2 suggests a correlation between longer memory latencies and

higher IPC errors, further analysis using all benchmarks, showed that there is no direct

correlation. To investigate further, we ran a second set of experiments to evaluate the accu-

47

applu

-2%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

<8
,8,

10
>

<4
,8,

10
>

<1
,8,

10
>

<4
,8,

20
0>

<8
,8,

20
0>

<4
,1,

10
>

<8
,1,

10
>

<1
,8,

20
0>

<1
,1,

10
>

<4
,1,

20
0>

<8
,1,

20
0>

<1
,1,

20
0>

< issue width, # primary miss tags, memory latency >

IP
C

 E
rr

o
r

(a) facerec

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

<1
,1,

10
>

<1
,8,

10
>

<8
,1,

10
>

<8
,8,

10
>

<4
,1,

10
>

<4
,8,

10
>

<1
,8,

20
0>

<4
,8,

20
0>

<8
,8,

20
0>

<1
,1,

20
0>

<4
,1,

20
0>

<8
,1,

20
0>

< issue width, # primary miss tags, memory latency >

IP
C

 E
rr

o
r

(b)

galgel

-20%

0%

20%

40%

60%

80%

100%

<8
,8,

10
>

<4
,8,

10
>

<1
,8,

10
>

<4
,1,

10
>

<8
,1,

10
>

<1
,1,

10
>

<4
,1,

20
0>

<1
,1,

20
0>

<8
,1,

20
0>

<4
,8,

20
0>

<8
,8,

20
0>

<1
,8,

20
0>

< issue width, # primary miss tags, memory latency >

IP
C

 E
rr

o
r

(c) mgrid

-10%

-5%

0%

5%

10%

15%

20%

25%

<1
,1,

10
>

<1
,8,

10
>

<4
,1,

10
>

<8
,1,

10
>

<4
,8,

10
>

<8
,8,

10
>

<8
,8,

20
0>

<4
,8,

20
0>

<1
,8,

20
0>

<1
,1,

20
0>

<8
,1,

20
0>

<4
,1,

20
0>

< issue width, # primary miss tags, memory latency >

IP
C

 E
rr

o
r

(d)

Figure 4-2: IPC errors of (a) applu, (b) facerec, (c) galgel, and (d) mgrid for each
configuration.

48

Configurations
Parameter 1 2 3

memory latency 100 200 10
int alu/nop latency 3 5 8
int mult latency 20 25 50
int div latency 30 35 60
float add/cmp/cvt/mult latency 10 18 25
float div latency 30 35 60
float sqrt latency 50 45 80
L1 latency 6 8 15
memory latency 100 250 350
branch misprediction penalty 7 8 9

Table 4.6: Three simulated configurations with various functional unit and memory laten-
cies.

racy of AXCIS, while varying functional unit and memory latencies. In these experiments,

we fixed the issue width to 4, number of primary-miss tags to 1, and functional units to

those in Table 4.3 column 5 and Table 4.5. Table 4.6 shows the configurations simulated.

As seen in Figure 4-3, there is no clear trend indicating that higher latencies result

in larger IPC error. Although configuration 3 has the highest latencies, the absolute IPC

errors for configuration 3 are not the largest over all benchmarks. In these experiments,

we again identified applu, facerec, galgel, and mgrid as exceptions. Excluding

these four benchmarks, all benchmarks had errors within 5%. Also, for all but the four

exceptional cases, the range of IPC errors is less than 4.6%, for each benchmark. Again,

this narrow error range shows that the accuracy of AXCIS is configuration independent for

most workloads. Of the exceptional benchmarks, facerec had the highest range, with

errors varying from 14.2% to 25.0%.

A dynamic trace can be represented by a long chain of instruction segments. If this

entire instruction segment chain were stored in a CIST and simulated by the APM, the IPC

error would be zero. However, in order to compress the instruction segments into a concise

CIST, AXCIS introduces the sources of error described below.

