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Abstract

On-chip cache sizes are growing with each generation of microprocessors in an attempt
to bridge the ever-widening memory-processor performance gap. At the same time,
energy dissipation in caches has become an important consideration due to increased
integration and operating speeds and the explosive growth of battery-operated de-
vices. These trends indicate that there is much to be gained from making energy and
area, as well as performance, front-end design issues. This thesis presents ZOOM,
a fast, flexible and robust framework for optimizing and characterizing the perfor-
mance, energy and area of low-power caches in the early-stages of design. ZOOM
consists of a timing-sensitive functional simulator and a micro-architecture simulator
with HSPICE r© netlist generation capability. Preliminary evaluation indicates that
the micro-architecture simulator estimates access time and energy to within 10% and
15%, respectively, of HSPICE simulated estimates for both SRAM and CAM-based
caches.
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Chapter 1

Introduction

A cache is the first level of the memory heirarchy encountered once an address leaves

the computer processing unit (CPU) [23]. It is a rather small (compared to the

memories on other levels of the heirarchy), albeit expensive, temporary storage that

is able to supply most of the information requests of the CPU, due to some tailored

strategies that control its operation.

On-chip cache sizes are growing with each generation of microprocessors in an

attempt to bridge the ever-widening memory-processor performance gap. At the

same time, energy dissipation in caches has become an important consideration due

to increased integration and operating speeds and the explosive growth of battery-

operated devices. According to a literature survey in [24], caches consume 25 to 50%

of total chip energy, and account for 15 to 40% of total chip area. Whereas designers

have traditionally focussed their design efforts on improving cache performance, these

statistics and technology trends indicate that there is much to be gained from making

energy and area, as well as performance, front-end design issues. This thesis presents
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ZOOM, a fast, flexible and robust framework for optimizing and characterizing the

performance, energy and area of low-power caches in the early-stages of design. In

order to understand the description of ZOOM and related work that follows, one must

be aware of the terminology used to describe caches and cache events. The rest of

this chapter presents a brief explanation of this terminology followed by an overview

of ZOOM.

1.1 Terminology

Three calssifications of caches are possible, depending on the type of information they

store. An instruction cache stores CPU instructions, a data cache stores data for the

running application and a unified cache stores both instructions and data. The basic

requests to a cache are reads and writes. For reads, the cache receives, from the CPU,

the binary address for a location in memory and it returns the information stored

at that address. Write requests consist of an address and the new information to

be written to the location specified by the address. If the location specified by the

address is stored in the cache, a hit results, otherwise, a miss results and the request

is forwarded to the next memory in the heirarchy. A read miss is a read request that

results in a miss and a write miss is a write request that results in a miss.

A block is the name typically given to the smallest unit of information that may

be present in the cache. Three categories of cache organization result depending on

where a given block may be placed in the cache. If the number of possible locations

for each block is one, the cache is said to be direct-mapped. If a block can be placed
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anywhere in the cache, the cache is said to be fully-associative. If a block can be placed

only in one of a restricted set of n places, the cache is said to be n-way set-associative.

When a miss occurs, the cache must select a block to be replaced with the data

being fetched from the next-level memory. In a direct-mapped cache, there is only one

choice: the block that was checked for a hit. In a set-associative or fully-associative

cache, any of the blocks in the set may be replaced. There are three primary replace-

ment policies for choosing which block is replaced in this case. A FIFO policy replaces

the oldest block in the set, an LRU policy replaces the least-recently used block, and

a Random policy randomly chooses any of the blocks in the set to be replaced.

Since the cache is a temporary storage, writes to a given block need to be prop-

agated to main memory before the modified block is replaced on a miss. A write-

through cache modifies its own copy of the information and the copy stored in main

memory at the time of the write. A copy-back cache modifies its own copy of the

stored information at the time of the write, but only updates the copy in main mem-

ory when the modified block is selected for eviction. Whereas read misses typically

result in the requested information being fetched into the cache, write misses do not

necessarily require that the cache fetch the modified block. The block is loaded on a

write miss if the cache is using the write-allocate strategy, otherwise the write request

is simply forwarded and the modified data is not loaded into the cache. In this case,

the cache is said to be non-allocating.

For the interested reader, a detailed treatment of caches is found in [23]. We now

proceed with an overview of ZOOM.
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1.2 Overview of ZOOM

ZOOM operates at two levels of abstraction via two stand-alone simulators, which

may be optionally combined. Figure 1-1 is a high-level block diagram of ZOOM.

FUNCTIONAL SIMULATOR
MICRO-ARCHITECTURE

SIMULATOR

ADDRESS TRACE
OPTIMIZATION

CRITERIA

PERFORMANCE AND
TIMING STATISTICS

COMPONENT-NETLIST
(HSPICE)

ENERGY, DELAY,
AREA ESTIMATES

BASIC CACHE
PARAMETERS

Figure 1-1: Overview of ZOOM

The Functional Simulator is a behavioral model for dynamic cache evaluation. Us-

ing an address trace and some basic cache information such as cache size, block size

and associativity, the simulator provides performance statistics and cycle-accurate

estimates of average access latencies and other performance penalties. These per-

formance statistics are independent of the circuit-level implementation of the cache

and may assist in architecture-level choices such as the appropriate number of cache

ports, cache size, block size, associativity, and so on.

TheMicro-Architecture Simulator consists of analytical transistor-level models for

estimating access time, energy and area of the cache. Its inputs include basic cache
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information similar to that used by the Functional Simulator, a set of optimization

criteria and a process technology specified by its supply voltage and feature size.

Energy, delay and area estimates from the analytical models are used in a general

optimization scheme to determine the optimum cache configuration for the specified

optimization criteria. The outputs from the simulator include estimates for energy,

delay and area and HSPICE r© netlists for the main components of the proposed cache

configuration.

ZOOM is designed to be easily adaptable to existing and novel cache configura-

tions. The Functional Simulator has built-in support for common single and multi-

level cache configurations, and a simple interface for modeling multi-level caches with

special purpose buffers or those with atypical interactions between caches on different

levels.

The Micro-Architecture simulator supports both SRAM (Static Random-Access

Memory) and CAM (Content-Addressable Memory) caches. Although the underlying

design idealogy emphasizes low-power techniques, only those techniques with minimal

performance penalties are emphasized, making the simulator also suitable for high-

performance cache characterization. The component netlist returned by the built-in

Netlist Generator facilitates use of the proposed model as a starting point for actual

designs by reducing the labor involved in generating netlists from scratch.

ZOOM relies on analytical models and design techniques proposed by many re-

searchers. Chapter 2 briefly describes a sampling of these related works; Chapter 3

discusses the general estimation methodology and assumptions about the cache ar-

chitecture and process technology. Chapter 4 presents circuit-level models for the
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main components of the cache as well as an evaluation of these models. The software

framework of ZOOM is described in Chapter 5 and we conclude with a summary of

future improvements in Chapter 6.
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Chapter 2

Related Work

Caches have been the subject of many architectural and micro-architectural studies,

which have proposed various techniques to improve their energy and access times.

This discussion of related work focusses on a sampling of works that proposed models

for early-stage cache simulation or for SRAM design and characterization. Related

work can be grouped into functional cache simulators, and analytical transistor-level

models and simulators.

Functional simulators are typically employed in the earliest stages of cache design.

They are used, together with the address trace of a benchmark program to assist

in making architecture-level choices such as an appropriate cache size, block size,

replacement policy, write hit and write miss strategies etc. Typical statistics from

functional simulators include estimates of hit rates and the cycle penalties of cache

stalls.

Sim-Cache, which is part of the Simple-Scalar Simulations Tools Set [28] and ml-

cache [30], are most closely related to the functional simulator in ZOOM. Sim-Cache
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is a simple functional simulator for basic event-driven cache simulation. It supports

multi-level direct-mapped, set-associative and fully-associative write-allocate instruc-

tion and data caches using the LRU replacement policy. Sim-Cache uses an “access

handler” which controls the interaction between caches on different levels in a multi-

level cache configuration. This simple interface makes it possible to model some

atypical multi-level caches. However, since the “access handler” is only invoked upon

misses, it can only support multi-level caches with atypical miss-processing. Read and

write misses in Sim-Cache always result in the block being placed in the cache. Hence,

it cannot model caches using special-purpose buffers such as the Victim buffer [27]

used to hold evicted blocks in some cache configurations.

mlcache [30] is an event-driven, timing-sensitive functional simulator based on the

Latency Effects cache timing model. It consists mainly of a library of cache state and

data movement functions that may be configured or assembled to model multi-lateral

caches. Multi-lateral caches are caches that contain two or more data stores that

have disjoint contents and operate in parallel. mlcache places no restrictions on the

interactions between caches on different levels. This versatility makes it attractive

for cache architecture studies. However, the lack of a standardized interface for cache

modeling greatly reduces its usability.

The Functional Simulator in ZOOM combines the simplicity of Sim-Cache with

most of the flexibility of mlcache. Like Sim-Cache, ZOOM uses an “access handler”

to control interactions between caches on different levels. However, unlike Sim-Cache,

ZOOM allows the user to determine when blocks are placed in the cache rather than

automatically fetching blocks on misses. ZOOM also supports a wider range of caches
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and also includes a timing model similar to that used in mlcache.

Related work at the micro-architecture level consists mainly of analytical models

for energy, delay and area of SRAMs and SRAM-based caches.

The CACTI model [1, 18], based on a cache model by Wada et al. in [2], is a cycle

time, energy and area estimator for SRAM and (recently) CAM caches. CACTI

gives delay estimates to within 10% of HSPICE r© simulated values for their assumed

circuit structures. However, the base CACTI cache model is not particularly energy

efficient. According to studies performed in [9], CACTI over-estimates the energy of

caches organized for reduced power dissipation by as much as a factor of 10 for a single

sub-bank. It also uses a static optimization scheme that does not allow simulation of

different design targets.

Analytical models for energy and delay of SRAMs have been studied by many

authors. Evans and Franzon develop analytical models in [4] for the energy consump-

tion of a SRAM as a function of its organization and evaluate various simulation

approaches for their relative speed and accuracy. They conclude that rectangular

SRAM organizations with fewer columns than rows result in lower energy dissipation

in SRAMs while square-ish organizations that balance the wordline and bitline paths

result in reduced access times. They also found that simulation approaches that

combine circuit level extractions with analytical models can be almost as accurate

as conventional circuit simulators but are orders of magnitudes faster, and not much

slower than their purely analytical counterparts which are much less accurate.

In [6] and [8], Amrutur et al. extend the delay models of [1] to include the effects

of interconnect resistance and introduce a partitioning scheme that uses multiplexors
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inside the bitline. They combine these with energy and area models for extensive

treatment of SRAM design and analysis and also introduce heuristics for optimally

sizing the decoder in SRAMs for different energy and delay optimization preferences.

CAM-based caches have not received as much research spotlight as SRAM-based

caches. However, they have been used in many leading commercial processors due

to their energy-efficiency at high associativities. For example, the ARM3 [10] has a

4KB 64-way set-associative CAM-based cache and the IntelTM XScale processor [25]

employs 64-way set-associative CAM tags. Zhang and Asanović show in [9] that CAM-

based caches have comparable access latency, but give lower hit energy and higher

hit rates than SRAM-based set-associative caches at the expense of approximately

10% area overhead. Their results demonstrate that CAM-based caches are well-suited

for both high-performance and low-power designs since they are fast, even at high

associativities, and energy-efficient.

The Micro-Architecture Simulator in ZOOM exploits many of the low-power de-

sign techniques and models proposed by these authors and introduces models for

energy, delay and area estimation of CAM-based caches. We also introduce models

for divided bitlines, an approach for reducing the delay and energy consumption in

SRAM bitlines introduced in [17]. ZOOM is the first work in its class of cache sim-

ulators to combine many of these techniques in an optimization scheme in a unified

software framework.
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Chapter 3

Assumptions and Methodology

This chapter presents the general assumptions made about the cache design and a

a general overview of the methodology used to estimate energy, delay and area, as

well as an overview of the optimization scheme. Assumptions discussed include those

made about the cache architecture, circuit styles, interconnect and process technology

scaling. This excludes component-specific assumptions, which will be presented along

with the component models in Chapter 4.

3.1 Assumptions

Whereas technology scaling provides the most important means for reducing delay

and energy of caches, various innovative circuit techniques and partitioning schemes

achieve significant improvements in energy and delay at the expense of extra sili-

con. In order to explore the large cache design space in a tractable manner, ZOOM

makes some simplifying assumptions about certain aspects of the design. This section
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outlines and justifies some of the key assumptions made in modeling the cache.

3.1.1 Cache Architecture Overview

Since the address space is much larger than the capacity of the cache, only a small

portion of the address is used to map a given block to a location in the cache. Figure 3-

1 is adapted from [23] to help explain this mapping.

Block
OffsetIndexTag

Block address

Figure 3-1: Address decomposition in a set-associative or direct-mapped cache

The index is used to map the block to a set and is computed as

(Block Address) MOD (Number of sets in the cache)

where a set consists of one block in a direct-mapped cache, and n blocks in an n-way

set-associative cache. The tags of all the blocks in the set are compared with the tag

in the in-coming address to determine the requested block and the block offset is the

address of the desired data within the block.

Depending on how the tags are stored and handled, a cache may be classified

as SRAM-based or CAM-based. An SRAM-based cache stores tags in a static RAM

array while a CAM-based cache stores tags in a CAM array. Both types of caches

store data in SRAM arrays. A synchronous cache architecture is assumed, i.e. a clock

triggers the access. These memory structures will be described in detail in Chapter 4.
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SRAM-based Cache Architecture

Supported SRAM-based caches may be direct-mapped or set-associative. Fully-

associative caches are only supported in a CAM configuration.

TAG DATA

tag index offset

D
E

C
O

D
E

R

data

=

Figure 3-2: Organization of a direct-mapped SRAM-based cache

Figure 3-2 shows the conceptual organization of a traditional direct-mapped cache.

An n-way set associative cache would have n of these arrangements and each access

to the cache would result in n tag comparisons and the discharge of n data words

in parallel. However, only one of these discharged words is eventually driven onto

the cache-CPU port if a hit is detected. A slower but more energy-conscious two-

phase variation of this sequence serializes the tag comparison and data discharge so

that only one data word is discharged when a hit is detected in its associated tag.

Two-phase accesses practically double the access time of the cache but achieve about

a factor of n reduction in energy consumption in the data array. Both single and

two-phase SRAM cache accesses are supported in ZOOM.
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There is a wide variation in the physical implementation and layout of SRAM

caches. For simplicity, the tags and data are kept in completely independent arrays

and do not share any part of the decoder. To trade area for reduced access time and

energy, large arrays are typically partitioned into smaller sub-arrays each of which

stores all or part of the accessed word. The number of sub-arrays in the cache and

their dimensions (or aspect ratio) are determined by the user-specified optimization

criteria supplied as inputs to the micro-architecture level simulator. According to

research in [4], low-energy solutions tend to have rectangular sub-arrays while high-

speed solutions have square-ish sub-arrays.