The accuracy of the APM depends on the representativeness of the CIST to the dynamic

trace. The representativeness of the CIST directly depends on two factors:

49

0%

5%

10%

15%

20%

25%

30%

am
m

p
ap

plu
ap

si ar
t

eq
uak

e

fa
ce

re
c

galg
el

lu
ca

s
m

es
a

m
grid

sw
im

wupwis
e

bzip
2

eo
n

gap gcc
gzip

per
lb

m
k

vo
rte

x

A
b

so
lu

te
 IP

C
 E

rr
o

r
config 1

config 2

config 3

Ave. IPC Error

Floating Point Benchmarks Integer Benchmarks

Figure 4-3: Absolute IPC error for 3 configurations with various latencies. The specifica-
tions for each configuration are shown in Table 4.6.

� The compression scheme - used by the DTC to identify canonically equivalent in-

struction segments.

� Maximum dependence distance - MAX DEP DIST determines the dependencies that

are recorded in the CIST.

An ideal compression scheme compresses two segments only if the stall cycles of

their defining instructions are equal over all configurations. The limit-based compression

scheme, used in AXCIS, only approximates this ideal. Our results show that this compres-

sion scheme does not identify canonically equivalent segments perfectly, causing errors in

IPC estimation. As described in section 3.2.3, the DTC uses the stall cycles and structural

occupancies, obtained by simulating two limiting configurations, to identify canonically

equivalent segments. However, equivalent instruction segments under these configurations

may not be equivalent under other configurations. Since the resulting CIST does not distin-

guish between these two segments, the stall cycles calculated for these other configurations

50

would be inexact.

The DTC only records dependencies up to a distance of MAX DEP DIST. Longer de-

pendencies are not recorded in the CIST because they are unlikely to cause any stalls, and

recording them would increase the memory required to store the CIST. However, by ignor-

ing these long dependencies, we make it difficult to model primary-miss tag occupancies.

If the primary-miss dependency for a memory access instruction is ignored, the APM will

freshly initialize the primary-miss tag array instead of making a copy from its producer.

By freshly initializing the primary-miss tag array, the APM loses valuable stall informa-

tion. Therefore the stalls calculated, for that particular segment and any future memory

accesses, may be different from the actual stalls.

4.2.2 AXCIS Performance Model Simulation Speed

The speed of the APM is determined by the number of analyzed instructions, which is

determined by the number of CIST entries. Figure 4-4 confirms this intuition by showing

a linear relationship between the number of CIST entries and APM simulation time. The

number of CIST entries varies for each benchmark, and is determined by the compression

scheme and inherent benchmark characteristics.

Figure 4-5 shows the number of CIST entries and the average APM execution time for

each benchmark, under the limit-based compression scheme. The number of CIST entries,

for a benchmark, is the same over all configurations. The APM execution time varies

because the amount of work done at each CIST entry varies slightly, depending on the

configuration. On average, the APM simulates around 260,000 instruction entries for each

benchmark, which takes about 0.72 seconds. Without CISTs, a conventional simulator

would have to simulate all 10 billion instructions of the dynamic trace. The minimum

and maximum number of instructions simulated by the APM are 5,721 and 1.29 million

instructions, for wupwise and perlbmk respectively. The corresponding minimum and

maximum simulation times are 0.02 seconds and 3.1 seconds.

The detailed simulations, performed by SimInOrder, took around 5 hours for each

benchmark. Using pre-generated CISTs, AXCIS is over 10,000 times faster than detailed

51

y = 0.9419x + 0.0224
R2 = 0.9897

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

CIST Entries normalized

A
P

M
 e

xe
cu

ti
o

n
 t

im
e

n
o

rm
al

iz
ed

Figure 4-4: Normalized APM execution time vs. normalized number of CIST entries.

simulation. Although CIST generation by the DTC under our unoptimized implementation

is about four times slower than detailed simulation, CIST generation was only performed

once per benchmark. Therefore, AXCIS is much faster than detailed simulation for large

design space studies.

4.2.3 CIST Size

Each CIST entry represents an instruction segment, which may refer to one or more in-

structions. The CIST size is proportional to the total number of instruction entry refer-

ences. Figure 4-6 shows the number of instruction entry references in each CIST. The

average number of instruction entry references is 15.4 million, and the minimum and max-

imum references are 220,000 and 101 million for wupwise and perlbmk respectively.

Although CIST size does not directly affect APM simulation time, it does determine the

amount of memory required to store the CIST.

52

0

200000

400000

600000

800000

1000000

1200000

1400000

am
m

p
ap

plu
ap

si ar
t

eq
uak

e

fa
ce

re
c

galg
el

lu
ca

s
m

es
a

m
grid

sw
im

wupwise
bzip

2
eo

n
gap gcc

gzip

per
lb

m
k

vo
rte

x

o

f
C

IS
T

 E
n

tr
ie

s

Floating Point Benchmarks Integer Benchmarks

2.26
sec

0.28
sec

0.3
sec

0.07
sec

0.09
sec 0.03

sec

0.47
sec

0.15
sec

0.05
sec

0.08
sec 0.02

sec

0.88
sec

0.55
sec 0.25

sec

2.74
sec

1.09
sec

3.1
sec

1.32
sec

Figure 4-5: Number of CIST entries and average APM execution times.

53

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

110000000

am
m

p
ap

plu
ap

si ar
t

eq
uak

e

fa
ce

re
c

galg
el

lu
ca

s
m

es
a

m
grid

sw
im

wupwise
bzip

2
eo

n
gap gcc

gzip

per
lb

m
k

vo
rte

x

o

f
re

fe
re

n
ce

s
to

 in
st

ru
ct

io
n

 e
n

tr
ie

s
in

 t
h

e
C

IS
T

Floating Point Benchmarks Integer Benchmarks

Figure 4-6: Number of instruction entry references in each CIST.

54

Chapter 5

Alternative Compression Schemes

In AXCIS, the inherent trade-off between speed, space, and accuracy can be expressed

as a function of the compression scheme used by the DTC. An ideal strict compression

scheme compresses two segments only if they have the same stall cycles for all simulated

configurations. On the other hand, a more relaxed compression scheme compresses two

segments if there is some probability that they have the same stall cycles for most con-

figurations. Stricter compression schemes result in higher accuracy but longer simulation

times and larger CISTs. More relaxed compression schemes result in lower accuracy but

shorter simulation times and smaller CISTs. Because ideal strict compression schemes are

very heavy-weight and require too much configuration dependent information in the DTC,

our original compression scheme, described in Section 3.2.3, only approximates a strict

scheme by using the stall cycles and structural occupancies of two limiting configurations.

As shown in Section 4.2, this limit-based scheme worked well for all but four floating point

benchmarks: applu, facerec, galgel, and mgrid. This chapter explores two alter-

native compression schemes. The first scheme approximates a strict compression scheme,

by using instruction segment characteristics to identify equivalent segments. We show that

this scheme significantly improves the accuracy of AXCIS for the four exceptional bench-

marks. The second scheme is a relaxed version of the original limit-based scheme. We

show that this relaxed scheme creates smaller CISTs for the integer benchmarks (crafty,

mcf, parser, twolf, vpr), while maintaining high accuracy over a large range of con-

figurations.

55

5.1 Compression Scheme based on Instruction Segment

Characteristics

As shown in Section 3.2.3, one way to approximate a strict compression scheme is to

have the DTC simulate two limit configurations and compare the stall cycles and structural

occupancies of the instruction segments. Another way to approximate a strict compression

scheme, is to compare instruction segment characteristics. For example, under this scheme,

two segments are equal if they have the same segment characteristics described below.

1. Segment length.

2. Instruction types of all instruction entries.

3. Instruction cache and branch prediction status flags of all but the first instruction

entry in the segment.

4. Dependence distance sets of all but the first instruction entry in the segment.

The dependence distance set of the first instruction entry does not need to be compared

because stalls experienced by the first instruction do not affect the stalls of the defining

instruction of the segment. Although the same logic applies for the instruction cache and

branch prediction status flags of the first instruction entry, we realized this after performing

the following simulations. Therefore in our simulations, we also compared the instruction

cache and branch prediction flags of the first instruction segment. If we had not compared

these two characteristics, we would have obtained smaller CISTs with little change in ac-

curacy.