CAM Cache Architecture

CAM caches are only supported in the set-associative and fully-associative configu-

rations. Figure 3-3 shows the basic configuration of one set of a k-way set-associative

CAM TAG ARRAY
DATA ARRAY

(SRAM)

...

HIT?

Tag offset

DATA OUT

k rows

Figure 3-3: CAM cache overview

CAM cache. A cache with m sets has m such arrangements. Accesses to a CAM

cache are inherently two-phased: data stored at a given location is addressed by the
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tag stored in its corresponding tag entry in the CAM array. Hence, the tag check

needs to be completed before the appropriate data can be located and discharged.

Traditionally, CAMs were used only in the fully-associative sense. However, many

modern processors employ them in set-associative configurations in which a set is

entirely contained in one of many sub-arrays, with one sub-array enabled per access

by pre-decoding part of the address. Unlike the SRAM cache, partitioning of a CAM

cache is largely dictated by the associativity; and each data sub-array is placed close

to its corresponding tag sub-array. The data sub-array associated with each CAM

sub-array may be vertically partitoned to reduce the number of words discharged per

access.

3.1.2 Circuit Style

Traditional 6-transistor and 10-transistor memory cell designs are assumed for the

SRAM and CAM arrays respectively. Figures 3-4 (a) and (b) show the SRAM and

CAM cell respectively.

WL

BITBIT_B

(a) (b)

WL

BITBIT_B

MATCH

SBIT SBIT_B

Figure 3-4: (a) 6-T SRAM cell (b) 10-T CAM cell
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A static circuit style in which the PMOS transistors are sized to have twice the

width of the NMOS transistors is assumed for all the gates. This results in the PMOS

pull-up and NMOS pull-down yielding approximately the same delay. In actual cache

implementations, gates may be skewed to improve the critical path. The impact of

this skewing on the delay is quantified in [8].

3.1.3 Technology Assumptions

ZOOM is written for short-channel devices. Aluminum metallurgy is assumed for the

base 0.25µm-2.5V technology and copper metallurgy is assumed for the 0.18µm gen-

eration onwards. A convenient process-independent unit of length, λ, which is equal

to half the drawn minimum feature size, is used to describe geometric parameters.

Table 3.1: Scaling of Relevant Parameters for Short-Channel Devices

Parameter Relation Scaling Comments
factor

W, L, tox 1/S Device width, length, oxide thickness
Vdd, Vt 1/U Supply voltage, threshold voltage

A WL 1/S2 Area/ Device
Cox 1/tox S Gate capacitance per unit area
Cgate CoxWL 1/S Gate capacitance
kn, kp CoxW/L S NMOS and PMOS gain factor
Isat CoxWV 1/U Saturation current
Ron V/Isat 1 “on” resistance
τ RonCgate 1/S Delay of an inverter driving a same-sized inverter
P IsatV 1/U2 Power

Feature size and supply voltage may be scaled independently from the base tech-

nology via general scaling rules. These are a generalized set of rules that allow the

supply voltage and device sizes to be scaled differently [31]. General scaling is the
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feasible alternative to full scaling, which scales both device sizes and voltages to the

same extent in order to preserve the electric field patterns of the original devices. Full

scaling is not feasible in many cases since designers have to adhere to well-defined

standards for supply voltage and signal levels (such as those specified in [32]) to meet

compatibility requirements.

For a given feature size, λ and supply voltage V , let

S =
λbase
λ

and U =
Vbase
V

S and U are greater than 1 for a reduction in feature size and voltage respectively.

The relevant process parameters scale, with respect to S and U , from the base 0.25µm

technology as shown in Table 3.1 [31]. Note that this analysis only considers short-

channel devices with a linear dependence between control voltage and saturation

current.

Interconnect Assumptions

The cache uses four metal layers (excluding ground and supply wires). The metal

layer assignments are shown in Table 3.2. The assumed wiring dimensions for the

various layers for the base 0.25µm technology is shown in Table 3.3. As in [33], the

widths of higher level metals are scaled to yield a larger cross-section to reduce their

resistance. However the heights are increased only by the square root of the factor

increase in the width. To mitigate the effect of decreasing wire widths in deep sub-

micron processes, the aspect ratio (W/H) of each layer is scaled up by the square
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Table 3.2: Metal layer Assignments

Wire Description SRAM-Based Cache CAM-Based Cache

Bitlines M1 M1
Searchlines - M1
Wordlines M2 M2

Pre-decoder Wires M2 M2
Matchlines M3 M2
Local bus M3 M3
Global Bus M4 M4

root of the factor change in feature size. This slows the RC delay degradation of the

wires with further process shrinks.

Table 3.3: Wiring Dimensions

Layer W MIN(λ) HEIGHT(λ) PITCH(λ)

M1 3 4.5 3
M2 4 6 4
M3 4 6 8
M4 8 7 15
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3.2 Methodology

In order to sustain accuracy across process generations and meet its goal of usability,

the use of extracted parameters is limited to only those that may be accurately pro-

jected from one process generation to another via the general scaling rules presented

in Table 3.1. For small structures such as gates, general scaling is permissible. For

larger circuit networks, simple equations are used to capture the non-linear effects on

energy, delay and area that result when these simple MOS structures interact. This

section discusses these equations as well as the general methodology for optimizing

the delay, energy and area of the cache.

3.2.1 Capacitances and Resistances

The effective capacitance and resistance of complex gates are derived from that of an

inverter, whose capacitance and resistance values are in turn derived from the basic

models described in this section.

Equivalent “on” Resistance of Transistors

The resistance of a transistor changes as its input voltage changes between the high

and low signal levels. However, since we are usually only interested in the resistance

in the region of transition where the transistor is considered “on”, we use a simple

model presented in [31] to derive a value for this resistance. This calculation of the

equivalent resistance, Req, of a transistor is based on the simplifying assumption that

the transistor is nothing more than a switch with a finite “on” resistance and infinite
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“off” resistance. The derivation of Req for the common scenario of (dis)charging a

capacitor through a transistor is illustrated in Figure 3-5.

Vdd Id

Vds(Vdd -> Vdd/2)

(a) schematic (b) trajectory of Id-Vds curve

Rmid

Ro

Vds

Id

Vdd/2 Vdd

Figure 3-5: Discharging a capacitor though an NMOS

Req is computed as the average of the resistance when the voltage across it is Vdd/2 and

when the capacitor is fully (dis)charged. This computation is shown in Equation 3.1.

Req =
1

2

(
Vdd

Idsat(1 + λVdd)
+

Vdd/2

Idsat(1 + λVdd/2)

)
(3.1)

where Idsat is the saturation current of the device and depends on the W/L ratio of

the device, and λ is the channel-length modulation, which is an empirical parameter

inversely proportional to the channel length. The resistance is therefore inversely

proportional to the W/L ratio of the device. For our base 0.25µm technology, the

equivalent resistance for an NMOS and a PMOS with a W/L ratio of 1 is 13 kΩ and

31 kΩ respectively. The resistance for largerW/L ratios is obtained by dividing these

estimates by the W/L ratio.

The unit equivalent resistance of the inverter is the average of “on” resistance for

the PMOS and NMOS. Based on our assumption of a 2:1 sizing ratio, the resistance
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for an inverter whose NMOS has a W/L of 1 is given by Equation 3.2

Rinv =
Rnon +Rpon

2
=
Reqn +Reqp/2

2
=
13kΩ + 31kΩ/2

2
= 14.25kΩ (3.2)

The “on” resistance does not scale with process technology. However, the “on” resis-

tance per unit width of an inverter decreases as λ shrinks.

Equivalent Capacitance of Transistors

Figure 3-6 shows the main contributions to the capacitance of the transistor. The

DRAIN

BODYGATE

SOURCE

CGD

CGS

CDB

CSB

CGB

Figure 3-6: Main contributions of transistor capacitance

capacitance of the MOS device consists of gate and drain coupling capacitances.

The gate capacitance of a transistor consists of 2 components, the capacitance of

the channel and the capacitance of the poly-silicon line going into the gate. The

value of the gate capacitance depends of whether the transistor is being used as

a pass transistor, or as a pull-up or pull-down transistor. The drain capacitance

depends on the transistor’s geometry. Large transistors are folded to reduce their

37



drain capacitance. The total drain capacitance of a series stack of transistors is less

than the sum of their individual, unstacked drain capacitance due to contact-sharing.

Detailed equations for estimating the drain and gate capacitances of transistors in

different scenarios are given in [1].

Resistance and Capacitance of Complex Logic Gates

The gate or input capacitance of an inverter is estimated as the average of the gate

capacitance of the pull-down and pull-up paths respectively. A similar method is used

to estimate its drain capacitance.

The gate capacitance of more complex gates is estimated from that of an inverter

using the concept of logical effort introduced in [12]. The logical effort of a gate,

which depends only on its topology, captures the complexity of the gate relative to

an inverter whose pull-up and pull-down paths are sized in the same ratio as the

gate’s. This is the extra effort the complex gate exerts due to the logical function

it implements. Since the gate is sized to have equal rise and fall times, a single size

parameter, w, which is the size of the NMOS transistor in an equivalent inverter

having the same output resistance, is used to represent the gate [6]. If Cg is the

input capacitance per unit width and Rg is the output resistance per unit width of an

inverter, then the output resistance of the gate, Rgate, and input capacitance, Cgate,

are given by Equations 3.3 and 3.4

Rgate = Rg/w. (3.3)

Cgate = Cg × 3w × le (3.4)
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where le is the logical effort of the gate.

Table 3.4: Logical effort and intrinsic delay of common 2:1 sized gates

Gate Type Logical Effort Intrinsic Delay

inverter 1 p

n-input NAND (n+2)
3

np

n-input NOR (2n+1)
3

np
n-way MUX 2 2np
2-input XOR 4 4p

The drain capacitance of the gate may be similarly derived from that of an inverter

as the product of the drain capacitance of an inverter and the number of transistors

connected to the gate’s output node. The drain capacitance is the main contributing

factor to the gate’s parasitic delay. Hence, the parasitic delay of a gate may be derived

from that of an inverter (sized in the same ratio) using the same scaling constants

for relative drain capacitance. Table 3.4 lists the logical effort and intrinsic delays of

common gates used in the cache. Here, p is the intrinsic delay of an inverter given by

RgCg.

The logical effort of a gate is a strong function of the ratio-sizing between the pull

down and pull-up paths. To this extent, it is possible, and often favorable, to skew the

gates on the critical path to improve the logical effort. Due to velocity saturation, the

logical effort of short-channel devices will be slightly smaller than given in Table 3.4.

These effects are not modeled in ZOOM.
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Interconnect RC

Interconnect resistance and capacitances are estimated using the Berkeley Predictive

Technology Model for interconnect [34]. The resistance, Rw, of a wire of length l,

width w and thickness t is given by Equation 3.5, where ρ is the resistivity of the

metal. ρ = 2.2µΩ-cm for copper and ρ = 3.3µΩ-cm for aluminum.

Rw =
ρ

t
· l
w

(3.5)

The main contributions of metal capacitance are the area and fringe flux to the

underlying plane, and the coupling capacitance with nearby wires (Figure 3-7 (a)).

The total capacitance for a wire of length l, width w, thickness t, separated by

Cg

Cg

CcouplingCcoupling

GND

GND

GND

GND

w

s

h

t

(a) ( b)

Figure 3-7: (a) Wire capacitance model (b) Wire dimensions

a distance h from the underlying planes and a distance s from neigboring wires

(Figure 3-7 (b)) is given by the following set of equations:

Ctotal = 2Cg + 2Cc (3.6)
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where

Cg = ε · l[w
h
+ 2.217(

s

s+ 0.702h
)2.193 + 1.171(

s

s+ 1.510h
)0.7642 · ( t

t+ 4.532h
)0.1204] (3.7)

Cc = ε · l[1.41 t

s
exp(− 4s

s+ 8.014h
) + 2.37(

w

w + 0.31s
)0.257(

h

h+ 9s
)0.76exp(− 2s

s+ 6h
)] (3.8)

The formulae in Equations 3.7 and 3.8 are hopelessly complicated and ill-suited

to manual analysis/optimization. However, a cursory analysis shows that the main

drivers of the fringing and area capacitances are the wire widths, w and the distance

between layers, h. Cg increases with increasing w and decreasing h. The coupling

capacitance is inversely proportional to the separation between same-layer wires. It

also worsens with increasing wire thickness, while the metal resistance improves with

increasing wire thickness. The wire dimensions therefore have to be carefully deter-

mined to optimize the RC delay of the interconnect.

3.2.2 Delay Estimation

There are three main components of delay in CMOS gates: the extrinsic delay due

to the external load, the short-circuit delay due to non-zero input rise and fall times,

and the intrinsic delay due to the junction capacitance of the gate.

Dtotal = Dextrinsic +Dshort−circuit +Dintrinsic (3.9)

Extrinsic delay is a strong function of fanout (the ratio of the output load to the input
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Cw/2
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in out

Cgate = Cg*3w*le

Rgate = Rg/w

Figure 3-8: Extrinsic delay of a logic gate driving a load through an interconnect line

drive). The extrinsic delay of a logic gate of size w driving a load CL through a wire

of resistance Rw and capacitance Cw (Figure 3-8) is estimated by using the simple

approximation proposed by Elmore in [36], which is summarized in Equation 3.10.

Dextrinsic = ln(2) ·
(
Rgate · (CL + Cw) +Rw · (Cw

2
+ CL)

)
(3.10)

The total RC time constant is multiplied by ln(2) because we are interested in the

50% rise or fall time of the gates.

Short-circuit delay results from non-zero input rise and fall times which create

a direct path between Vdd and ground for a short period of time during switching.

Short-circuit currents are globally minimized when both the input and output rise

and fall at the same rate [31]. Since the overall impact of short-circuit delay is small

in well-designed circuits, Dshort−circuit is approximated as 10% of the switching delay

in all cases where the input/output rise and fall times can be kept equal to within

a constant (as in the case of buffer/logic chains). Short-circuit currents have a more

pronounced impact on delay in the case of slow rising inputs such as the wordlines

at the input of the bitline pass transistors. This special case will be discussed in the
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next chapter when the bitlines are modeled.

The intrinsic delay of the gate is estimated in Table 3.4 (on page 39) in Sec-

tion 3.2.1.

3.2.3 Repeaters

The most popular design approach to reducing the propagation delay of long wires

is to insert intermediate buffers, or repeaters, in the wire. Analytical equations for

minimizing the delay of a wire using repeaters are derived in Chapter 9 of [31]. This

section summarizes their analysis, derives equations for the path energy and presents

the methodology for trading path delay for reduced path energy in ZOOM.

The delay of an interconnect line with a unit capacitance c, unit resistance r and

length L is given by

T =
rcL2

2
(3.11)

Making an interconnect line m times shorter reduces the delay by a factor of m2 and

is sufficient to offset the extra delay of the repeaters needed to drive the segments.