We evaluated this characteristics-based compression scheme with the four floating point

benchmarks (applu, facerec, galgel, mgrid) that performed poorly under the limit-

based scheme. For each of these benchmarks, we simulated six configurations that span a

large design space. These six configurations are described in Table 4.4, Table 4.5, and the

even columns of Table 4.3. Due to time constraints, we limited each simulation to 3 billion

dynamic instructions.

56

Figure 5-1 summarizes the absolute IPC errors obtained using this characteristics-based

compression scheme. The absolute IPC errors, obtained using the limit-based scheme, are

also shown for comparison. Both sets of IPC errors correspond to 3 billion dynamic instruc-

tions. As a stricter compression scheme, the characteristics-based compression scheme

dramatically improved the accuracy of AXCIS for these four benchmarks. Under this com-

pression scheme, the average IPC error was reduced from 13.97% to 3.33%. The maximum

errors of applu, facerec, galgel, and mgrid decreased by 96.6%, 98.1%, 77.5%,

and 97.3% respectively. The range of these errors is also small, making AXCIS both highly

accurate and configuration independent.

0%

5%

10%

15%

20%

25%

30%

35%

40%

char-
based

limit-
based

char-
based

limit-
based

char-
based

limit-
based

char-
based

limit-
based

A
b

so
lu

te
 IP

C
 E

rr
o

r

P_25
P_MIN
P_50
P_MAX
P_75
ave. IPC error

applu facerec galgel mgrid

112.5 %

Figure 5-1: Comparison of the IPC errors obtained under the characteristics-based and
limit-based compression schemes.

Figure 5-2 shows the number of CIST entries and average APM execution times for

each benchmark. The number of CIST entries obtained using the limit-based scheme are

also shown for comparison. As expected, the number of CIST entries increased because

57

the equality definition in the characteristics-based scheme is stricter than that of the limit-

based scheme. Therefore less compression occurs under this new scheme, resulting in

better accuracy but larger CISTs. As seen in Figure 5-3, the number of instruction entry

references in the CISTs are also higher than before. However, despite the increase in CIST

size, the APM remains very fast. All these simulations, corresponding to 3 billion dynamic

instructions, completed within one second.

0

50000

100000

150000

200000

250000

300000

applu facerec galgel mgrid

o

f
C

IS
T

 E
n

tr
ie

s

characteristics-based
compression scheme

limit-based compression
scheme

0.69
sec

0.06
sec

0.72
sec

0.07
sec

Figure 5-2: Comparison of the number of CIST entries obtained under the characteristics-
based and limit-based compression schemes.

5.2 Relaxed Compression Scheme

The CISTs generated for five SPEC INT benchmarks (crafty, mcf, parser, twolf,

and vpr) using the original limit-based compression scheme were extremely large. To

represent 1.4 billion dynamic instructions, these CISTs contained an average of 947,902

entries and 44,434,598 instruction entry references. Therefore, we propose a relaxed ver-

58

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

applu facerec galgel mgrid

o

f
re

fe
re

n
ce

s
to

 in
st

ru
ct

io
n

 e
n

tr
ie

s
in

 t
h

e
C

IS
T

characteristics-based
compression scheme

limit-based
compression scheme

Figure 5-3: Comparison of the number of instruction entry references within a CIST, ob-
tained under the characteristics-based and limit-based compression schemes.

sion of the limit-based scheme to improve compression. This relaxed scheme is identical

to the limit-based scheme except only the minimum and maximum stalls are compared for

equality. None of the structural occupancies are compared.

Using this relaxed compression scheme, we were able to significantly decrease the sizes

of the CISTS for crafty, mcf, parser, twolf, and vpr. Figure 5-4 and Figure 5-5

compare the relaxed and limit-based compression schemes in terms of CIST entries and

instruction entry references. The results for these integer benchmarks correspond to 1.4

billion dynamic instructions, except for twolf which corresponds to 3.5 billion dynamic

instructions. Using the relaxed compression scheme, the average number of CIST entries

decreased by 23.9% and the average number of instruction entry references decreased by

31.4%.

In order to evaluate the accuracy of AXCIS using this relaxed compression scheme, we

simulated these five benchmarks for six configurations, described in Table 4.4, Table 4.5,

59

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

crafty mcf parser twolf vpr

o

f
C

IS
T

 e
n

tr
ie

s
relaxed
scheme

limit-based
scheme

Figure 5-4: Number of CIST entries obtained under the relaxed and limit-based compres-
sion schemes.

and the even columns of Table 4.3. We ran each of these simulations for 4 billion dynamic

instructions.

Figure 5-6 summarizes the absolute IPC errors obtained using this relaxed compression

scheme. The average error is only 2.6%, and the maximum error is observed for twolf at

7.5%. The maximum range of errors is also observed for twolf and is only 7.4% across all

configurations. AXCIS remains highly accurate and configuration independent while using

this relaxed compression scheme because these integer benchmarks have a large variety

of instruction segments. Even under a very broad definition of segment equality, enough

unique segments are identified and recorded into the CISTs to maintain high accuracy. This

relaxed compression scheme should not be used for benchmarks with a lot of repetition and

few instruction segment varieties (i.e. floating point benchmarks) because the generated

CISTs will be very small and accuracy will be poor.

Figure 5-7 shows the number of CIST entries and average APM execution times, under

60

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

crafty mcf parser twolf vpr

o

f
re

fe
re

n
ce

s
to

 in
st

ru
ct

io
n

 e
n

tr
ie

s
in

 t
h

e
C

IS
T

relaxed
scheme

limit-based
scheme

Figure 5-5: Number of instruction entry references in each CIST obtained under the relaxed
and limit-based compression schemes.

the relaxed compression scheme. Figure 5-8 shows the number of instruction entry refer-

ences in each CIST. Although these CIST sizes are quite large, for representing 4 billion

dynamic instructions, AXCIS is still much faster than detailed simulation.

5.3 Optimal Compression Scheme for each Benchmark

Because the compression scheme does not affect the methodology of the APM, the DTC

does not need to use one compression scheme to create the CISTs of all benchmarks. There-

fore, the DTC can optimize the accuracy, speed, and/or space of AXCIS by using the most

suitable compression scheme for each benchmark.

Figure 5-9 summarizes the IPC error of AXCIS using the optimal compression scheme

for each benchmark, selected from the three schemes explored in this thesis. Figure 5-10

shows the number of CIST entries and average APM execution times. Figure 5-11 shows

61

0%

1%

2%

3%

4%

5%

6%

7%

8%

crafty mcf parser twolf vpr

A
b

so
lu

te
 IP

C
 E

rr
o

r
P_25

P_MIN

P_50

P_MAX

P_75

Average IPC
Error

Figure 5-6: Absolute IPC error obtained under the relaxed compression scheme.

the number of instruction entry references in each CIST, under the corresponding optimal

compression schemes. Benchmarks using the limit-based compression scheme were run

for 10 billion instructions. Because of time constraints, benchmarks using the relaxed and

characteristics-based compression schemes were run for 4 billion and 3 billion instructions,

respectively.

AXCIS is highly accurate and configuration independent, achieving an average IPC

error of 2.6% with an average error range of 4.4%. Except for galgel, the maximum error

of all benchmarks is less than 10%. The maximum error of galgel is 25.3%. AXCIS is

also very fast, completing simulations corresponding to billions of dynamic instructions

within seconds. High accuracy, configuration independence, and short simulation times

make AXCIS an effective tool for large design space studies.

62

0

500000

1000000

1500000

2000000

2500000

3000000

crafty mcf parser twolf vpr

o

f
C

IS
T

 e
n

tr
ie

s

5.56
sec

4.5
sec

7.32
sec

17.4
sec 17.55

sec

Figure 5-7: Number of CIST entries and average APM execution times obtained under the
relaxed compression scheme.

63

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

crafty mcf parser twolf vpr

o

f
re

fe
re

n
ce

s
to

 in
st

ru
ct

io
n

 e
n

tr
ie

s
in

 t
h

e
C

IS
T

Figure 5-8: Number of instruction entry references in each CIST obtained under the relaxed
compression scheme.