Since the delay of the repeaters is a function of the load, the interconnect delay may

be further enchanced by sizing the repeaters. The delay of the interconnect chain

is obtained by modeling the repeater as an RC network and, by using the Elmore

delay [36] approach. With Rd and Cd the resistance and capacitance respectively, of

a minimum-sized inverter, the delay is given by:

tp = m

(
0.69 · Rd

s

(
2sCd +

cL

m

)
+ 0.69 ·

(
rL

m

)
(sCd) + 0.38rc

(
L

m

)2
)

(3.12)
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where s is the repeater sizing factor and we have assumed an inverter self-loading fac-

tor of 1. The optimum sizing factor, sopt, optimum number of stages,mopt, and critical

wire length, Lcrit, for delay minimization are determined by partially differentiating

(3.12) with respect to s and with respect to m.

mopt = L

√
0.38rc

0.69 · 2 ·RdCd =
√
tpwire(unbuffered)

tpinv
(3.13)

sopt =

√
Rdc

rCd
(3.14)

Lcrit =
L

mopt
=

√
tpinv
0.38rc

(3.15)

where tpinv = 0.69 · 2 · RdCd = 2p is the delay of an inverter with a fanout of 1 and

intrinsic delay p. The delay of a segment of critical length is always given by

tcrit =
tpinv
mopt

= 2


1 +

√
0.69

2 · 0.38


 tpinv = 3.9tpinv = 7.8p

and is independent of the routing layer. Inserting repeaters to reduce the wire delay

only makes sense if the wire is at least twice as long as the critical length.

The energy of the path is half the sum of the energies of the wire segments and

repeaters since only half of the segments and repeaters in the chain can make a

low-to-high transition.

Epath = Esegments + Erepeaters =
1

2
V 2
dd ·

(
1

2
(cL) +

1

2

(
Cd
m−1∑
i=0

si
))

=
1

4
V 2
dd ·

(
cL+ Cd · 1− sm

1− s

)
(3.16)
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Figure 3-9: (a) Normalized delay of 3 cm Al-1 wire for varying number of repeaters.
Dashed line shows the point at which the delay comes within 5% of the minimum.
(b) Normalized energy of 3 cm Al-1 wire for varying number of repeaters. Dashed
line shows the factor reduction in energy for the value of m whose delay comes within
5% of the minimum.

Absolute delay minimization leads to prohibitive energy levels for long wires.

Equation (3.16) shows that the energy consumed by the repeaters grows exponentially

with m, while (3.12) shows the delay benefit of increasing m is subject to diminishing

returns. For example, minimizing the delay of a 3 cm Al-1 wire in a typical 0.25-

µm CMOS technology with p = 16 ps, Rd = 7.8 kΩ, Cd = 3 fF, c = 110 aF/µm and

r = 0.075 Ω/µm requires 9 repeaters with a sizing factor, s = 62. This reduces the

delay from 2.82 ns to 1.18 ns. However, the energy of the interconnect line increases

from 10pJ to 1J! The delay for the line, if 8 repeaters were used instead, would be

1.19 ns and the energy would drop to 16mJ, which is still prohibitive, but orders of

magnitude below the energy for minimum delay with less than a 1% delay penalty.

Figures 3-9 (a) and 3-9 (b) plot the normalized path delay and normalized path energy

respectively for various values of m. As shown by the dashed lines in the two graphs,
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m = 6 brings the the delay to within 5% of the optimum while reducing the energy

by five orders of magnitude. Hence, rather than inserting repeaters to minimize the

wire delay, ZOOM formulates the problem as one of inserting repeaters to bring the

delay to within some percentage of the minimum. This percentage is set by the EDA

Optimizer which will be discussed in Section 3.2.6. Setting m to a value less than the

optimum increases the critical length for repeater insertion for a given metal layer.

The scaling factor, s may also be adjusted to reduce energy consumption. However,

the delay is more sensitive to s than m for the tolerable trade-off percentage ranges,

and the energy benefits of reducing s are less phenomenal.

3.2.4 Energy Estimation

There are 3 main sources of energy dissipation in CMOS circuits: dynamic switching

energy, dissipation from short-circuit currents and energy loss due to leakage currents.

Dynamic Switching Energy

This is the energy consumed in switching the output capacitances. It is the largest

source of energy dissipation in CMOS circuits. The dynamic switching energy is

computed as:

Eswitching = α · 1
2
CVdd · δV (3.17)

where

α = the activity factor (assumed to be 0.5 in ZOOM),

C = the effective capacitance of the output load, and
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δV = the voltage swing of the output node

The switching energy may be reduced by reducing the supply voltage and the switch-

ing activity in the cache. The latter is exploited by circuit innovations that limit the

swing on high-C lines to some small δV and use sensing techniques on low-C sense

amplifiers to achieve full-rail results.

Vin Isc Vout

Cout

Ishort

t

t

Vdd-Vt

Vin
Vt

Ipeak

Figure 3-10: Short-circuit currents during transients (from [31])

Dissipation from Short-Circuit Currents

The finite slopes of input signals causes direct-path currents to flow through the gate

for a short time during switching (Figure 3-10). The energy consumed per switching

is computed in [31] as

Edp = Vdd
Ipeaktsc
2

+ Vdd
Ipeaktsc
2

= tscVddIpeak (3.18)

where tsc is the time both nMOS and pMOS devices are conducting and Ileak is

determined by the saturation current of the devices. Like short-circuit delay, the

short-circuit energy is minimized when the input and output signals have equal rise

and fall times. In [31], Rabaey et al. show that when the rise and fall times of in-
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put and output signals are matched, most of the energy is associated with dynamic

switching and only a minor fraction (less than 10%) is devoted to short-circuit cur-

rents. Hence, in the first phase of its implementation, ZOOM estimates short-circuit

energy as 10% of the dynamic switching energy.

Energy Loss Due to Leakage Currents

This is the steady-state energy dissipation in an idle circuit due to sub-threshold

currents flowing through the drain when Vgs < Vt. Idle-mode leakage energy can be

estimated as

Eleakage = (1− α)Vdd · Ileakage · 1
f

(3.19)

where Ileakage is the sub-threshold leakage current of the device under zero-bias at

room temperature, and f is the operating frequency. Sub-threshold currents increase

exponentially with decreasing threshold voltage and increasing temperature.

3.2.5 Area Estimation

2

2

1

1 1

3

3

Figure 3-11: Summary of lambda-based design rules (in units of λ)

Lambda-based layout rules (Figure 3-11) are used to obtain an estimate of the
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area of various components of the cache in order to obtain accurate wire lengths for

delay and energy estimation. The area of the memory cells are estimated from the

bit-height and bit-width values and may be modified by the program user.

3.2.6 Energy-Delay-Area Optimization

The design targets for a given system often have stringent delay requirements. For

instance, the access time of the primary cache may be strictly required to fit in

one or two pipeline cycles of fixed duration. The goal of energy-delay-area (EDA)

optimization is to achieve this minimum delay requirement at the lowest cost possible

to energy and area. The optimization criteria, which is supplied by the program user,

consist of the following:

• Dtarget: the target cache access time

• δt: the tolerance, which specifies the maximum allowed percentage deviation

from the target delay

• β: an integer specifying the weight attached to energy minimization, the bigger

the value of β, the lower the energy of the proposed optimum model;

• α: an integer specifying the weight attached to area minimization, the bigger

the value of β, the lower the area of the proposed optimum model.

Let D, E and A be the access time, access energy and area, respectively, of a given

cache configuration. The general optimization scheme can be summarized as follows:
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For i = 1 to i = number of possible cache configurations,

opt−cache = cachei if

( |Dtarget −Di|
Dtarget

≤ δt

) ∧ (
(Eβi · Aαi ) < (Eβopt−cache · Aαopt−cache)

)

The degrees of freedom used in optimization include transistor-sizing via the global

fanout, array partitioning, interconnect optimization strategies (via repeater critical

segment modifications) and other bitline optimizations strategies. We discuss these

in Chapter 4 when the component models are presented.

There are the special cases when the specified target delay is either too large

or too small, so that the optimizer is not able to find a configuration that meets the

optimization criteria, given the base assumptions made about the cache structure. To

improve usability, (especially in cases where the designer simply wants the minimum

delay ZOOM can find), the optimizer uses a “best-effort” approach to return the

closest match. If Dtarget is too large, the configuration that minimizes the objective

function, EβAα, is returned as the optimum. If the delay is too small, the optimizer

returns the configuration with the minimum delay. There is however no guarantee on

the energy or area efficiency of the proposed cache configuration.
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Chapter 4

Micro-Architecture Level Cache

Modeling

Chapter 3 presented the general methodolgy used and assumptions made in modeling

the cache. This section presents component-specific circuit-level models used in the

micro-architecture level simulator.

For the purposes of modeling, the cache access path is broken into four main

components: the data path (SRAM and CAM arrays), the decoder, the comparators

and the local and global buses. The accuracy of the energy of the modelas are

verified using HSPICE r© simulations. The HSPICE r© netlists used in these simulations

were extracted from ZOOM using the built-in Netlist Generator. Where necessary,

interconnect capacitances and resistances are modeled as distributed RC networks

at bit granulity. All circuits are set in the TSMC 0.25µm technology with a supply

voltage of 2.5V . The simulations were conducted under typical conditions at room

temperature.
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4.1 Decoder

The decoder is the starting point of the access. A cache of size C bytes and asso-

ciativity A, using B byte data blocks has S = C/(B · A) sets, and the decoder has

to decode log(S) bits to select the set to which the requested word belongs. The de-

coder consists of the global pre-decoder, which is shared by all the sub-arrays within

an array, and the row decoder, which is local to each pair of sub-arrays (Figure 4-1).

The global pre-decoder selects one set of sub-arrays to enable for the access while

the row decoder selects the appropriate row within each sub-array. As discussed in

Chapter 3, the data and tag arrays in an SRAM cache have separate decoders. Due to

its organization, only one global pre-decoder is needed in a CAM cache. The decoder

design problem is two-fold: determining the optimal decode structure and finding the

optimal number of stages and sizing for each level.
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Figure 4-1: SRAM partitioning example with 8 sub-arrays
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4.1.1 Decoding Structure

A simple NAND-INVERTER decoding structure using 2-input NAND gates is as-

sumed. To implement an r-to-2r decoder, two sets of
(
r
2

)
-to-2r/2 decoders are first

implemented and the outputs combined in the final stage. Figure 4-2 illustrates the

assumed decoding structure using the example of a 4-to-16 decoder. The split decoder

approach results in cheaper, reduced energy and often faster implementations.

BITS

BITS_BAR

Figure 4-2: Decoding structure for a 4-16 decoder

The NAND-INVERTER implementation implies that each AND stage is expanded

to 2 stages, which could result in an excessive number of stages. However, since the

decoder often has to drive a large load on its output, extra buffers are often needed
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to improve its delay. In physical implementations, the number of stages needed to

drive the external load is often larger than the number of stages needed to implement

the decoding function using 2-input gates.

Another advantage of using smaller gates is that the overall logical effort of the

decode path is reduced. The logical effort of a NAND gate increases linearly with

the number of inputs while that of a chain of gates increases logarithmically with the

number of inputs (see Figure 4-3).
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Figure 4-3: (a) Growth rate of path effort of n-input NAND implementation using
one stage of an n-input NAND gate vs. multiple stages of 2-input NANDs and invert-
ers. (b) Parasitic delay of n-input NAND implementation using n-input NAND gate
vs. multiple stages of 2-input NANDs and inverters for a fixed number of stages.
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4.1.2 Sizing the Decoder

The problem of optimally sizing the decoder is similar to the well-understood problem

of optimally sizing a chain of inverters [38] - [41]. The key features of the decode

path which distinguish it from a simple inverter path are the presence of logic gates

other than inverters, branching at some of the intermediate nodes and the presence

of interconnect inside the path. Figure 4-4 shows the critical path for the assumed

decoding structure.

...
...

Rp,Cp Rlwl,Clwl

w0 v1 ... vm g1 ... gn
sizes

branching effort

pre-decoder row decoder

pre-decoder line
local word line

Figure 4-4: Critical Path of Decoder

Logic gates and branching are easily handled using the concept of logical effort

introduced in Section 3.2.2. In general, for an r to 2r decode, the total branching

effort of the critical path from the address input to the output is 2r−1 since each

address driver drives half the outputs. The total branching for the row decoders in

ZOOM is 2r since each decoder is shared by 2 sub-arrays, each of which contains

2r rows. Ignoring interconnect capacitances and resistances, the theoretical optimal

stage effort, f , and optimal number of stages, n, is given by Equation 4.1
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fn =
Coutputload · 2r−1 · LogicalEffort(r-input-AND)

C0

(4.1)

Intermediate path interconnect is handled by independently sizing the sub-chains

before and after the interconnect as in [8]. The interconnect and the first gate of the

combine stage are treated as loads to the pre-decode stage. The optimal fanout for

the decoder is set by the user-specified optimization biases by iteratively increasing

the number of stages from the number of stages required to implement the logical

function to some fixed maximum. For delay and energy-delay product minimization,

the optimum fanout is about 4 in most cases. For energy minimization, the optimal

fanout is higher, at around 6-8, depending on the maximum fanout allowed in ZOOM.

These trends are very much in line with theoretical results reported in [38] - [41] and

those derived in [8] where the optimal number of stages for energy minimization was

found to be 1 (i.e the maximum stage fanout).

For a decoder with n stages preceeding the wordline driver and an effective stage

fanout f , if τinv is the intrinsic delay of an inverter, then the delay of the decode path

is given by:

D = n · f · τinv + parasitics+Dwire (4.2)

where the parasitic delays for the gates are given by Table 3.4 on page 39. The wire

delay, Dwire, is the delay of the pre-decoded line before the final NAND stage. It

is given by 0.38RwireCwire where 0.38 is the simulated co-efficient for the 50% rise

time of a wire [31], Rwire is the resistance of the interconnect line and Cwire is the

sum of the capacitance of the wire and the loading from the row-select NAND gates
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distributed evenly along the wire.

An activity factor of 0.5 is assumed in estimating the energy of the decoder. The

capacitances of the gates and wires are added together to obtain the total capacitance

of the decoder and are used to estimate the energy. Since energy is only consumed

for low to high transitions, only half the total capacitance of the inverter chain need

to be included in the decoder capacitance.
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Figure 4-5: Comparison of decoder delay and energy estimates with HSPICE simu-
lated values

Figure 4-5 compares the estimated decoder delay and energy with those of HSPICE

for the same decoding structures. The delay and energy estimates are within 5% and

8%, respectively of HSPICE simulated values.

The increase in area due to the row decoders is the sum of the area occupied by

2 · 2r/2 vertical pre-decode tracks, 2 · 2r/2 gates for each of the r
2
-input logic groups
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and 2 · 2r final NAND gates and wordline drivers. This area is multiplied by half the

number of sub-arrays to obtain the total area contribution of the row-decoders. A

similar approach is used to calculate the area of the global pre-decoders.