64

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

am
m

p
ap

si ar
t

eq
uak

e
lu

ca
s
m

es
a
sw

im

wupwise
bzip

2
eo

n
gap gcc

gzip

per
lb

m
k

vo
rte

x

cr
af

ty
m

cf

par
se

r
tw

olf
vp

r

ap
plu

fa
ce

re
c

galg
el

m
grid

A
b

so
lu

te
 IP

C
 E

rr
o

r

P_25

P_MIN

P_50

P_MAX

P_75

ave. IPC error

Limit-based Scheme Relaxed
Scheme

Characteristics-
based Scheme

Figure 5-9: Absolute IPC error for each benchmark obtained under its optimal compression
scheme.

65

0

500000

1000000

1500000

2000000

2500000

3000000

am
m

p
ap

si ar
t

eq
uak

e
lu

ca
s
m

es
a
sw

im

wupwise
bzip

2
eo

n
gap gcc

gzip

per
lb

m
k

vo
rte

x

cr
af

ty
m

cf

par
se

r
tw

olf
vp

r

ap
plu

fa
ce

re
c

galg
el

m
grid

o

f
C

IS
T

 E
n

tr
ie

s

2.26
sec

0.3
sec 0.07

sec

0.09
sec 0.15

sec
0.05
sec

0.08
sec 0.02

sec

0.88
sec 0.55

sec
0.25
sec

2.74
sec

1.09
sec

3.1
sec

1.32
sec 0.69

sec
0.06
sec

0.72
sec

0.07
sec

5.56
sec

4.5
sec

7.32
sec

17.4
sec

17.55
sec

Limit-based Scheme Relaxed
Scheme

Characteristics-
based Scheme

Figure 5-10: Number of CIST entries and average APM execution times obtained under
the corresponding optimal compression scheme.

66

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

am
m

p
ap

si ar
t

eq
uak

e
lu

ca
s
m

es
a
sw

im

wupwise
bzip

2
eo

n
gap gcc

gzip

per
lb

m
k

vo
rte

x

cr
af

ty
m

cf

par
se

r
tw

olf
vp

r

ap
plu

fa
ce

re
c

galg
el

m
grid

o

f
re

fe
re

n
ce

s
to

 in
st

ru
ct

io
n

 e
n

tr
ie

s
in

 t
h

e
C

IS
T

Relaxed
Scheme

Limit-based Scheme Characteristics-
based Scheme

Figure 5-11: Number of instruction entry references in each CIST obtained under the cor-
responding optimal compression scheme.

67

68

Chapter 6

Conclusion

This chapter highlights the contributions of this thesis, describes some future work, and

examines additional applications for instruction segments.

6.1 Summary of Contributions

This thesis presented AXCIS, a viable framework for accelerating architectural simula-

tion in large design space studies. Based on instruction segments, a novel primitive for

representing microarchitectural independent and dependent workload characteristics, AX-

CIS compresses the dynamic instruction stream of a program into a Canonical Instruction

Segment Table (CIST). CISTs are small and highly representative of the original dynamic

trace. Therefore they can be used to quickly and accurately simulate a large number of

designs.

The inherent trade-offs between accuracy, simulation time, and space can be expressed

as a function of the instruction segment compression scheme used to create CISTs. We

defined two classes of compression schemes (strict and relaxed). Stricter compression

schemes result in higher accuracy but longer simulation times and larger CISTs. More re-

laxed compression schemes result in less accuracy but shorter simulation times and smaller

CISTs. We proposed and evaluated three instruction segment compression schemes, each

with a distinct trade-off. Our results show that the optimal compression scheme, with re-

spect to accuracy, simulation time, and space, depends on the target workload. Using the

69

optimal compression scheme for each workload, AXCIS is highly accurate and configura-

tion independent, achieving an average IPC error of 2.6%. Although CIST generation in

our unoptimized implementation is about four times slower than detailed simulation, CIST

generation was only performed once per benchmark. Using pre-computed CISTs, AXCIS

is over 10,000 times faster than detailed simulation. While cycle-accurate simulators can

take many hours to simulate billions of dynamic instructions, AXCIS can complete the

same simulation on the corresponding CIST within seconds.