4.1.3 Managing Interconnect Delay in the Decoder

The interconnect delay quickly dominates the delay of the decoder as the number of

sub-arrays or rows increase. Due to compactness and pitch-matching requirements,

the delay degradation in the row decoder is handled by increasing the number of

stages before the wire. Wire delays are even more pronounced in the sub-array-select

decoders which have to drive long wires to each of the local decoders. Since there are

no strict pitch-matching or compactness requirements, the degraded wire delays in

the sub-array-select decoder are handled by inserting a cascade of sized-up, equally

spaced repeaters in the wires. This has the effect of linearizing the wire delay, which

would otherwise increase quadratically with the wire length. The methodology for

sizing and calculating the delay of the wire segments is explained in Section 3.2.3.

Figure 4-6 compares the wire delays of the decoder before and after the insertion of

repeaters.

4.1.4 Wordline Delay and Energy

The wordline is really the final stage of the decoder. However for analysis purposes,

it is beneficial to treat it as a separate entity. The wordline consists of an inverter

(the wordline driver) and an interconnect line uniformly loaded with SRAM pass
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transistors. The interconnect line traverses the width of the SRAM (sub)array and

connects to the gates of each pass transistor in the SRAM cells on the row. When

the wordline goes ‘high’, all the pass transistors are activated and connected to their

respective bitlines (Figure 4-7). The 50% rise time of the wordline is given by:

Twordline = ln(2) ·
(
Rdriver · (Cdriver + Cwire + 2nCpass) +Rdriver · Cwire + 2nCpass

2

)

(4.3)

where

Rdriver, Cdriver= the resistance and capacitance respectively of the wordline driver,

Rwire, Cwire= the resistance and capacitance respectively of the interconnect line,

n = the number of bitline columns in the array, and
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Figure 4-7: Wordline Architecture

Cpass = the gate capacitance of one SRAM pass transistor

Since only one wordline makes a low-to-high transition, the energy of the wordline is

simply

1

2
· Vdd2 · (Cdriver + Cwire + 2nCpass)
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Figure 4-8 compares the estimated wordline delay and energy for a range of column

widths with those of HSPICE. To model the interconnect line in HSPICE, the total

wire capacitance and resistance obtained from the Berkeley Predictive Technology

Models [34] were divided into n pieces and connected between the pass transistors in

the SRAM cells. The delay and energy estimates are both within 3%, of HSPICE r©

simulated values.

4.2 SRAM Data Path

The SRAM data path is made up of SRAM cells and other peripheral circuits such

as wordline drivers, precharge, column multiplexors and sense amplifiers that make it

possible to access the bits stored on the cells. The SRAM array consists of a matrix

of 2m rows by 2n word-columns of memory cells. Figure 4-9 shows the basic structure

of an SRAM array. Each memory cell contains a pair of cross-coupled inverters which

form a bi-stable element. These inverters are connected to a pair of bitlines through

nFET pass transistors, which provide differential read and write access. The m + n

address bits, which identify the cells to be accessed, are split into m row address

bits and n column address bits. The row decoder activates one of the 2m wordlines

which connects the memory cells of that row to their respective bitlines. The column

decoder sets a pair of column switches, which connects one of 2n word columns to the

peripheral circuits. The local wordlines in the RAM are pulsed to limit the bitline

swing [37].

The bitlines are pre-charged to some reference voltage before each access to the
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Figure 4-9: Basic structure of SRAM array (from [8])

SRAM array. During a read operation, the wordline goes high, causing the access

nFET connected to the cell node storing a ’0’ to start discharging the bitline, while the

complementary bitline remains in its pre-charged state. This results in a differential

voltage drop across the bitline pair. Since SRAM cells are optimized to minimize the

cell area, their cell currents are very small, resulting in a slow bitline discharge rate.

To speed up the RAM access, sense amplifiers are used to amplify the small bitline

signal to a valid value.

During a write operation, the data to be written is transferred to the desired

columns by driving them onto the bitline pairs by grounding either the bit line or

its complement. If the cell data is different from the write data, then the ’1’ node is

discharged when the access nFET connects it to the discharged bitline, thus causing
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the cell to be written with the bitline value.
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Figure 4-10: Sense amplifier circuit

Figure 4-10 shows the assumed sense amplifier structure. There is a wide variety

in the types of sense amplifier circuits used in SRAMs. A latch-style differential

voltage sense amplifier with perfect timing control is assumed because it provides the

fastest implementation among known sense amplifier circuits and can function over a

wide range of voltages. Since they are inherently clocked, they also consume very low

power. The pair of cross-coupled gain stages in the sense amplifier are activated in

their meta-stable state by a clock after an adequate voltage gap is created. Positive

feedback quickly forces the output to a stable operating point. The output is then

buffered and driven onto the gates of the output nFET drivers which create a small

voltage differential at their outputs by discharging previously precharged datalines.

The sense amplifier structure for the tag array differs from that of the data array only

in the final stage, where the output is connected to the gate inputs of nFETs in the
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tag comparators rather than drain inputs of dataline drivers as shown in Figure 4-10.

Two main factors affect the sensitivity and, ultimately, the delay of the sense

amplifier: the non-scaling mismatch voltage and noise on the supply voltage. The

allowed voltage swing on the bitlines has to be larger than both of these fluctuations

combined. Muzino et al. show in [35] that the dominant source of threshold variations

in closely spaced transistors in deep sub-micron technologies is the random fluctua-

tions in the channel dopant concentrations. This portion of the threshold mismatch

remains constant with process scaling and has an estimate of about 50mV [8] for the

assumed sense amplifier structure. The bitline swing adequate for sensing for a given

supply voltage is computed as

δV =
(
Vdd
20

)
· 1.25 + 50mV

subject to a minimum of 100mV . This computation assumes a margin of 25% of

the optimal swing to allow for operating point fluctuations. For a supply voltage

voltage of 2.5V , the allowed bitline swing evaluates to 205mV , which is enough to

ensure that the sense amplifiers operate correctly over a wide range of temperature

and other threshold voltage fluctuations [6].

4.2.1 Data Path Delay and Energy

Figure 4-11 shows the schematic of the SRAM data path. The delay of the data path

is the time it takes for the output of the sense amplifiers located at the bottom of

the array to reach Vdd/2 after the wordline reaches Vdd/2. This includes the delay
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through all the the elements on the path: SRAM cells, column multiplexors, isolation

transistors and sense amplifiers.
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Figure 4-11: Schematic of bitline structure

The bitline column is most accurately modeled as a non-ideal current source due

to the low voltage levels (between 100-200mV) of the signals at the input of the sense

amplifiers. A current-source model for the bitline delay was developed in [8]. They

estimate the total delay of the bitline as the sum of the delay needed to swing the

total bitline capacitance by δV using the cell current and the RC time constant of

the bitline modeled as a lumped π RC network. An additional factor of delay was
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added to account for the impact of the wordline rise-time on the bitline delay.

Dbitline = z ·Dwl + (Cb + Cjmux · (k + 1) + Cs) · δV
Icell

+ τRC (4.4)

where

Cs is the input capacitance of the sense amplifier;

δV is the voltage swing at the input of the sense amplifier;

Cb is the bitline capacitance and is the sum of the wire capacitance, drain capaci-

tances of the pass transistors and the capacitance of the pre-charge circuitry;

Cjmux · (k + 1) is the total drain capacitance of the multiplexor with Cjmux being

the unit junction capacitance of the bitline mux and k the number of bitlines

multiplexed into one sense amplifier;

z ·Dwl is the impact of the wordline rise time; z is a proportionality constant de-

termined in HSPICE to be 0.3 for a wide range of block sizes [6]; Dwl is the

wordline rise time;

Icell is the cell current which is the current through the cell pass and pull-down

transistors. If In is the saturation current per unit width of an nFET and w is

the effective width of the pass and pull down transistors, then Icell = In ·w. The

effective width of the series configuration of these transistors is half the average

width: w = (wpass + wpd)/4 where wpass is the width of the pass transistor and

wpd is the width of the pull-down transistor;
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τRC is the bitline time constant which is estimated using the Elmore delay mod-

els [36] for a distributed RC network driven by a current source. The delay

for an RC network driven by a current source is slightly different from that

driven by a voltage source. Figure 4-12 is an example of time constant cal-

culation for a current-driven RC π network. The time constant is the sum of

the product of each resistance with a capacitance that is the equivalent of all

the downstream capacitances lumped together in series with all the upstream

capacitances lumped together.
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Figure 4-12: Current source driving a RC π network

The delay of the sense amplifier structure is the sum of the delay of the latch,

the buffers and the nFET drivers (see Figure 4-10). The delay of the latch depends

on its sensitivity, the required voltage gain and the speed of the bitline swing. The

amplification delay of the latch is proportional to the logarithm of the required gain

and the loading on the amplifier outputs [42]. According to studies conducted in [42],

for a gain of about 20 with only the self loading of the sense amplfier, the delay is

found to be about two fanout-of-4 inverter delays.

If we assume that all transistors in the latch are sized in the same proportion, then

the output resistance and input capacitance of the latch can be expressed as a simple
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function of the device width ws [8]. The delay of the sense amplifier structure is given

by equation 4.5 plus some parasitics. The optimal sizes ws, w1 · · ·wn are chosen so

that each term in (4.5) evaluates to the fanout-of-4 delay of an inverter.

Ts = Db(ws) + τs +
Rs · 3 · Cg · w1

ws
+
Rg · 3 · Cg · w2

w1

+ · · ·+ Rg · Cg · wn
wn−1

(4.5)

Db(ws) ≈ Gs · ws · δV
Icell

(4.6)

where

τs = 2τfo4; the amplification delay of the latch amplifier

Rs = sense amplifier input capacitance per unit width

Gs = unit sense amplifier output resistance

ws = width of sense amplifier

Rg, Cg = output resistance and input capacitance per unit width of a 2:1 inverter

The delay of the final stage (for wn) depends on the loading on the sense amplifiers

and is included in the comparator delay for tag paths, and output bus delay for data

paths. The total delay of the datapath is the sum of the delay of the bitline structure

(4.4) and the delay of the sense amplifier structure (4.5).

Ddatapath = Dbitline + Ts (4.7)

The total energy of the bitlines is the product of the total capacitance on the

bitline, the allowed voltage swing and the supply voltage, and the number of bit-
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line columns in the array: Ebitline = Cbitline · δV · Vdd · ncolumns. The energy of the

sense amplifier structure is the sum of the energy of the latch amplifier and output

buffers. The energy of the buffer and nFET drivers are easily estimated using the

capacitance estimation methodologies discussed in Section 3.2.1. The energy of the

latch is difficult to accurately capture analytically due to the metastable nature of

the cross-coupled gain stages. In [6], Amrutur et al. estimate the energy of the sense

amplifier as 12fJ/λ. This estimate was confirmed by running HSPICE r© simulations

for various sense amplifier sizes and gains. Estimates were similarly obtained for the

sense amplifier input capacitance and output resistance.
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Figure 4-13: Comparison of bitline delay and energy estimates with HSPICE simu-
lated values

Figure 4-13 compares analytical estimates of data path delay and energy with

those of HSPICE r© simlations for a range of bitline column heights. A column width

of 128 bits was used with four bitlines multiplexed into one sense amplifier. The delay
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and energy estimates are within 5% and 8% respectively, of HSPICE r© simulated

values.

4.2.2 Divided Bitlines

Divided bitlines is one of the bitline configuration options considered during opti-

mization. The goal of the divided-bitline approach is to reduce the delay and active

energy of the SRAM bitline by reducing its total capacitance. Unilike array partition-

ing which achieves a similar goal by breaking up a tall and wide array into smaller

sub-arrays, the divided bitline approach achieves its goal by reducing the number of

pass transistors connected to the bitlines.

LINEBIT LINEBIT

WL

shared WL

sub bitline

Figure 4-14: Divided bitline example with M = 4

In a traditional SRAM array, the pass transistor of each SRAM cell is connected

to the bitline, although only one of these pass transistors is driving the bitline at any

point in time. The divided bitlines (DBL) concept, introduced by Karandikar and

Parhi in [17], uses a two-level heirarchy of pass transistors in which the first level of

pass transistors is connected to a sub-bitline shared by M cells. This sub-bitline is
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then connected to the main bitline through one pass transistor, thereby reducing the

total drain capacitance of the bitline by a factor ofM . Figure 4-14 is an example of the

DBL approach with M = 4. Four SRAM cells are combined together and connected

to the bitline via one pass transistor. Hence, the number of pass transistors connected

to the bitline is reduced by a factor of 4.

The sensing techniques evaluated in the previous section may be applied to the

main bitline in DBL to reduce its energy consumption. The sub-bitlines, however,

have full-rail swings. To access the DBL array, the local wordline is pulsed, together

with the shared wordline. The rest of the access proceeds much like the case of

traditional SRAMs.

The delay of the divided bitline structure is modeled as a non-ideal current source

with the time constant of a nested RC π network. The methodology is similar to that

used to model regular bitlines. Figure 4-15 shows the shematic of the divided bitline.

Only one of the pair of bitlines is shown for legibility. Figure 4-16 is the RC network

representation of the divided bitline. The resistances and capacitances on the path

are defined as follows:

C1 = one-fourth the drain capacitance of M pass transistors

C2 = one-fourth the drain capacitance of M pass transistors

+ the drain capacitance of the shared pass transistor

R1 = half the resistance of the sub-bitline (assuming the shared pass transistor

is located in the middle of the sub-bitline)
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Figure 4-15: Schematic of divided bitline

R2 = the resistance of the shared pass transistor

C3 = C4= half the reduced bitline capacitance

R3 = the bitline resistance

R4 = the output resistance of the column multiplexor

C5 = the drain capacitance of the bitline mux

+ input capacitance of the sesense amplifier
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The delay of the bitline path is given by

Ddbl = z ·Dwl + (Csb/2 + Cb + Cjmux · (k + 1) + Cs) · δV
Isb

+ τRC (4.8)

where Csb is the sub-bitline capacitance, τRC is estimated as shown in figure 4-16 and

Isb is the current through the series configuration of the cell pull-down transistor,

the local pass transistor and the shared pass tansistor. The remaining terms are as

defined for Equation 4.4 on page 66. If we assume that the shared and local pass

transistors are identically sized, then the effective width of the two pass transistors

is half that of a regular bitline. Therefore Isb ≈ Inmos · (wpass/2 + wnmos)/4, where

Inmos, wpass and wnmos are the saturation current per unit width of an nFET and cell

pass and pull-down transistors respectively. The sense amplifier delay, Ts, estimated

in (4.5) is added to obtain the total data path delay for the divided bitline structure.

The energy of the DBL structure is the sum of the energy consumed in the full-

swing sub-bitline and the low-swing bitlines. Since the sub-bitlines are not precharged,

the maximum energy is consumed when they make transitions in opposite direction,
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effectively doubling the dynamic capacitance.

Edbl =
1

2
· Vdd · (Cb · δV + 2Csb · Vdd) · ncolumns (4.9)

Figure 4-17 plots normalized DBL delay and energy for array heights of 256 and
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Figure 4-17: (a) Normalized DBL delay for arrays of height 256 and 1024 for metal-
to-bitline capacitance ratios of 0.9 and 0.56 (b) Normalized DBL energy for arrays of
height 256 and 1024 for metal-to-bitline capacitance ratios of 0.9 and 0.56

1024 rows for the worst-case and best-case metal-to-bitline capacitance ratios. These

are labeled as mcap = 0.9 and mcap = 0.56 respectively on the graphs. The worst-case

metal capacitance assumes worst-case coupling and the best-case metal capacitance

assumes no coupling to neighboring wires and only half the coupling to top and

bottom layers. The array width was fixed at 128 bits and four column muxing for all
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plots.

The optimum value of M for minimum energy consumption for an array of height

N rows may be derived from (4.9) by differentiation. Let α be the ratio of metal ca-

pacitance to total capacitance of original bitline, and C be the total drain capacitance

of N pass transistors. Ignoring some irrelevant portions of (4.9),

E(M) = (Cb · δV + 2Csb · Vdd)

= C · ( 1
M
+ α) · δV + 2CM + 1

N
Vdd (4.10)

Differentiating (4.10) with respect to M yields

Mopt =

√√√√(
N

2
× δV

V

)
(4.11)

Interestingly, the optimum value ofM for energy minimization depends on the voltage

swing of the main bitline. This is not surprising since the energy consumed in the

full-swing sub-bitlines has to be more than compensated for by the energy reduction

in the main bitline (with reduced capacitance) for DBL to be effective as an energy-

reduction strategy. If δv is very small, the impact of the sub-bitline energy will be

more pronounced and hence,M has to be small to reduce the impact of teh sub-bitline

energy on the total energy.

The effectiveness of the divided bitline approach as a bitline delay-reduction strat-

egy depends largely on the ratio of interconnect capacitance to the total bitline capac-

itance, α. If we ignore interconnect resistance in the sub-bitline and assume that the
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local and shared pass transistors have identical widths, then the delay for an array

height of N rows may be approximated, to first order, as (see [17] for derivation):

RC
(
M

2N

)
+RC

(
M

2N
+
2

M
+ 2α

) [
ln

(
M
2N
+ 2
M
+ 2α

M
N
+ 2
M
+ 2α

)
+ ln

(
1

v(t)

)]

≤ Tdbl ≤

RC
(
M

2N

)
+RC

(
M

N
+
2

M
+ 2α

)
· ln

(
1

v(t)

)
(4.12)

where R is the resistance of a pass transistors, C is the total drain capacitance of N

pass transistors and

v(t) = 1− δV

Vdd

If we assume that M 	 N , the delay expression in (4.12) simplifies to:

Tdbl ≈ RC
(
M

N
+
2

M
+ 2α

)
· ln

(
1

v(t)

)
(4.13)

The delay of the traditional bitline is similarly approximated as

Tbl ≈ (1 + α) ·RC · ln
(
1

v(t)

)

Normalizing (4.13) with the delay of the traditional bitline, and slightly re-arranging

gives,

Tdbl =
1

1 + α
·
(
M

N
+
2

M

)
+

2α

1 + α
(4.14)

The second term in the delay equation in (4.14) depends only on the metal-to-bitline
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capacitance ratio, α. This portion of delay, which tends to 1 as α increases, cannot

be improved by DBL. Infact, it worsens slightly since the insertion of the sub-bitline

and extra pass transistors lengthens both the bitline and wordline wires. Figure 4-18

plots the scaling of this portion of the divided bitline delay with α. The impact of

α on the effectiveness of DBL is also observed in Figure 4-17 which plots delay and

energy for various values of M using ZOOM’s DBL model.
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Figure 4-18: Impact of metal-to-bitline capacitance ratio on delay scalability with M

4.3 SRAM Tag Comparators

The comparators for the SRAM tag array are located at the bottom of the array. The

comparators are made up of mirroring pairs of two-series nFETs that compute the

XOR of the stored tag bits and incoming tags to determine a hit. The comparators

are connected to a matchline which is connected to the supply voltage via a pre-charge
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pFET device and to ground via a foot nFET that triggers the evaluate phase of the

comparator. To reduce the worst-case comparison delay, the comparators are split

into two equal and independent sections each of which compares half the tag bits (in

parallel). The results from the two halves are then combined with a NAND gate and

an inverter to generate the match signal. Figure 4-19 shows the split implementation

of the comparator.

...

EVAL

out1 out2

a0 a1 a2 an

b0 b1 b2 bn

a0_b a1_b a2_b an_b

 b0_b  b1_b  b2_b  bn_b

(from other half
of comparator)

match

Precharge

Figure 4-19: SRAM-tag comparator structure

The outputs from the tag sense amplifiers, which arrive after the incoming tags

have stabilized, are connected to the inputs labeled an and ān which are closer to

the output to improve their stabilization delay. The bn and b̄n inputs are driven by

tag bits in the address. Tag comparison begins with the matchline precharged high

and the evaluation transistor turned off. A mismatch in any bit closes one pull-down

path and discharges the output. In order to ensure that the output is not discharged

before the an bits become stable, the EVAL signal is often controlled using a self-

timed circuit. This timing circuit is not modeled in ZOOM, instead it is assumed that

the EVAL signal is perfectly timed to coincide with the stabilization of the an inputs

which are connected to the output of the sense amplfiers. When EVAL goes high,
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the foot transistor connects the comparators to ground and the comparator output,

if there is a mismatch, begins to discharge.

The worst-case delay of the comparator occurs when only 1 bit mismatches such

that the entire matchline capacitance is discharged though the series configuration

of this mismatched path and the foot transistor. The delay of the comparator is the

sum of the delay to to discharge the output and the delay to combine the two match

signals and buffer the output to the dataline tristate buffers.

Tcomp = Tdischarge + Tdrivers (4.15)

Discharge Delay

Since we assume that both the incoming and stored tag bit inputs will be stable

by the time EVAL goes high, Tdischarge is the time to discharge the output loaded

through the series configuration of the foot nFET transistor and the mismatched

path. Figure 4-20 shows the equivalent circuit of the discharge path.

Reval

Rmatch

Cmatch/2 Cmatch/2 + CNAND

to NAND
gate input

Figure 4-20: Equivalent circuit of SRAM comparator discharge path

The delay of the RC comparator network is the 50% fall time given by

Tdischarge = ln(2) · τRC (4.16)
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τRC = Reval · Cmatch/2 + (Reval +Rmatch) · (Cmatch/2 + CNAND) (4.17)

where

Reval is the “on” resistance of the evaluation foot transistor

Rmatch = 2 ·Rnon/wcomp +Rmatchwire is the resistance of the mismatched nFET

path and the matchline wire; here, wcomp is the width of a comparator nFET.

Cmatch is the sum of the drain capacitances of the comparators and precharge

PFET and the capacitance of the matchline wire

CNAND is the input capacitance of the NAND gate.

The evaluation transistor and the comparators are sized so that Tdischarge is approxi-

mately equal to the rise time of the NAND gate to minimize the impact of short-circuit

currents on the delay.

Buffering Delay

For a B-bit word access, the match signal has to drive 2B tristate buffers correspond-

ing to the requested word and its complement since the global sense amplifiers require

differential inputs. If multiple tags are multiplexed into one sense amplifier, then the

match results has to be combined with a select bit, generated in parallel with the tag

read/comparison, to generate a separate match signal for data arrays for each addi-

tional tag multiplexed. This introduces a level of branching into the comparator path.

Another level of branching results if a data block is split across multiple sub-arrays.

Figure 4-21 is an example of the branches involved in a tag array in which two tags
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share a single sense amplifier. The data block associated with each tag is split into

two sub-arrays. These branches are handled using the the logical effort approach.

TAG[0] TAG[1]

COMPARATORS
match

SENSE AMPS

in-coming tag bits

TAG[0] column
select bit

TAG[1] column
select bit

local ouput bus

DATA[0]
sub-array 1

DATA[0]
sub-array 2

2B
4

DATA[1]
sub-array 1

DATA[1]
sub-array  2

block select bits

match signal
for TAG[0]

match signal
for TAG[1]

enable signals for
data sub-arrays

Figure 4-21: Example of branching in the comparator buffer chain

Since the tag and data sub-arrays are kept in completely separate array matrices,

the connecting wire between the match output and the appropriate sub-array could

get quite long and dominate the comparator delay. To manage the wire delays, a

cascade of sized-up repeaters is inserted on the path if the wire length is greater

than some critical length. If we assume that the data array is organized such that

sub-arrays sharing control signals are placed close to each other, then there is some

degree of freedom in the location of the branching points relative to the interconnect

line and repeaters. We assume that the first level of branching occurs before, while
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the second level of branching occurs after the cascade of repeaters.

...

branching effort
for muxing

branching effort
for wordline split

cascade of sized up repeaters

CL

Figure 4-22: Critical path of comparator buffer chain

The critical path of the buffer chain is shown in figure 4-22. The gates on the path are

sized so that each stage has the delay of a fanout-of-4 inverter. The path is treated

as two independent sub-chains separated by a delay element (the repeater cascade);

the first driving a load consisting of a wire segment and one repeater, and the second

driven by the final repeater in the cascade and driving a load, CL, which is the the

total capacitance of 2B tristate buffers. The delay of the interconnect with repeaters,

Twire, is estimated using the methodology described in Section 3.2.3. Assuming n

stages in the first sub-chain and k stages in the second sub-chain, the total delay of

the path is given by

Tdrivers = (n+ k) · Tfo4 + Twire + parasitics (4.18)

Figure 4-23 compares analytical estimates for the comparator delay and energy

with simulated values from HSPICE r©. The delay and energy estimates are within

2% and 5% of HSPICE simulated values respectively.
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Figure 4-23: Comparison of comparator delay and energy estimate with HSPICE
simulated values

4.4 CAM Tag Path

CAMs (content-addressable memories) are used in many search structures. This

discussion focusses on their use as tag stores and comparators in a CAM cache archi-

tecture as described in Section 3.1.1. The CAM tag path is made up of CAM cells

and other peripheral circuits such as sense amplifiers and precharge circuitry. The

CAM array for a k-way set associative cache with m bits per tag consists of a matrix

of k rows by m columns of memory cells. Figure 4-24 shows the basic structure of a

CAM array.

Each CAM cell consists of an SRAM cell and a pair of two-series nFETs for

performing comparisons. When the wordline of the cell is asserted, it behaves like an

SRAM and may be read and written to as described in Section 4.2. When the wordline

is not asserted, the complementary contents of the SRAM cell are propagated to the
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wordline

bitline

read enable

sense enable

write enable

tag in

1 tagwidth

sense amplifiers

write driver

k

matchline

searchline

tag in

tag driver

to data wordline

WL

BITBIT_B

MATCH

SBIT_B SBIT

Figure 4-24: Basic structure of a CAM array

gate inputs of one of the mirroring pair of nFETs in the embedded series configuration

where they may be compared to another complementary bit set placed on the other

pair of mirroring nFETs.

A read operation to the cache is a compare operation to the CAM array. A

compare operation begins with the MATCH line pre-charged to a ’1’ and the incoming

tag bits broadcast on SBIT and SBIT B. With the wordline low, the value stored in

the cross-coupled inverter is compared to the complementary values on SBIT and

SBIT B. A mismatch creates a direct path to ground through the series nFETs in

the comparator, causing the MATCH line to discharge. Single-ended sense amplifiers

located at the end of the MATCH line sense and amplify the results of the tag

comparison, which is connected to the wordline of the appropriate data block in the

corresponding data array. Writes to the CAM array proceed in the same manner as
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writes to the SRAM array, with the new tag bits transferred onto the bitlines.

Since the bitlines and search lines are never used simultaneously, some area-

conscious designs combine them into one multiplexed line (i.e. both the SRAM pass

transistor and one of the transistors in the comparator are connected to the same

line). This approach is sub-optimal for both high-speed and low-energy solutions

since the capacitance of the multiplexed line is then practically double that of ded-

icated lines. In addition to driving extra capacitance for every access, which almost

doubles the access energy, bigger line drivers are needed to meet delay targets. For

this reason, ZOOM uses dedicated search and bitlines for the CAM array to improve

energy consumption at the cost of about a 10% increase in CAM array area. However,

since the tag array area is only a small fraction of the total area of the cache, the

overall impact is much less than 10% of total area.

4.4.1 CAM Tag Path Delay and Energy

Figure 4-25 shows the elements on the critical path of the CAM row. To reduce

the worst-case delay of the comparators, the tag path is split into two equal and

independent sections each of which compares half the tag bits (in parallel). The

results from the two halves are then combined with a NAND gate and an inverter to

generate the match signal for the row.

This modification, which also applies to SRAM tag comparators, not only reduces

the delay but also potentially reduces the energy consumed by tag compares. The

top half of the tag mismatches (and hence discharges) infrequently due to the spatial
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match (to data wordline)

tag wordline

matchline

keepers

pre-charge

Figure 4-25: Split comparator architecture / CAM path

locality of cached data. For delay reduction purposes, splitting the comparator only

makes sense if the total delay of the lumped implementation, including output buffers

if needed, is greater than two fanout-of-4 inverter delays. This is because the total

minimum delay of the NAND gate, which is the sum of the parasitic, switching

and short-circuit delays, is about that of a fanout-of-4 inverter even if fanout-of-1

sizing is used; and the delay of the inverter on the output of the NAND is about

another fanout-of-4 delay. In most cases, extra buffer stages are needed to drive the

compare results to the input of the data wordline driver so that the split comparator

architecture does not come at an extra delay cost.

Figure 4-26 shows the full critical path of the CAM path. The numbered black

Csearch/2

Rsearch

Csearch/2

Cmatch/2

Rmatch

Cmatch/2

T_sense T_sense
from other half
of comparator

...
data wordline driver

tag driver

from cell

1

2 3

4

Figure 4-26: CAM critical path
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dots indicate the four main sections of the critical path as it is traversed during an

access. Dot ‘1’ is the portion of the critical path from the input of the tag driver

to the input of the comparator. This delay corresponds to the time it takes to drive

the tag bits onto the search lines. This delay is on the critical path because it is

assumed that the inputs of the tag driver for a given CAM array are only activated

after pre-decoding. Dot ‘2’ is the portion of the critical path from the input of the

comparators to the input of the sense amplifier. This is the time it takes to drop

the pre-charged matchline by some δV that can be amplified by the sense amplifier.

Dot ‘3’ is the portion of the critical path from the input to the output of the sense

amplifier and Dot ‘4’ is the delay to combine the match results and buffer the signal

to the input of the data wordline. The sum of all the delays on the path gives the

total delay of the CAM path (4.19).

Tcam = Tsearch + Tcompare + Tsense + Tdrivers (4.19)

The next few paragraphs will briefly derive analytical models for the delays in Equa-

tion 4.19.