6.2 Future Work

Because workloads differ in their instruction segment varieties, we proposed three differ-

ent compression schemes to accommodate the variations in the 24 SPEC CPU2000 bench-

marks that were evaluated. More work needs to be done to identify one global compression

scheme that performs well for all benchmarks. Ideally, this global compression scheme

should create CISTs with the best accuracy, simulation time, and space trade-offs.

To increase the design space that can be explored, AXCIS should be extended to support

out-of-order processors and simultaneous multi-threading (SMT). In order to support these

types of machines, the APM would have to be modified. For example, in order to simulate

out-of-order machines, the stall cycles of the defining instruction of each segment would

not only depend on previous instruction entries within its segment, but also the instruction

entries in other segments.

Currently a CIST can only be reused to simulate processors with the same branch pre-

dictor and cache configurations. The DTC should be extended to simultaneously simulate

multiple cache and branch predictor configurations in order to create more general CISTs

that can simulate a wider range of machines.

6.3 Additional Applications

As shown in this thesis, the instruction segment is a very useful primitive. Instruction seg-

ments elegantly encapsulate all important microarchitecture independent and dependent

70

characteristics of dynamic instructions. Apart from processor simulation, instruction seg-

ments can also be used in workload characterization. Because CISTs concisely summarize

all important workload characteristics, they can be efficiently analyzed in workload charac-

terization studies. Also, the instruction segment primitive can be used as a metric to identify

different categories of workloads. For example, workloads can be categorized based on the

variations of instruction segments that occur in their CISTs.

71

72

Bibliography

[1] T. Austin, D. Ernst, E. Larson, C. Weaver, R. Desikan, R. Nagarajan, J. Huh, B. Yoder,

D. Burger, and S. Keckler. SimpleScalar Tutorial (for release 4.0). In International

Symposium on Microarchitecture (MICRO-34), Dec. 2001.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Computer

Architecture News, pages 13–25, June 1997.

[3] L. Eeckhout, R. Bell Jr., B. Stougie, K. Bosschere, and L. John. Control Flow Model-

ing in Statistical Simulation for Accurate and Efficient Processor Design Studies. In

International Symposium on Computer Architecture (ISCA-31), June 2004.

[4] V. S. Iyengar and L. H. Trevillyan. Evaluation and Generation of Reduced Traces

for Benchmarks. Technical Report RC 20610, IBM Research Division, T. J. Watson

Research Center, Oct. 1996.

[5] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model. In Inter-

national Symposium on Computer Architecture (ISCA), pages 338–349, June 2004.

[6] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload

for simulation-based computer architecture research. Computer Architecture Letters,

1(2):10–13, June 2002.

[7] D. B. Noonburg and J. P. Shen. Theoretical Modeling of Superscalar Processor Perfor-

mance. In International Symposium on Microarchitecture (MICRO-27), pages 52–62,

Nov. 1994.

73

[8] S. Nussbaum and J. E. Smith. Modeling Superscalar Processors via Statistical Simu-

lation. In International Conference on Parallel Architectures and Compilation Tech-

niques (PACT-2001), pages 15–24, Sept. 2001.

[9] M. Oskin, F. Chong, and M. Farrens. HLS: Combining Statistical and Symbolic Sim-

ulation to Guide Microprocessor Designs. In International Symposium on Computer

Architecture (ISCA-27), pages 71–82, June 2000.

[10] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characterizing

Large Scale Program Behavior. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-10), Oct. 2002.

[11] SPEC2000 Alpha Binaries. SimpleScalar LLC. http://www.simplescalar.com.

[12] SPEC CPU2000 benchmark suite. Standard Performance Evaluation Corporation.

http://www.spec.org/cpu2000/.

[13] R. E. Wunderlich, T. F. Wenish, B. Falsafi, and J. C. Hoe. SMARTS: Accelerat-

ing Microarchitecture Simulation via Rigorous Statistical Sampling. In International

Symposium on Computer Architecture (ISCA-30), June 2003.

[14] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing and Com-

paring Prevailing Simulation Techniques. In International Symposium on High-

Performance Computer Architecture (HPCA-11), Feb. 2005.

74