Delay of the Search Lines

The search line is simply a loaded wire driven at one end by a large driver which is

sized to have a delay of a fanout-of-4 inverter. Its 50% delay is estimated using the
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π model described in Section 3.2.2 as:

Tsearch = ln(2) ·
(
Rdriver · (Cdriver + Cmatchline) +

Rsearchline · Csearchline
2

)
(4.20)

where

Rdriver is the output resistance of the tag driver,

Cdriver is total gate and drain capacitance of the tag driver,

Csearchline is the capacitance of the searchline wire and gate capacitances of all the

comparator nFETs connected to it, and

Rsearchline is the resistance of the searchline wire.

Delay of the Match Lines

The worst-case delay of the compare path occurs when only one bit mismatches such

that the entire matchline is discharged though 1 series path. Assuming that the

input of the comparator connected to the cell is stable by the time the broadcast

tag bits stabilize, the critical path of the compare will not include the time to read

the stored bit onto the comparator. Figure 4-27 shows the equivalent RC circuit of

Rpull-down

Rmatch

Cmatch/2 Cmatch/2 + Cs

to sense
amp input

Figure 4-27: Equivalent RC of CAM compare critical path

the critical path of the matchline. The compare output connected to the input of

the sense amplifier only needs to discharge by some δV large enough to be accurately
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sensed and amplified by the single-ended sense amplifier. However, the internal nodes

need to charge up before the final node can reach this voltage. The current-source

model used for the low-swing SRAM bitlines assumes that the time constant of the RC

network is much smaller than the time to charge the output to δV , so that the internal

nodes slew at the same rate as the output node in steady state. For distributed RC

networks with many intermediate nodes, this simplifying assumption introduces only

a small error in the estimates. This is not the case for the matchline. Hence, we

estimate its delay using a modified π RC model that accounts for the different node

slew rates. The delay of the matchline is estimated as the sum of the time constant

of the matchline and the time to charge up Cs to δV . This delay is summarized by

Equation 4.21 below:

Tcompare = Rpull−down · Cmatch
2

+ (Rpull−down +Rmatch) ·

Cmatch

2
+ Cs · ln


 1

1− δV
Vdd







(4.21)

Tcompare = Rpull−down · Cmatch
2

+ (Rpull−down +Rmatch) · Cmatch
2

+ ln


 1

1− δV
Vdd


 · (Rpull−down +Rmatch) · Cs (4.22)

+ 0.3 · Tsearch

where

Rpull−down is the resistance of the 2 series nFETs in the comparator;

Rmatch is the resistance of the matchline wire

Cmatch is the sum of the capacitance of the matchline wire, the drain capacitances
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of all the comparators and the drain capacitance of the precharge pFET

Cs is the input capacitance of the single-ended sense amplifier.

For matchlines with fewer that ten columns, the 50% RC delay, instead of the time

constant (or 63% rise time), of the final node preceeding sense amplifier is used in the

delay estimation.

Figure 4-28 (a) plots the total delay of the matchline and searchline as a function

half-array width. The height of the CAM array (associativity) was fixed at 32 rows.

The analytical estimates are within 3% of HSPICE r© simulated values for arrays wider

than 6 bits. Figure 4-28 (b) plots the campath delay for a range of heights for a fixed

half-array width of 13. The analytical estimates are within 3% of HSPICE r© simulated

values if the column height is greater than 8.

Delay of the Sense Amplifier and Buffers

A latch-style sense amplifier structure similar to that described in Section 4.2.1 is

assumed. The assumed single-ended sense amplifier consists of a cross-coupled in-

verters, much like the internals of the latch-style sense amplifier structure described

in Section 4.2.1. The delay of the sense amplifier depends on its sensitivity, the re-

quired voltage gain and the speed of the matchline swing. Two main factors affect

the sensitivity and, ultimately, the delay of the single-ended sense amplifier: the non-

scaling mismatch voltage and noise on the supply voltage. The single-ended sense

amplifiers used to amplify the compare results are not as sensitive as their differential

counterparts (e.g. the latch-style sense amplifier) whose differential pair of inputs are
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Figure 4-28: (a) CAM path delay scaling with number of tags (columns) per half
section for 32 rows. (b) CAM path delay scaling with number of rows (associativity)
for a fixed half-section column width of 13 bits
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able to reject common-mode noise. The voltage drop needed for adequate sensing, δV ,

is assumed to be approximately 15% of the supply voltage, allowing for a 10% noise

margin on the supply lines and a constant mismatch of 50mV due to dopant level

fluctuations. The delay of the sense amplifier buffer chain is given by Equation 4.23.

Tsense = τs +Db(ws) +
Rs · 3 · Cg · wNAND · le(NAND, 2)

ws
+
Rg · 3 · Cg · w1

wNAND
+

· · ·+ Rg · 3 · Cg · wn
wn−1

+ 0.38 ·Rwire · Cwire + parasitics (4.23)

Db(ws) ≈ Cs · ws · δV
Inmos · 0.5 · wcomp (4.24)

where

τs = the amplification delay ≈ Tfo4

le(NAND, 2) = the logical effort of a 2-input NAND gate

ws = the width of the transistors in the sense amplifier

Rwire, Cwire = resistance and capacitance of wire to data wordline driver input

w1 · · ·wn = width of output buffers

Inmos = unit saturation current of an nFET

In many cases, the data sub-array associated with a particular CAM tag array is split

along the wordlines to reduce the energy dissipated per access. If k is the number of

wordline divisions, the match signal from each row is connected to k wordline drivers

through a logic chain similar to that discussed in Section 4.3. Since there is no column
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multiplexing the CAM tag array, only one level of branching is needed.

CAM Array Energy

The energy of the CAM array is the sum of the energy in the matchlines and search

lines. Since there is at most one match per access, all but one of the match lines

discharge. Unlike the SRAM bitlines, the sensing technique in the CAM does not

limit the swing. All the match signals are OR-ed together using some optimum

implementation of an m-input OR gate to generate a hit signal. This signal is used

by the pipeline control to initiate pipeline stalls. It also serves to trigger access to the

next level cache if a miss is detected. Since the CAM cache itself does not use the

hit signal in its access path, its generation is not on the critical path of the access.

Hence, we model only the energy consumed in the OR gate but not its delay. Let m

and k be the number of rows an columns respectively in the CAM array. The total

energy is given by (4.25)

Ecampath = Esearchlines + Ematchlines + Esense+drivers + EOR (4.25)

where

Esearchlines =
1

2
· V 2
dd · k · Csearch (4.26)

Ematchlines =
1

2
· V 2
dd · (m− 1) · Cmatch (4.27)

Esense+drivers =
1

2
· V 2
dd · (m− 1) · Csense+gates (4.28)
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The capacitances in the equations above are as defined for their corresponding delay

equations. The energy of the OR gate, EOR, depends on its implementation. Since

m is typically greater than four, it is economical, (for both energy and delay) to use

a heirarchical logic structure with smaller gates with alternating DeMorganization of

NOR and NAND inputs and outputs. The optimal structure and stage sizing are

determined using a methodology similar to that used for decoders in Section 4.1.
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Figure 4-29: CAM path energy scaling with associativity (number of rows) for a fixed
column width of 13 bits per half section

Figure 4-29 compares analytical estimates for the energy of the CAM path from

the input tag driver to the input of the OR gate with simulated values from HSPICE r©.

The column width for each section was fixed at 13 bits for these measurements.
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4.5 Data Routing

The data has to be routed from the output of the local sense amplifiers to the cache-

CPU port. The routing mechanism depends on the floor plan. The sub-arrays

are arranged in a matrix structure to equalize the dimensions as much as possible

(i.e. achieve an aspect ratio close to 1) since this also minimizes the total routing

delay. Since the data and tag sub-arrays for an SRAM cache are kept in separate

matrices, apect ratio minimization is only constrained by the dimensions of the sub-

arrays. For a CAM cache, data blocks are kept in close proximity to, and on the

same row as, their corresponding CAM tag arrays to limit the impact of intercon-

nect in the matchlines. This further constrains aspect ratio minimization for CAM

caches. Figure 4-30 shows the floor plan for the data array of an SRAM cache with

32 sub-arrays.

Data routing is performed in two stages. First the local dataline selects one of four

differential data sets from a 2 × 2 sub-block of sub-arrays using a two-way multiplexor

on two shared local buses. The output of the multiplexor is driven to vertical global

buses running between the sub-blocks where it is selectively driven onto the global

bus using tristate buffers. The tristate buffers are enabled by a combination of select

bits made up of match signals and sub-array pre-decode signals. By construction,

only one of the data sets is the requested word and therefore, only one can be placed

on the vertical global bus. The data on the vertical buses are then propagated to the

cache-CPU port using a series of mux stages on a horizontal bus. The wire delay of

the global bus is controlled by inserting a cascade of sized-up repeaters (Section 3.2.3).
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Figure 4-30: Floor Planning example for SRAM cache with 32 data sub-arrays

Low-swing and sensing techniques are used on the local bus.

4.5.1 Local Output Bus

The local output bus routes data from the output of the bitline sense amplifiers

to the vertical global buses. The local bus consists of some wires to route data

between the two adjacent sub-arrays, precharge circuitry, two-way multiplexors and

differetial sense amplifiers. The local bus operates much like the SRAM bitlines. The

complementary datalines are initially precharged to ‘1’. When the match signal goes

high, the sense amplifier outputs are connected to the datalines through a pair of
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nFET drivers. One of the datalines is discharged. Two-way muxes select between

data from a pair of datalines. The output of the muxes are amplified through a

differential sense amplifier and driven to the vertical buses. The schematic for the

dataline path is shown in Figure 4-31. As shown in the figure, each dataline is shared

by a pair of mirroring sub-arrays. And all four sub-arrays in the 2×2 sub-block share

one sense amplifier via the two-way multplexors.

Due to the structural and operational similarities of the bitline and dataline paths,

the delay equations (4.4, 4.5, 4.7) derived in Section 4.2.1 for the bitline structure also

apply to the local dataline structure. Here, the cell current is replaced by the current

through the nFET drivers, In · w, where In is the saturation current through a unit

nFET and w is the width of the nFET driver. The energy estimation methodology

for the bitline structure also applies.

The global bus is simply loaded wires, repeaters and multiplexors. Its energy and
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delay is estimated using a straightforward application of the estimation methodologies

discussed in Chapter 3. The delay of the global bus is the time it takes to route data

from the sub-array situated farthest from the cache-CPU port. Its energy is the

average of the energy to route data from each of the vertical wires to the data port

given by:

Eglobal = nbits·1
2
Vdd

2· 1

nvwires
·
(
nvwires · Cvwire + nvwires(nvwires + 1)

2
· (Chwire + 2Cmux)

)

(4.29)

where

nbits = the number of bits in the requested word

Cvwire = the capacitance of a vertical wire segment and its load of tristate buffers

nvwires = the number of vertical wires (per bit) in the array (= 2 in Figure 4-30)

Chwire = the capacitance of a horizontal wire segment and its repeaters

Cmux = the capacitance of the two-way mux in the global path

The capacitance of the multiplexor, Cmux, is multiplied by 2 since two 2-way muxes

are needed to select one of three signals. The three signals consist of the in-coming

signal on the horizontal global line and the signals on the two vertical lines from the

top and bottom halves of the array as shown in Figure 4-30.
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4.6 Putting It All Together

This section derives access time and energy equations for the cache using the models

derived in the preceeding sections, followed by some applications of the EDA opti-

mizer.

4.6.1 Cache Access Time and Energy

The equations derived in the previous section are combined to obtain the access time

and energy of the cache. The critical path of the cache depends on whether it uses

two-phase (early-select) or single-phase (late-select) accesses.The performance penalty

of two-phase accesses is only tolerable if associativity is high enough so that the total

factor decrease in energy is at least the same as the factor increase in delay. Since

the energy savings of two-phase accesses in direct-mapped caches are only realized

in case of misses (which are rare), direct-mapped caches are only supported in the

single-phase access configuration

The access time for single-phase accesses is generally given by:

Taccess = max(Ttag, Tdata) + Trouting (4.30)

Direct-mapped caches do not need to wait for the match result before placing the

data on the output bus. Hence, for a direct-mapped cache, the routing delay only

consists of the global routing delay:

Ttag = Ttag−decoder + Ttag−wordline + Ttag−datapath + Tcompare
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Tdata = Tdata−decoder + Tdata−wordline + Tword−datapath + Tlocal−bus

Trouting = Tglobal−routing

where

T(tag,data)−decoder = T(tag,data)−global−decoder + T(tag,data)−row−decoder

For a set-associative cache, the data from the sense amplifier has to be selectively

loaded on the local bus (using the match signal) since there is more than one potential

data source even after decoding. The delay terms for single-phase access in set-

associative caches are defined as:

Ttag = Ttag−decoder + Ttag−wordline + Ttag−datapath + Tcompare

Tdata = Tdata−decoder + Tdata−wordline + Tword−datapath

Trouting = Tlocal−bus + Tglobal−routing

In an A-way set-associative cache, 
A/2� data and tag row decoders and A each

of data and tag sub-arrays are activated for each access. Since only one of these

data sub-arrays may supply the requested word, we assume that only one local bus

undergoes transitions. The comparators in all but one tag sub-array discharge. The

access energy is therefore given by:

Eaccess = Edata−global−predecoder + Etag−global−predecoder

+ (Edata−row−decoder + Etag−row−decoder) ·
⌈
A

2

⌉
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+ (Edata−wordline + Etag−wordline) · A

+ (Eword−datapath + Etag−datapath) · A

+ Elocal−bus + Eglobal−routing + Ecompare · 
A− 1� (4.31)

The access time and access energy equations for two-phase accesses depend on how

serialized the path is and whether CAM or SRAM tag stores are used. If we assume

that global pre-decoding in the data and tag arrays for an SRAM cache occur in

parallel, then the delay for global pre-decoding in the data array is not on the critical

path of the access (i.e. we assume data pre-decoding is completed by the time the tag

compare result is available). The delay for a two-phase access to an SRAM cache is

therefore given by:

Taccess = Ttag−global−decoder + Ttag−row−decoder

+ Ttag−wordline + Ttag−datapath + Tcompare

+ Tdata−row−decoder + Tdata−wordline + Tword−datapath

+ Tlocal−bus + Tglobal−routing (4.32)

The energy for two-phase accesses is generally given by:

Eaccess = Etag + Edata + Erouting (4.33)

During a two-phase access to an A-way set-associative SRAM cache, 
A/2� tag row

decoders and A tag sub-arrays are activated for each access. If a hit is detected, one
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tag row decoder and data sub-array is activated and only one local bus transitions.

The comparators in all but one tag sub-array discharge. The terms for the two-phase

access energy in Equation (4.33) are defined as follows for an A-way set-associative

SRAM cache:

Etag = Etag−global−predecoder +
⌈
A

2

⌉
· Etag−row−decoder

+ (Etag−wordline + Etag−datapath + Ecompare) · A (4.34)

Edata = Edata−global−predecoder + Edata−row−decoder

+ Edata−wordline + Eword−datapath (4.35)

Erouting = Elocal−bus + Eglobal−routing (4.36)

During a CAM cache access, only the global pre-decoder, one CAM sub-array and

associated data sub-arrays are activated. The terms for the two-phase access energy

in Equation (4.33) are defined as follows for a CAM cache:

Etag = Eglobal−predecoder + Ecampath (4.37)

Edata = Edata−wordline + Eword−datapath (4.38)

Erouting = Elocal−bus + Eglobal−routing (4.39)

Figure 4-32 (a) and (b) show the scaling of access time and energy respectively,

with cache size for SRAM-based caches using single-phase accesses. All caches are

direct-mapped. For the cache sizes observed, the SRAM model estimates access time
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Figure 4-32: (a) Access time scaling with cache size for SRAM cache using single-
phase access (b) Access energy scaling with cache size for SRAM cache using single-
phase access
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to within 8% of HSPICE simulated delays. Access energy estimates are within 15%

of HSPICE measurements for cache sizes greater than 1KB.

Figure 4-33 (a) and (b) show the scaling of access time and energy respectively,

with cache size for CAM-based caches. For the cache sizes observed, the model

estimates access time to within 10% of HSPICE simulated delays. Access energy

estimates are within 12% of HSPICE measurements.

4.6.2 Applications of the EDA Optimizer

One of the primary uses of the micro-architecture simulator is to study the shape

of the energy-delay and area-delay curves. Sample curves produced using the EDA

optimizer in ZOOM are shown in Figures 4-34.
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Figure 4-33: (a) Access time scaling with cache size for CAM cache (b) Access energy
scaling with cache size for CAM cache
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Figure 4-34: (a) Energy vs Delay plot of 256KB, direct-mapped cache (b) Area vs. De-
lay plot for 256KB, direct-mapped cache
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4.7 Comparison with CACTI

CACTI [1] is the most commonly used early-stage cache access time and energy es-

timating tool. CACTI uses the 0.8µm technology as its base technology. Metrics for

caches set in other process generations are estimated by scaling their corresponding

metrics in 0.8µm by a “fudge factor” approximately equal to 0.4
λprocess

. Delay estimates

from CACTI are typically within 10% of the delay of energy-efficient cache configu-

rations. However, it over-estimates the energy for these configurations by at least a

factor of 10 as observed in [9]. Hence, as part of the evaluation process for ZOOM,

energy estimates from the two simulators are compared.

Direct-mapped caches ranging from 8 KB to 256 KB with a blocksize of 32 B and

an access width of 32 bits were observed in the 0.25µm technology. Delay estimates

from CACTI were used as target delays for the optimizer in ZOOM with a maximum

allowed deviation of 5%. The optimization function used in ZOOM was modified to

match as closely as possible, the area efficiency of CACTI’s optimum configuration.

Hence, instead of minimizing the energy-area product (subject to some exponential

biases), it minimized the product of energy and deviation of area efficiency from

some target efficiency; the target efficiency being CACTI’s. The optimization bias

for minimizing the deviation was set to an atypical factor of 100 above that of energy

to force the optimizer to reject energy-efficient solutions that were not as area-efficient

as that proposed by CACTI. Figure 4-35 shows the normalized estimates for the three

metrics, with the variables defined as follows:

normalized delay =
Delay from ZOOM
Delay from CACTI
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Figure 4-35: Relative delay, energy and area efficiencies for CACTI and ZOOM

normalized energy =
Energy from ZOOM
Energy from CACTI

normalized area efficiency =
Area Efficiency from ZOOM
Area Efficiency from CACTI

The cache configurations proposed by CACTI were up to 8% more area-efficient than

those proposed by ZOOM for the same caches sizes and delays. The delay estimates

from ZOOM were less than 1% slower on average, with a maximum deviation of 4.9%.

The energy estimates from CACTI were between 10 to 20 times higher than estimates

from ZOOM, which is corroborated by the observations made in [9].
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Chapter 5

Simulator Framework

As mentioned in Chapter 1, ZOOM consists of a Functional Simulator and a Micro-

Architecture Simulator. The previous sections focussed mainly on the circuit models

used in the Micro-Architecture Simulator. This section presents the software frame-

work supporting the Functional and Micro-Architecture Simulators. ZOOM is imple-

mented in the C programming language and runs on Unix and Linux platforms. The

Functional and Micro-Architecture simulators do not share communication channels

in this preliminary implementation of ZOOM. However, they are both structured to

be highly portable and may be easily integrated if need be. We now proceed to discuss

the structures of the two simulators.

5.1 Functional Simulator

The Functional Simulator in ZOOM provides a tractable means for accurately eval-

uating the effects of architectural changes on multi-level cache performance using a
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cross-section of benchmarks. Figure 5-1 is an overview of the framework of the func-

tional simulator. The inputs consist of a parameter file for each cache level, and an

ADDRESS TRACE
(+ ACCESSTYPE)

INITIALIZATION

ACCESS MODULE
(CORE + SPECIALIZED HANDLER)

OUTPUT MODULE

TIMING MODULE

CACHE
CONFIGURATION

SIMULATOR OUTPUT

Figure 5-1: Overview of Functional Simulator

address trace which also specifies the access type for each address. The core of the

simulator is an access-processing unit which receives and processes in-coming mem-

ory references. This core is supported by initialization, timing and output-formatting

modules. The simulator returns an output file containing performance statistics and

other timing information gathered during simulation. It may be invoked as a stand-

alone simulator in a trace-driven simulation using an address trace stored in a file,

or it may be ported to a processor simulator in an event-driven simulation. The

command line for trace-driven simulation is:

zoom <trace file> {cache parameter files} > <output file>
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where {cache parameter files} is a list of parameter files. If ported to a processor

simulator, memory requests are passed in from the processor simulator to ZOOM

as they arrive. The command line for invoking ZOOM depends on the processor

simulator but must include the {cache parameter files} input in a format to be

specified in Section 5.1.2. The next few paragraphs describe the internal structure of

the simulator as well as the contents of the input and output files.

5.1.1 Simulator Components

As shown in Figure 5-1, the functional simulator consists of four main components:

the INITIALIZATION, ACCESS-PROCESSING, TIMING, and OUTPUT-FORMATTING mod-

ules. The ACCESS-PROCESSING unit forms the core of the simulator; the other modules

are considered auxiliary.

The INITIALIZATIONmodule allocates and initializes the state of each cache using

values specified in the input parameter files. The TIMINGmodule tracks latency effects

such as bus traffic and cache port availability. The OUTPUT-FORMATTING module is

made up of a set of functions that format the statistics gathered during the simulation

and prints them to an output file.

The ACCESS-PROCESSING unit is made up of a base access unit that fetches and

processes new accesses, and a re-configurable ACCESS_HANDLER that dictates what

actions are taken by the simulator when a hit or miss is detected in a given level

of the cache. To improve flexibility without sacrificing usability, a Read-Allocation

policy is added to the basic cache operation policies. Read-allocate is to read misses,
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what write-allocate is to write misses. A typical L1 cache always fetches new blocks

when a read miss occurs and therefore, operates as a read-allocate cache while a

Victim buffer [27] and other special-purpose buffers that act as backups to main

caches only store blocks that meet some specified criteria and hence, do not operate

as read-allocate caches.

The ACCESS_HANDLER for a given cache contains two functions: one that is called

when a hit occurs in the cache, <cache>_hit_fn, and one that is called when a

miss occurs, <cache>_miss_fn. A set of access functions is needed for each cache

simulated in a multi-level cache configuration. Hence, simulating two-level instruction

and data caches in one run requires four sets of access functions. ZOOM has built-in

access functions for common cache configurations. New functions are therefore only

needed if the interaction between caches at different levels deviates from that of say,

a traditional two-level cache. Even with specialized access handlers, the basic cache

policies (replacement, write-hit, write-allocation, read-allocation) are still in effect

and should be appropriately set to avoid conflicting cache state updates, which could

result in unpredictable errors.

The re-configurability of the access handlers and the added flexibility of both

specialized miss and hit functions, combined with the ability to control when misses

result in new blocks being placed in the cache, allows ZOOM to support a wide range

of atypical cache configurations without sacrificing usability.

Figure 5-2 shows a flow diagram of the operation of the ACCESS-PROCESSING unit.

The main machinery of the base access unit is a cache_access function whose inputs

are a pointer to the cache being accessed, an address, the size of the word to fetch and

112



HIT?

ACCESS CACHE

UPDATE STACK
(if LRU)

CALL CACHE_HIT_FN
WITH PTR TO BLOCK

ACCESSED

CALL CACHE_MISS_FN
WITH PTR TO

EVICTED BLOCK

CALL
CACHE_MISS_FN
WITH NULL PTR

ANY BLOCK
EVICTED?

YES

NO

NO

NO

YES

WAIT FOR NEW
ACCESS

START

PLACE
NEW BLOCK
IN CACHE

YES

RECORD BLOCK'S TRACE
TEMPORALITY AND
SPATIALITY STATS

READ OR
WRITE

ALLOCATE?

Figure 5-2: Flow diagram of access-processing in functional simulation
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a time of access expressed in cycles. Setting the time of access to a value greater than

the current cycle is equivalent to delaying the access for (access-cycle - current cycle-

count) cycles. This technique is often used in ZOOM to delay cache state updates

resulting from a given access until preceeding ones are completed.

The L1 cache is treated as the entry-level cache. Hence, all accesses to multi-level

cache configurations begin with an access to the L1 cache. If a hit is detected in the

entry-level cache, the state of the data stack is updated (if LRU replacement policy

is used). The hit-processing function in the ACCESS_HANDLER of the entry-level cache

is then invoked with a pointer to the accessed block and other timing information.

If a miss is detected, the miss-processing function is invoked with a pointer to the

evicted block (or a null pointer if no block was evicted) and the address. The miss-

processing function for an L1 cache in a traditional two-level cache configuration

would, for instance, initiate an access to the corresponding L2 cache when invoked.

If the cache is operating as a read or write allocate cache, the block is placed in the

cache. However, it is only available for accessing when the cycle-count equals the

value stored in its “block-ready” entry, which is the sum of the access cycle time plus

the miss latency of the cache. If the block was already returning to the cache on

behalf of a previous miss, the earlier completion time is used.

ZOOM’s functional simulator provides a simple interface for porting to various

processor simulators. This interface consists of a top-level function each for initializa-

tion, access-processing and output-formatting. The initialization function is invoked

in the processor simulator’s initalization environment. The inputs to the initializa-

tion function is the portion of the command line for {cache parameter files}. The
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access function is called with either the L1 data cache or the L1 instruction cache

depending on the type of memory reference. The output-formatting function is called

when the processor simulator exits the simulation loop. We now describe the inputs

and outputs of the functional simulator.

5.1.2 Simulator Inputs and Outputs

The cache parameter file specifies the basic physical properties, timing parameters

and strategies/policies that guide the operation of the cache. The details of these

groups of inputs are as follows:

physical properties: the cache size, associativity, blocksize, subblocksize

timing parameters: hit and miss latencies (in cycles) for each cache level,

cache-CPU port width, cache-memory bus width

number of separate or combined read/write ports

cache policies: replacement policy (LRU, Random, FIFO),

write-hit policy (copy-back, write-through),

write allocation policy (write-allocate, no-write-allocate),

read allocation policy (read-allocate, no-read-allocate)

A parameter file is needed for each cache in a multi-level cache configuration. Thus,

a simulation run that uses separate two-level instruction and data caches would need

four parameter files (one each for data L1, instruction L1, data L2 and instruction

L2); one that simulates a two-level heirarchy with separate instruction and data L1

caches, and a unified L2 cache needs three parameter files. Each parameter file is
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preceeded by an “orphan” which indicates which cache it belongs to. Supported

orphans include:

-dl1: Level 1 data cache -dl2: Level 2 data cache

-il1: Level 1 instruction cache -il2: Level 2 instruction cache

-ul1: Level 1 unified cache -ul2: Level 2 unified cache

The orphans are ordered so that first-level caches are specified before second level

caches and within each level, data caches are specified before instruction caches. Any

unused cache may be skipped.

The address trace consists of duplexes, each duplex consisting of an access-type

and a hexidecimal address. The access-type is an integer which is 0 if the access is

an instruction read, 1 if the access is a data read, 2 for a data write accesses and 3 if

the request is to invalidate the data stored at the specified address.

The output file from the simulator includes performance statistics, latency effects

and locality-based trace classification.

The performance statistics include the local and global hit, block replacement and

write-back rates. The hit rate is defined as the fraction of accesses that result in a hit

in the cache. The block replacement rate is the number of valid block replacements

divided by the total number of accesses. This fraction approaches the miss rate as

the number of accesses increases since there is then a higher probability that every

location in the cache holds a valid block, and hence, a valid block will be evicted

for each miss. The write-back rate is the number of modified blocks written back

to memory divided by the number of memory references. The “dirty bit”, which

identifies modified blocks is set both at the block and word level. For a given dirty
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block, only the modified words are written back to memory and hence, only those

contribute to bus traffic. The local rates are limited to the particular cache level and

hence, only include accesses made to that cache level. The global rates includes are

still level-specific, but include all accesses made to all levels in the cache.

Latency effects include average access latency, cycle penalties resulting from lim-

ited port or bus width and access dependencies (delayed hits). The average access

latency is a commonly used metric for comparing caches. It is defined as

Average Access Latency = Hit Latency +Miss Rate×Miss Penalty

where miss penalty is the time it takes to service a regular miss. Delayed hits (accesses

to data currently returning to the cache on behalf of earlier misses to the same block)

are treated as misses for statistics purposes, and included in the miss rate. Their

reduced latencies are however accounted for when calculating the average access time.

Trace classification is based on the degree of spatiality and temporality in the

addresses. A block is considered temporal if any word in it is accessed more than once

during one of the time intervals that it spends in the cache (between an allocation

and its subsequent eviction). This time interval is called a tour in [30]. A block is

considered spatial if more than one word is accessed during a tour. A given block can

be both temporal and spatial, or neither. We therefore have four classifications [30].

A given block may be:

1. spatial and temporal,

2. spatial and non-temporal,
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3. non-spatial and temporal, or

4. non-spatial and non-temporal

The address trace derives its classification from the classification of the blocks. For

example, if the majority of the blocks are spatial, the trace is spatial and the degree

of spatiality is the ratio of the number of spatial blocks (which may also be temporal)

divided by the total number of blocks in the four block classifications. This is easily

extended to fine-grain trace classification, along the same lines as the blocks.

5.2 Micro-Architecture Level Simulator

The timing-sensitive Functional Simulator described in Section 5.1 assumes hit and

miss latencies in terms of number of cycles without knowing the duration of that

cycle, or the absolute access time of the cache. The micro-architecture simulator is a

layer of abstraction below that of the functional simulator. It estimates and optimizes

the basic metrics of the cache (access time, energy and area) using the circuit-level

models presented in Chapters 3 and 4.

Figure 5-3 shows an overview of the micro-architecture simulator. The simulator

can model only one single-level cache at a time. The command line for invoking the

simulator is:

zoom-micro [-net] configuration_file [width_file]

Arguments in ‘[ ]’ are optional. The -net argument invokes the Netlist Generator.

If omitted, no netlist is created. The inputs to the simulator consist of a configu-

ration file and an optional transistor-width specifications file. The configuration file
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Figure 5-3: Overview of micro-architecture simulator

contains three groups of input parameters: the physical parameters of the cache under

study, a set of optimization criteria and a process technology specification consisting

of the supply voltage and λ, which is half the minimum feature size. The optional

width specification file consists of transistor widths for gates that are not sized during

optimization and is used instead of a default widths file. The output file from the

simulator contains component-based delay, energy and area estimates; derived con-

figuration information for the proposed cache; and derived technology parameters. If

the Netlist Generator was invoked, an HSPICE r© file containing netlists for the main

components is also returned.

The cache parameters required by the simulator include a name for the cache (for

naming the output and netlist files) and the following:
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tag type: 1 for SRAM, 2 for CAM, or 0 to use ZOOM’s default

sizes (in bytes): cachesize, blocksize, subblocksize, wordsize

associativity: has to be a power of 2 if cache size is a powers of 2

cache ports: the number of read, write, or combined read-write ports

Only single-ported caches with combined read and write ports are supported in this

version of ZOOM. The optimization criteria consist of a target delay in nanoseconds,

the maximum allowed deviation from this target (as a fraction of the target delay),

and β and α, which are integers specifying the weights attached to energy and delay,

respectively, during optimization.

Figure 5-4 shows the simulation flow of the micro-architecture simulator. The sup-

ply voltage and feature size are used to generate basic process parameters from the

base 0.25µm technology using well-defined scaling rules. These parameters are then

fed, together with the cache configuration, to analytical energy, delay and area models

to obtain estimates which are used as a starting point for optimization. This prelim-

inary implementation of the optimizer performs an exhaustive serial search through

all available configuration options to identify the optimium configuration. Hence,

the speed of the optimization is linearly dependent on the number of choices, which

grows quickly with cache size. Future implementations will employ some parallelism

to improve optimization speed at the expense of extra system memory.
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Figure 5-4: Flow of micro-architecture level simulation
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5.2.1 Automated Component Netlist Generation

Since it is anticipated that designers and researchers may want to use the cache model

proposed by ZOOM as a starting point for their designs, extracting gate and circuit

parameters in some machine-readable format is desirable. This is the motivation for

including HSPICE r© netlist-generation capabilities in ZOOM. The returned netlist is

not intended for use as a complete functional cache. It is intended, mainly, to assist

in validating the estimates returned by ZOOM.

Netlist generation may be invoked using the -net commandline option. The

netlist generator assumes library cell definitions for basic cells such as the SRAM

and CAM cells and simple gates such as inverters, NAND gates, multiplexors, sense

amplifiers, etc. The netlist is generated heirarchically by building smaller sub-circuits

and assembling instances of these sub-circuits to form the component. Interconnect

resistances and capacitances are distributed at bit-level granulity. The generated

netlist contains all the components needed to build a “sub-cache.” The sub-cache has

an instance of a fully connected SRAM data path for both data and tag arrays, a tag

and data decoder, comparators and the local output bus. It assumes control signals

such as the precharge enable, the sense clock and the evaluate signal used by the

SRAM tag comparators are available and independently generated to arrive at the

appropriate time. However, it does not create a netlist for the control circuitry needed

to generate these signals. The current implementation does not generate a netlist for

global routing or assemble instances of these “sub-caches” into the complete cache.

However, future versions of ZOOM may have this extended capability.
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Chapter 6

Conclusion

This thesis presented the implementation and evaluation of ZOOM, a framework

for characterizing and optimizing SRAM and CAM-based caches. Various energy-

reduction techniques were modeled and used in a general optimization scheme to

propose energy-efficient cache models for a given target delay. Preliminary evaluation

of the circuit-level models used in the micro-architecture simulator show that delay

estimates are within 10% of HSPICE simulated delays for both SRAM and CAM

caches and energy estimates are within 15% of HSPICE measurements for both types

of caches while measurements show that ZOOM is at least 1,000,000 times faster

than HSPICE. Together, the functional and micro-architecture simulators provide

designers a tractable means to evaluate the effects of architectural changes on cache

energy and performance using a cross-section of benchmarks that are representative

of target applications.
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6.1 Future Plans

Future plans consist mainly of continued evaluation and fine-tuning of the models.

The next phase of evaluation is to examine how closely the sizing algorithms and

assumptions about aspects of the cache design match those of actual (commercial)

cache desgins, and fine-tune these assumptions to improve the value of the model for

commercial cache designers. Since leakage in SRAM and CAM arrays is becoming

a dominant issue, an expanded leakage model in ZOOM will be valuable. The tests

in this thesis were run using the 0.25µm technology. The accuracy of the simulator

needs to be verified across technology boundaries due to non-linear scaling effects and

the models and base assumptions improved to accurately represent these effect.
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Appendix A

General Simulator Information

A.1 Running the Simulator

The command line for trace-driven simualtion is:

zoom <trace> [-opt1] <ccf1> [-opt2] <ccf2> [-opt3] <ccf3> [-opt4] <ccf4>

where ccf1...4 are the cache configuration files and the allowed values for [-opt1],

[-opt2], [-opt3] and [-opt4] are as follows:

-opt1: -dl1|-il1|-ul1

-opt2: blank|-il1|-dl2|-il2|-ul2

-opt3: blank|-dl2|-il2|-ul2

-opt4: blank|-il2

Most realistic configurations are supported. These include configurations with sepa-

rate or unified instruction and data caches of up to 2 levels. Some supported config-

uration examples are provided below:

zoom <trace> -dl1 <cachefile> -il1 <cachefile>
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zoom <trace> -ul1 <cachefile> -ul2 <cachefile>

zoom <trace> -dl1 <cachefile> -il1 <cachefile> -ul2 <cachefile>

zoom <trace> -dl1 <dl1_file> -il1 <il1_file> -dl2 <dl2_file> -il2 <il2_file>

A.2 Sample I/O Files for Functional Simulator

Sample Input File

16384 #cachesize_in_bytes
32 #blocksize_in_bytes
32 #subblocksize_in_bytes
2 #cache_associativity_(number_of_elements_per_set)
1 #cache_read_latency
1 #cache_write_latency
r #cache_replacement_policy:l=LRU,f=FIFO,r=RANDOM
d #cache_fetch_policy:d=DEMAND,for_others_see_fetch.c
c #cache_write_hit_policy:w=writethrough,c=copyback
w #cache_write_miss_policy:w=writeallocate,n=non-allocating
0 #cache_read-allocate-policy:=1_if_special_purpose_buffer;0_otherwise

10 #main_memory_read_latency
1 #use_r/w_ports:1_for_combined_r/w_ports,0_for_separate
1 #number_of_r/w_cache_ports
0 #number_of_read_cache_ports
0 #number_of_write_cache_ports
1 #return_policy:1_for_requested_word_first,0_for_first_word_first
8 #CPU-to-cache_bus_width_in_bytes
32 #cache-to-memory_bus_width_in_bytes
100 #NOA;set_high_for_nonblocking

0 #TIMING_MODEL;0=Full_LE,1=LE-Nominal,2=NO_timing
1000000 #simulation_cutoff
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Sample Output File

Date and Time of Simulation: Apr 4 2003 19:56:45

Data L1 Cache Configuration
----------------------------

cache size = 16.0K
associativity = 2
number of subbanks = 1 (16.0K/subbank)
read latency = 1 cycle(s)
write latency = 1 cycle(s)
replacement policy = r
blocksize = 32B
subblocksize = 32B

Inst. L1 Cache Configuration
----------------------------

cache size = 16.0K
associativity = 2
number of subbanks = 1 (16.0K/subbank)
read latency = 1 cycle(s)
write latency = 1 cycle(s)
replacement policy = r
blocksize = 32B
subblocksize = 32B

General Memory Properties
--------------------------
main memory latency = 10 cycles
# read/write ports = 1
word return policy = requested_word_first
c-p buswidth = 8B
m-c buswidth = 32B

cache blocks after 100 outstanding access

Simulation Setup
----------------
Using Full LE timing model
Maximum # of Instructions to simulate: 1000000

Reading from trace file... test_trace.in

---Simulation begins....
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---Simulation complete.
Used Cycles: 2723000.0cycles
Real Time: 3.00seconds

***** Simulation Results for Data L1 Cache *****

cache size = 16.0K
associativity = 2
number of subbanks = 1 (16.0K/subbank)
read latency = 1 cycle(s)
write latency = 1 cycle(s)
replacement policy = r
blocksize = 32B
subblocksize = 32B

accesses: 400000
reads : 244692
writes : 155308
hits : 212957
delayed hits : 134757 (treated as misses in metrics)

Parameter Quantity local rate global rate
---------- --------- ---------- ----------
misses 187043 0.4676 0.4676
readmisses 33951 0.1387
writemisses 18335 0.1181
writebacks 34545 0.0864 0.0864
block replacements 51774 0.1294 0.1294

total cycles: 1641324
avg. latency (# of cycles): 4.1033

Block Classification
--------------------
NTNS: 45.25%
NTS: 10.84%
TNS 26.55%
TS: 17.36%

Trace Classification
--------------------
%Spatial= 28.2 %Temporal = 43.91
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***** Simulation Results for Inst L1 Cache *****

cache size = 16.0K
associativity = 2
number of subbanks = 1 (16.0K/subbank)
read latency = 1 cycle(s)
write latency = 1 cycle(s)
replacement policy = r
blocksize = 32B
subblocksize = 32B

accesses: 243888
reads : 243888
writes : 0
hits : 242085
delayed hits : 562 (treated as misses in metrics)

Parameter Quantity local rate global rate
---------- --------- ---------- ----------
misses 1803 0.0074 0.0074
readmisses 1241 0.0051
writemisses 0 0.0000
writebacks 0 0.0000 0.0000
block replacements 876 0.0036 0.0036

total cycles: 259802
avg. latency (# of cycles): 1.0653

Block Classification
--------------------
NTNS: 6.75%
NTS: 21.38%
TNS 31.47%
TS: 40.40%

Trace Classification
--------------------
%Spatial= 61.78 %Temporal = 71.87

Overall Summary
---------------
Total # of Inst Memory References: 243888
Total # of Data Memory Refs: 400000
Total # of Memory Refs: 643888
Total # of Hits: 455042
Extra Port Cycles: 0
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A.3 Sample I/O Files for Micro-Arch Simulator

Sample Input file

0.125 #lambda_in_microns
2.5 #Vdd_in_volts
test #name_for_the_cache(used_to_name_output_file_<40_characters)
1 #tag_array_type;0_for_ZOOMDECIDE;1_for_SRAM;2_for_CAM
32768 #cachesize_in_bytes
1 #cache_associativity_(number_of_elements_per_set)
32 #blocksize_in_bytes
32 #subblocksize_in_bytes
4 #wordsize_bytes
0 #number_of_read_cache_ports
0 #number_of_write_cache_ports
1 #number_of_read_write_ports
2.0 #target_delay_in_ns;
.05 #tolerance_as_a_fraction_(eg,.1)
4 #energy_bias(has_to_be_an_integer);
1 #area_bias(has_to_be_an_integer);

Sample Output file

Date and Time of Simulation: May 27 2003 00:50:20
command line: micro-zoom cache.cfg

1. CACHE PARAMETERS
===================
Cache Type = SRAM-Tag cache
Cache size(KB) = 32.0
Associativity = 1
Blocksize(B) = 32
Subblocksize(B) = 32
# of r_ports = 0
# of w_ports = 0
# of r/w ports = 1
Cache uses LATE SELECT

OPT. CRITERIA: max_delay=2.0000, tolerance = 0.0500 E_bias=4, A_bias=1
OPTIMIZATION REPORT: optimum delay=2.0949, deviation = 0.0475

2. MICRO-ARCHITECTURE LEVEL SIMULATION RESULTS
==============================================
Read Access Time(with global routing) = 2.0949ns
Read Access Time(w/o global routing) = 1.9465ns
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Tag path Delay(ns) = 1.9171
Data path Delay(ns) = 1.7572
Data Routing Delay(ns) = 0.1485

Write Access Time (ns) = 3.0741

Read Access Energy(nJ) = 0.0476
Write Access Energy(nJ)= 0.0476

Address Drivers(nJ) = 0.0091
Data Routing Energy(nJ) = 0.0000

Total cache area(mm^2) = 4.0290
floorplan (rows x cols): [2 x 4] subarrays
Cache Aspect Ratio = 1.53
Area Efficiency = 0.6710

Energy & Delay Breakdown by Component
-------------------------------------
TAGPATH

component delay(ns) energy(nJ) % total energy
--------- --------- ---------- ---------------
Decoder: 1.1920 0.0078 16.5
Local Wordline: 0.0657 0.0001 0.2
Bitline & Col Muxes: 0.1761 0.0005 1.0
Sense Amplifiers: 0.2328 0.0022 4.5
Comp & mux driver: 0.2506 0.0004 0.8

DATAPATH
component delay(ns) energy(nJ) % total energy
--------- --------- ---------- ---------------
Decoder: 0.9335 0.0112 23.6
Local Wordline: 0.1046 0.0004 0.8
Bitline & Col Muxes: 0.4863 0.0102 21.6
Sense Amplifiers: 0.2328 0.0038 8.1
Local Output Bus: 0.1892 0.0023 4.9

3. DERIVED COMPONENT PARAMETERS
===============================
ARRAY_PARTITIONING
------------------
no. of data sub-arrays = 8 [4096B, 128 cols by 256 rows]
no. of tag sub-arrays = 16 [216B, 27 cols by 64 rows]
1 x (17 tagbits + 9 dirty bits + 1 valid bit) per row

no. of sets per sub-array = 256
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DECODER
=======

DATA_PREDECODER
---------------
no. of repeaters = 0
repeater scaling (from min width) = 0.00

no. of bits = 2
stage fanout =5.06
no. of stages = 2
stage sizes(lambda) = 6 21

DATA ROW DECODER
----------------
no. of bits = 8
stage fanout =5.06
no. of stages = 5
stage sizes(lambda) = 3 3 10 54 3

TAG_PREDECODER
---------------
no. of repeaters = 0
repeater scaling (from min width) = 0.00

no. of bits = 4
stage fanout =5.06
no. of stages = 4
stage sizes(lambda) = 3 6 6 38

TAG ROW DECODER
----------------
no. of bits = 6
stage fanout =5.06
no. of stages = 5
stage sizes(lambda) = 3 3 6 34 6

4. TECHNOLOGY SCALING PARAMETERS
================================
Lambda(um) = 0.125(L_eff = 0.250)
Vdd(V) = 2.50
Rg_inv(KOhm-um)= 3.56
Cg_inv(fF/um) = 1.29
Cj_inv(fF/um) = 1.72
Tfo4(pS) = 90.00
T_int(pS) = 20.00
I_nmos(uA/um) = 508.60
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